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The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide
sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted
to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was
cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The
purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of
l-phenylserine dehydrogenase (ORF3) were quite different from those of d-phenylserine dehydrogenase previously reported.
l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-
Phenylserine and l-threo-(2-thienyl)serine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-
phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon.
The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

1. Introduction

3-Hydroxy-2-amino acids are components of many bioactive
molecules, such as antibiotics and immunosuppressants
[1–9] and a drug for Parkinson’s disease therapy [10].
Therefore, enzymatic synthesis of 3-hydroxy-2-amino acids
with d- and l-threonine aldolases has been performed
extensively [1, 2, 4–9]. β-Phenylserine (2-amino-3-hydroxy-
3-phenylpropanoic acid), which exists as four stereoisomers,
is one of the physiologically important 3-hydroxy-2-amino
acids [11–13]. However, until recently, little was known
about phenylserine biosynthetic and degradation pathways.
To elucidate metabolic processes involving phenylserine,
we have attempted to obtain enzymes physiologically act-
ing on phenylserine. Previously, we reported the molec-
ular characteristics of inducible pyridoxal 5’-phosphate
(PLP)-dependent phenylserine aldolase [EC 4.1.2.26] [14],

PLP-dependent phenylserine dehydratase [EC 4.2.1.-] [15],
and inducible NADP+-dependent d-phenylserine dehydro-
genase [EC 1.1.1.-] (Scheme 1) [16]. During the identi-
fication of the gene encoding d-phenylserine dehydroge-
nase, we found the gene encoding l-phenylserine dehy-
drogenase [EC 1.1.1.-] in the same operon. In this paper,
we report the identification and cloning of the genes
encoding d-phenylserine dehydrogenase and l-phenylserine
dehydrogenase. Moreover, the enzymological properties of
l-phenylserine dehydrogenase (Scheme 1) overexpressed in
Escherichia coli are described.

2. Materials and Methods

2.1. Materials. d-threo-β-Phenylserine was a gift from Mr.
Teruyuki Nikaido, Daicel Chemical Industries (Hyogo,
Japan). Polypepton was from Nihon Pharmaceutical (Tokyo,
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Japan). NAD+, NADP+, yeast extract, and molecular-weight
marker-proteins for gel filtration were from Oriental Yeast
(Tokyo, Japan). Restriction enzymes and kits for genetic
manipulation were from Takara Shuzo (Kyoto, Japan),
Toyobo (Osaka, Japan), and New England Biolabs (Beverly,
MA). All other reagents were of analytical grade from Sigma
(St. Louis, MO), Nacalai Tesque (Kyoto, Japan), and Wako
Pure Chemical Industries (Osaka, Japan).

2.2. Cultivation. Pseudomonas syringae NK-15 was culti-
vated at 30◦C in a medium containing 0.5% dl-threo-
β-phenylserine, 1.5% polypepton, 0.2% K2HPO4, 0.2%
KH2PO4, 0.2% NaCl, 0.01% MgSO4·7H2O, and 0.01% yeast
extract (pH 7.2) with reciprocal shaking [16].

2.3. Determination of Internal Amino Acid Sequence. Puri-
fied d-phenylserine dehydrogenase, prepared as previously
described [16], was lyophilized and suspended in 8 M urea.
After incubation for 1 hour at 37◦C, the enzyme was
digested with lysyl endopeptidase for 15 hours at 37◦C.
The resultant peptides were separated on a Shimadzu HPLC
system equipped with a YMC-Pack C4 column (6×150 mm,
YMC Co., Kyoto, Japan) using a solvent system of 0.1%
trifluoroacetic acid (solvent A) and acetonitrile containing
0.07% trifluoroacetic acid (solvent B). A 90-min linear
gradient from 5 to 50% solvent B was used to elute peptides
at a flow rate of 1.0 ml/min. The absorbance at 210 nm
of the effluent was continuously monitored. The internal
amino acid sequence of d-phenylserine dehydrogenase was
determined using an automated protein sequencer (Perkin
Elmer, Wellesley, MA).

2.4. Identification of the Gene Encoding d-Phenylserine Dehy-
drogenase and Gene Organization. Based on the N-terminal
amino acid sequence of d-phenylserine dehydrogenase,
determined as described previously [16], and the internal
amino acid sequence of the enzyme determined in this
work, inverse PCR was performed to identify the gene
encoding d-phenylserine dehydrogenase. PCR products were
sequenced with an Applied Biosystems 373A DNA sequencer
and a DNA sequencing kit (ABI PRISM Dye Terminator
Cycle Sequencing Ready Reaction Kit). Inverse PCR was
also used to determine the nucleotide sequence of the
regions upstream and downstream of the d-phenylserine
dehydrogenase gene.

2.5. Cloning and Expression of the Gene Encoding d-
Phenylserine Dehydrogenase and the Orf3 Gene in Escherichia
coli. Chromosomal DNA was prepared from P. syringae
NK-15 by the method of Saito and Miura [17]. A DNA
fragment containing the gene encoding d-phenylserine
dehydrogenase was amplified by PCR with Ex Taq DNA
polymerase (Takara Shuzo, Kyoto, Japan) using a sense
primer containing an EcoRI site (5′- GCGGAATTCGAA-
TCCGCCAACCCACGCCAAGGAATAACGCA -3′) and an
antisense primer containing a PstI site (5′- GCGAAGCTT-
CTGCAGCAAGCAGCGCTCACGTCGAAGCGCACA- 3′).

The amplified DNA fragment was ligated into the EcoRI-
PstI site of pUC18. The resultant plasmid, pUPsDH, was
introduced into E. coli JM109 to provide recombinant d-
phenylserine dehydrogenase. E. coli JM109 carrying pUPsDH
was cultivated in LB medium containing 50 µg/ml ampicillin
and 0.1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) at
37◦C for 20 hours. A DNA fragment containing the orf3
gene was amplified using a sense primer containing an
EcoRI site and the ATG start codon (5′-GGGAATTCA-
GGAAACAGACCATGAGTTTTCCGGTTTGTCTCGTCA-
3′) and an antisense primer containing a HindIII site (5′-
GGAAGCTTATGTGTTGAGCAGCAGCCCGxTTCTCGA-
TCG 3′). The amplified DNA fragment was ligated into the
EcoRI-HindIII site of pSE420D (Daicel Chemical Industries,
Osaka, Japan) [18]. The resultant plasmid, pSORF3, was
deposited in the International Patent Organism Depositary,
National Institute of Advanced Industrial Science and Tech-
nology (Ibaraki, Japan) under accession number FERM-P-
20287. To obtain recombinant ORF3, E. coli JM109 carrying
pSORF3 was cultivated in LB medium containing 50 µg/ml
ampicillin and 0.1 mM IPTG at 37◦C for 16 hours.

2.6. Purification of the orf3 Gene Product. The standard
buffer used throughout purification was 10 mM potassium
phosphate buffer (pH 8.0), and all operations were done at
4◦C. Cultured E. coli cells expressing ORF3 were harvested by
centrifugation, resuspended in 0.1 M potassium phosphate
buffer (pH 8.0) containing 0.02% 2-mercaptoethanol (2-
ME) and 2 mM phenylmethylsulfonyl fluoride (PMSF), and
disrupted using a Micro Smash MS-100 (TOMY, Tokyo,
Japan). After centrifugation, the supernatant was fraction-
ated by ammonium sulfate precipitation (0–50% saturation).
The enzyme-containing fraction was resuspended in 0.1 M
potassium phosphate buffer (pH 8.0) containing 0.02% 2-
ME and 2 mM PMSF, and dialyzed against the same buffer.
The enzyme fraction was applied to a Q-Sepharose FF
column (Pharmacia, Columbus, OH) equilibrated with the
standard buffer containing 0.01% 2-ME. The enzyme was
eluted with a linear gradient of 0–0.5 M NaCl in the same
buffer. The enzyme fractions were collected, concentrated,
dialyzed against the standard buffer containing 0.01% 2-
ME and 20% saturated ammonium sulfate, and centrifuged.
The supernatant was applied to a Phenyl superose HP 26/10
column (Pharmacia, Columbus, OH) equilibrated with the
standard buffer containing 0.01% 2-ME and 30% saturated
ammonium sulfate. The enzyme was eluted with a linear
gradient of 20–0% saturated ammonium sulfate in the
buffer. The enzyme fractions were collected, concentrated
and dialyzed against the standard buffer containing 0.01% 2-
ME. The final preparation of the enzyme was stored at−80◦C
until use.

2.7. Enzyme Assay. l-Phenylserine dehydrogenase activity
was assayed by monitoring the increase in absorbance
at 340 nm due to the production of NADH at 30◦C in
a 1-ml reaction mixture containing 20 mM dl-threo-β-
phenylserine and 2.5 mM NAD+ in 0.2 M Glycine-KCl-KOH
buffer (pH 10.5). d-Phenylserine dehydrogenase activity was
determined as previously described [16].
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Scheme 1: Reactions catalyzed by l-phenylserine dehydrogenase (a) and d-phenylserine dehydrogenase (b).

2.8. Thin Layer Chromatography (TLC) Analysis. A reac-
tion solution containing 40 mM dl-threo-β-phenylserine,
4.8 mM NAD+, and 0.3 mg/ml purified ORF3 in 0.1 M
Glycine-KCl-KOH buffer (pH 10.5) was incubated overnight
at 30◦C. The reaction solution, dl-threo-β-phenylserine,
and 2-aminoacetophenone were applied to a TLC plate,
Kieselgel 60 F254 (Merck, Darmstadt, Germany). The chro-
matogram was developed using n-butanol-acetic acid-water
(4:1:1, by vol.). The spots of dl-threo-phenylserine and 2-
aminoacetophenone were detected by spraying the TLC plate
with 1.5% ninhydrin solution in acetone-ethanol (7:3, by
vol.) and incubating at 65◦C until color developed.

2.9. Analytical Methods for Enzyme. Protein concentration
was determined using a Protein assay kit (Bio-Rad, Hercules,
CA) with bovine serum albumin as standard. The molecular
mass of the subunit of l-phenylserine dehydrogenase was
examined by SDS-PAGE using Protein Markers for SDS-
PAGE (Nacalai Tesque, Kyoto, Japan). The molecular mass of
native l-phenylserine dehydrogenase was estimated by HPLC
on a TSK-GEL G3000SW column (0.75×60 cm) operating at
room temperature. The column was eluted with 0.1 M potas-
sium phosphate buffer (pH 7.0) containing 0.2 M NaCl at a
flow rate of 0.7 ml/min. Amino acid sequences were obtained
from PubMed at NCBI (http://www.ncbi.nlm.nih.gov/). A
homology search was performed using the BLAST program
[19] at GenomeNet (http://www.genome.ad.jp/). Multiple

alignments were obtained with the ClustalW program [20]
at GenomeNet (http://www.genome.ad.jp/).

2.10. Nucleotide Sequence Accession Number. The nucleotide
sequence data have been deposited in the DDBJ/EMBL/
GenBank nucleotide sequence databases under accession
number AB499092.

3. Results

3.1. Identification of a Gene Encoding d-Phenylserine
Dehydrogenase. Purified d-phenylserine dehydrogenase was
obtained as previously described [16]. The enzyme was
digested with lysyl endopeptidase, and the peptide products
were purified by reversed-phase HPLC. The amino acid
sequences of only two internal peptides could be determined
(Figure 1). Based on the N-terminal amino-acid sequence
and the internal amino acid sequences determined, an 897-
bp nucleotide sequence was identified as the gene encoding
d-phenylserine dehydrogenase (Figure 1). A crude extract
of E. coli JM109 transformed with the pUPsDH expression
vector containing the gene showed d-phenylserine dehydro-
genase activity (33 U/mg), while that of wild-type E. coli
JM109 was inactive.

3.2. Gene Organization of Regions Upstream and Downstream
of the d-Phenylserine Dehydrogenase Gene. To determine the
nucleotide sequence of upstream and downstream regions
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Figure 1: Nucleotide and deduced amino acid sequence of d-phenylserine dehydrogenase. N-terminal amino-acid sequence and internal
amino acid sequences of the enzyme determined with an automated protein sequencer are boxed and underlined, respectively. The sequence
data are deposited in the DDBJ/EMBL/GenBank database under the accession number AB499092.

of the gene encoding d-phenylserine dehydrogenase, inverse
PCR was carried out. As a result, a 9,246-bp nucleotide
sequence containing at least six open reading frames (ORFs)
was determined (Figure 2). The transcriptional directions
of orf1 and orf6 are opposite to those of the four other
ORFs. Postulated promoter and terminator sequences are
located immediately upstream of orf2 and downstream of
d-phenylserine dehydrogenase encoding orf5, respectively.
These observations suggest that orf2, orf3, orf4, and orf5 may
form an operon.

orf1 encodes a protein of 320 amino acids that is
similar to amino acid sequences of putative LysR-type
transcriptional regulators. Thus, orf1 probably plays a role
in the regulation of transcription of the operon. orf2 encodes
a protein of 436 amino acids that shows sequence similarity
to putative major facilitator superfamily (MFS) transporters.
orf4 encodes a protein of 579 amino acids that is similar
to amino acid sequences of putative dihydroxy acid dehy-
dratases (ilvD). The ilvD gene has previously been identified
in the ilv operon involved in branched-chain amino acids
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orf1 orf2 orf3 orf4 orf5 orf6

L-PSDH D-PSDH 1 kb

Figure 2: Genetic map around the d-phenylserine dehydrogenase
gene. orf1: putative transcriptional regulator gene, orf2: putative
MFS transporter gene, orf3: l-phenylserine dehydrogenase gene,
orf4: putative dihydroxy acid dehydratase gene, orf5: d-phenylserine
dehydrogenase gene, orf6: putative ABC peptide transporter gene.

biosynthesis [21–23]; however, the operon containing the
gene for d-phenylserine dehydrogenase did not contain other
genes related to branched-chain amino acids metabolism.
orf5 encodes d-phenylserine dehydrogenase, which was
previously characterized [16]. orf6 encoded a protein of 520
amino acids that showed high similarity with amino acid
sequences of putative ABC peptide transporters.

orf3 encodes a protein of 259 amino acids that shares
37% identity with ketoreductase (RED2) from Streptomyces
violaceoruber Tü22 [24] and 28% identity with 1,3,8-
trihydroxynaphthalene reductase (3HNR) from Magna-
porthe grisea (Figure 4) [25, 26]. The amino acid sequence
of ORF3 also shows high similarity to that of putative
short chain dehydrogenases and putative 3-oxoacyl-(acyl-
carrier protein) reductases and 24% identity with serine
dehydrogenase from Agrobacterium tumefaciens ICR 1600
[27]. A common GXXXGXG sequence, which is charac-
teristic of an NAD(P)-binding site conserved in serine
dehydrogenase and its homologs [27], was found in the N-
terminal region of ORF3. For these reasons, we assumed
that ORF3 has dehydrogenase activity, and considered that
3-hydroxy amino acids were likely to serve as a substrate for
the enzyme, so cloning of orf3 was done.

3.3. Purification of l-Phenylserine Dehydrogenase (ORF3).
ORF3 was purified to homogeneity from the recombinant
E. coli JM109 cell carrying pSORF3. ORF3 has a calculated
molecular mass of 27498.3 Da. The purified protein gave a
single band with a molecular mass of 27 kDa on SDS-PAGE.
The molecular mass of the native protein was determined to
be 98 kDa by gel filtration. Because the elution of ORF3 was
likely slightly slowed by nonspecific hydrophobic and ionic
interactions between ORF3 and the gel filtration resin, the
apparent molecular mass of the protein was most likely an
underestimate. Therefore, ORF3 probably consists of four
identical subunits. A summary of the specific activity and
recovery of ORF3 during purification is shown in Table 1.

3.4. Properties of l-Phenylserine Dehydrogenase (ORF3).
The molecular characteristics of the enzyme are shown in
Tables 2, 3, and 4. The enzyme was significantly inhib-
ited by 0.05 mM p-chloromercuribenzoate and 0.01 mM
HgCl2. However, thiol reagents, such as N-ethylmaleimide
and iodoacetamide, the chelating agent EDTA, and biva-
lent metal cations did not affect the enzyme (Table 2).
The enzyme acted in an NAD+-dependent way on dl-
threo-β-phenylserine but not on d-threo-β-phenylserine.
Because we could not obtain pure l-threo-β-phenylserine,

Table 1: Purification of recombinant l-phenylserine dehydroge-
nase.

Step
Activity Protein Specific activity Yield

units mg units/mg %

Crude extract 1400 1100 1.3 100

(NH4)2SO4 fractionation 1800 880 2.0 130

Q-Sepharose FF 1100 180 6.1 79

Phenyl-Sepharose 140 22 6.5 10

The enzyme activity was measured with 20 mM dl-threo-β-phenylserine
and 2.5 mM NAD+ in 0.2 M glycine-KCl-KOH buffer (pH 10.5) at 30◦C.

we were unable to perform enzyme assays with l-threo-β-
phenylserine as a substrate. However, the data we obtained
indicate that the enzyme showed activity towards only the l-
form. The enzyme also acted on dl-erythro-β-phenylserine
and dl-threo-(2-thienyl)serine. Pure l-forms of these com-
pounds are also unavailable, but the enzyme likely acted
on only the l-forms of erythro-β-phenylserine and threo-
(2-thienyl)serine. Other amino acids tested did not serve
as a substrate. The enzyme showed weak activity toward
(S)-phenylethanol (Table 3). TLC analysis revealed that the
enzyme converted l-β-phenylserine (R f = 0.52) into 2-
aminoacetophenone (R f = 0.63). Therefore, we considered
that the enzyme catalyzed the oxidation of the β-hydroxyl
group of l-β-phenylserine and that the reaction product, l-
α-amino-β-keto-γ-phenylpropionate, spontaneously decar-
boxylated to form 2-aminoacetophenone (Scheme 2). The
enzyme preferred NAD+ to NADP+ as a coenzyme. The
enzyme showed maximal activity at pH 11.2 and was stable
between pH 6.1 and 11.2 at 30◦C. The enzyme was stable
at temperatures lower than 55◦C for at least 10 minutes and
showed the highest activity at 40◦C (Table 4). The apparent
Km values for dl-threo-β-phenylserine and NAD+ were 59
and 2.1 mM, respectively.

4. Discussion

The enzymological properties of d-phenylserine dehydro-
genase have already been reported [16], but the nucleotide
sequence of the gene encoding d-phenylserine dehydroge-
nase was determined in this work. The amino acid sequence
of d-phenylserine dehydrogenase shares 24% identity with 3-
hydroxyisobutyrate dehydrogenase (TTHA0237) from Ther-
mus thermophilus HB8 [28] and 24% identity with a possible
3-hydroxyisobutyrate dehydrogenase (PA0743) from Pseu-
domonas aeruginosa PAO1. An alignment of the amino acid
sequences of d-phenylserine dehydrogenase, TTHA0237,
and PA0743 is shown in Figure 3. Many NAD/NADP-
dependent dehydrogenases contain the Rossmann fold for
nucleotide binding; the pyrophosphate group interacts with
the GXGXX(G/A) motif found in the Rossmann fold [29].
This characteristic glycine-rich fingerprint motif was highly
conserved in the N-termini of d-phenylserine dehydroge-
nase, TTHA0237, and PA0743. Similarly, alignment of the
amino acid sequence of d-phenylserine dehydrogenase with
the sequences of 6-phosphogluconate dehydrogenase from
Ovis aries [30], Saccharomyces cerevisiae [31], Lactococcus
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Figure 3: (a) Alignment of the amino acid sequence of d-phenylserine dehydrogenase (d-PSDH) with the sequences of 3-hydroxyisobutyrate
dehydrogenase (TTHA0237) from Thermus thermophilus HB8 (PDB ID: 2CVZ) and 3-hydroxyisobutyrate dehydrogenase (PA0743) from
Pseudomonas aeruginosa PAO1 (PDB ID: 3CUM). Conserved residues are marked with an asterisk and the key conserved catalytic residue is
highlighted with a black background. The GXGXXG sequence fingerprint motif found in the Rossmann fold is boxed. (b) Alignment of the
N-terminal amino-acid sequence of d-PSDH with the sequences of 6-phosphogluconate dehydrogenases from Ovis aries (PDB ID: 1PGN),
Saccharomyces cerevisiae (PDB ID: 2P4Q), Lactococcus lactis (PDB ID: 2IYO), and Trypanosoma brucei (PDB ID: 1PGJ). Conserved residues
are marked by an asterisk. The GX(G/A)XXG sequence fingerprint motif involved in coenzyme binding is boxed. The residues interacting
with the 2′-phosphate group of NADP+ are highlighted with a black background. Accession numbers for the proteins used are as follows:
d-PSDH, AB499092 (GenBankTM); TTHA0237, Q5SLQ6 (TrEMBL); PA0743, Q9I5I6 (TrEMBL); and 6-phosphogluconate dehydrogenase
from O. aries, P00349 (Swiss-Prot); S. cerevisiae, P38720 (Swiss-Prot); l. lactis, P96789 (Swiss-Prot); T. brucei, P31072 (Swiss-Prot).
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Table 2: Effect of various compounds on the activity of l-phenyl-
serine dehydrogenase.

Compound
Concentration Relative activity

(mM) (%)

None — 100

p-Chloromercuribenzoate 0.05 0

N-Ethylmaleimide 1 89

Iodoacetamide 1 91

EDTAa 1 94

HgCl2 0.01 21

CuSO4 1 110

ZnSO4 1 92

MnSO4 1 110

MgSO4 1 100

BaCl2 1 99

NiCl2 1 95

CoCl2 1 94

CaCl2 1 93

KCl 187 87

l-Phenylserine dehydrogenase activity was determined in reaction mixtures
containing the indicated additive, 20 mM dl-threo-β-phenylserine and
2.5 mM NAD+ in 0.2 M glycine-KCl-KOH buffer (pH 10.5) at 30◦C.
aEthylenediaminetetraacetic acid.

lactis [32], and Trypanosoma brucei [33] showed that
the GX(G/A)XXG motif and residues interacting with 2′-
phosphate group of NADP+ (Gln36 and Arg37) were highly
conserved among these enzymes. d-Phenylserine dehydroge-
nase and these 6-phosphogluconate dehydrogenases prefer
NADP+ to NAD+ as a coenzyme. Moreover, a catalytic
residue, Lys177, was also conserved in d-phenylserine dehy-
drogenase, TTHA0237, and PA0743.

The molecular characteristics of l-phenylserine dehydro-
genase and d-phenylserine dehydrogenase are summarized
in Table 4. The amino acid sequences of these enzymes
showed no homology to each other and each enzyme belongs
to a different protein family. The amino acid sequence of l-
phenylserine dehydrogenase was similar to those of ketore-
ductase (RED2) from Streptomyces violaceoruber Tü22 [24]
and 1,3,8-trihydroxynaphthalene reductase (3HNR) from
Magnaporthe grisea [25, 26]. The amino acid sequences of
l-phenylserine dehydrogenase and two homologs belonging
to the short chain dehydrogenase/reductase (SDR) family

Table 3: Substrate specificity of l-phenylserine dehydrogenase.

Compound
Concentration Relative activity

(mM) (%)

dl-threo-β-phenylserine 20 100

d-threo-β-phenylserine 10 0

dl-erythro-β-phenylserine 20 840

dl-threo-(2-thienyl)serine 20 530

(S)-phenylethanol 10 6.9

dl-hydroxynorvaline 20 0

l-threonine 10 0

d-threonine 10 0

l-allo-threonine 10 0

d-allo-threonine 10 0

l-serine 10 0

d-serine 10 0

l-phenylalanine 10 0

d-phenylalanine 10 0

l-Phenylserine dehydrogenase activity was determined in reaction mixtures
containing 10 or 20 mM substrate, as indicated, and 1.0 mM NAD+ in 0.2 M
glycine-KCl-KOH buffer (pH 10.5) at 30◦C.

aligned well (Figure 4). Members of the SDR family contain
a similar structural fold, which shows a common nucleotide-
binding site characterized by a GXXXGXG fingerprint
motif [25]. Moreover, Arg or Asp residues located 18–20
residues downstream from the motif are responsible for
nucleotide specificity [25, 34]. The characteristic glycine-
rich fingerprint motif was conserved in the N-terminus
of l-phenylserine dehydrogenase. Acidic residues, Asp36 or
Asp37, which are 20 and 21 residues downstream, respec-
tively, from the motif probably recognize the 2′-hydroxy
group of NAD+. Our kinetic analysis also indicated that l-
phenylserine dehydrogenase prefers NAD+ to NADP+ as the
coenzyme. An X-ray structure of 3HNR complexed with
NADPH and tricyclazole revealed that Ser164, Tyr178, and
Lys182 compose the catalytic triad [25]. These residues were
highly conserved in l-phenylserine dehydrogenase, RED2,
and 3HNR (corresponding to Ser148, Tyr162, and Lys166 in
l-phenylserine dehydrogenase) (Figure 4).

Although threonine [14, 35–37], serine [38, 39], and
phenylalanine [40] serve as substrates for many enzymes
acting on phenylserine, these amino acids were not accepted
as substrates by l-phenylserine dehydrogenase. Among the
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Table 4: Comparison of l-phenylserine dehydrogenase (l-PSDH) with d-phenylserine dehydrogenase (d-PSDH).

l-PSDH d-PSDH

Protein short-chain β-hydroxy acid

family dehydrogenase dehydrogenase

Molecular mass 98 kDa 70 kDa

Molecular mass of subunit 27 kDa 31 kDa

Number of subunits 4 2

Coenzyme specificity NAD+ NADP+

Optimum pH pH 11.2 pH 10.4

pH Stability pH 6.1–11.2 pH 6.7–9.1

Thermostability 55◦C or below 50◦C or below

Substrate specificity l-form l-form

TVLCVPFSM G TAA G I G NNIAVGWGDRAFRLATAA

TVLAVPAEPADTAM G SSS G I G -NVVVRYGEAALRQAVTQ

TVLAVKGELSASQPGLPGPIADYKSEGRPQTVAPM G RGA G I G -NVIVKCGRRGLEMAMER

************

TTGASNVLADIRGWQAAVQEVMRRCAGDDGVDADIVLTQAGAERCQAAVREADARTSDDF

TRGANNVLVDLRGYHEVATDVLRRADAEESVDARVYL----ADPLAAATKEGDEVSRAS-

--GSNSCVIDLKGFIKVAEEFMRVIDEVVGVNAKVCAADSGNKKIAAVVEEASETSNAY-

********

YLSALSSVHLVSAFHGPCFSERLLPTAARTMQFMGILNVRYIREFEDPDIAEFDSHPIVR

RSGAISSVNVVS----GNGSRALHPMAAVTTQWTGIVNLGLIERWVEPTAAALDAHPIAR

KAQGTISGMLI-----LRGGIELHKYAERAVFFQGRTNITFVRDFEEPTVDKVHGFSVV-

******

EVVRGDAEDGLVRRLLGDDVMGPAIANVRVL-PALNRALSLTLSNVAGKSAAYAPHLGTG

EAIPAFFDSN---QTWPTEILGPAVANVRVA-PGVTNALLRTMHEIAAKSVAYPISSGAP

LNEGNPIYERCVAHYMDTKIGGPAVVNVTIKKDAMDIAMCRAFTEIAGKSGSYVAHKPVA

**********

TNLLLGNEIALVQGTMAPA-HAALFWALEAIEAPQSVRKLPANE--------RMS

LLHAGGDVLLVQGTTYTA--RVLGLVAEAVDEPRGTRRLPTTQ--------RVH

MCAGGDIGIVKGTVWGGDNSALFCVVRAIDIPLGVRRLPSWQVAAYEDVEENS

**********

L-PSDH

L-PSDH

RED2

3HNR

RED2

3HNR

L-PSDH

RED2

3HNR

L-PSDH

RED2

3HNR

L-PSDH

RED2

3HNR

34

38

59

94

93

116

154

149

170

213

205

230

259

249

283

Figure 4: Alignment of the amino acid sequence of l-phenylserine dehydrogenase (l-PSDH) with the sequences of RED2 (ketoreductase)
from Streptomyces violaceoruber Tü22 and 1,3,8-trihydroxynaphthalene reductase (3HNR) from Magnaporthe grisea. Conserved residues
are marked by an asterisk. Residues forming the catalytic triad are boxed and the glycine-rich fingerprint motif is indicated with a black
background. The residues Asp36 and Asp37 are shown by arrows. Accession numbers for the proteins used are as follows: l-PSDH, AB499092
(GenBankTM); RED2, Q65YY6 (TrEMBL); 3HNR, Q12634 (Swiss-Prot).
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amino acids tested, l-phenylserine and l-threo-(2-thien-
yl)serine were good substrates for l-phenylserine dehydro-
genase. The genes encoding l-phenylserine dehydrogenase
(ORF3) and d-phenylserine dehydrogenase (ORF5) were
located within a single operon, and the reaction product
of both enzymes is 2-aminoacetophenone. Moreover, d-
phenylserine dehydrogenase is induced by addition of dl-
threo-β-phenylserine to a culture medium as a sole source
of carbon and nitrogen [16]. Therefore, we consider that
d-phenylserine dehydrogenase acts physiologically on d-
threo-β-phenylserine. For these reasons, we assume that the
physiological function of l-phenylserine dehydrogenase is
an NAD+-dependent conversion of l-phenylserine into 2-
aminoacetophenone and carbon dioxide.
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