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IDENTIFICATION, ESTIMATION AND TESTING OF CONDITIONALLY
HETEROSKEDASTIC FACTOR MODELS

Enrique Sentana & Gabriele Fiorentini

ABSTRACT

We investigate several important inference issues for factor models with dynamic
heteroskedasticity in the common factors. First, we show that such models are identified
if we take into account the time-variation in the variances of the factors. Our results also
apply to dynamic versions of the APT, dynamic factor models, and vector autoregressions.
Secondly, we propose a consistent two-step estimation procedure which does not rely on
knowledge of any factor estimates, and explain how to compute correct standard errors.
Thirdly, we develop a simple preliminary LM test for the presence of ARCH effects in
the common factors. Finally, we conduct a Monte Carlo analysis of the finite sample
properties of the proposed estimators and hypothesis tests.
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1 Introduction

In recent years, increasing attention has been paid to modelling the observed
changes in the volatility of many economic and financial time series. By and
large, though, most theoretical and applied research in this area has concentrated
on univariate series. However, many issues in finance, such as tests of asset pric-
ing restrictions, asset allocation, performance evaluation or risk management, can
only be fully addressed within a multivariate framework. Unfortunately, the appli-
cation of dynamic heteroskedasticity in a multivariate context has been hampered
by the sheer number of parameters involved.

Given that there are many similarities between this problem and that of mod-
elling the unconditional covariance matrix of a large number of asset returns, it is
perhaps not surprising that one of the most popular approaches to multivariate
dynamic heteroskedasticity is based on the same idea as traditional factor analysis.
That is, in order to obtain a parsimonious representation of conditional second
moments, it is assumed that each of several observed variables is a linear combi-
nation of a smaller number of common factors plus an idiosyncratic noise term,
but allowing for dynamic heteroskedasticity-type effects in the underlying factors.
The factor GARCH model of Engle (1987) and the conditionally heteroskedastic
latent factor model introduced by Diebold and Nerlove (1989) and extended by
King, Sentana and Wadhwani (1994) are the best known examples. Such models
also have the advantage of being compatible with standard factor analysis based
on unconditional covariance matrices. Furthermore, they are particularly appeal-
ing in finance, where there is a long tradition of factor or multi-index models (see

e.g. the Arbitrage Pricing Theory of Ross (1976)).




Although many properties of these models have already been studied in detail,
either for the general class or for some of its members (see e.g. Bollerslev and
Engle (1993), Engle, Ng and Rothschild (1990), Gourieroux, Monfort and Renault
(1991), Harvey, Ruiz and Sentana (1992), Kroner (1987), Lin (1992), or Nijman
and Sentana (1996)), some very important inference issues have not been fully
investigated yet. The purpose of the paper is to address four such remaining
issues

The first issue is in what sense, if any, the identification problems of traditional
factor models are altered by the presence of dynamic heteroskedasticity in the fac-
tors. This has important implications for empirical work related to the Arbitrage
Pricing Theory (APT), as in static factor models individual risk premia compo-
nents are only identifiable up to an orthogonal transformation. Furthermore, it
also has some bearing upon the interpretation of common trend and dynamic
factor models, and on the identification of fundamental disturbances and their
dynamic impact in vector autoregressions.

Another important aspect is the development of alternative estimation meth-
ods. Traditionally, the preferred method of estimation for such models has been
full information maximum likelihood. Unfortunately, this involves a very time
consuming procedure, which is disproportionately more so as the number of series
considered increases. Although using the EM algorithm combined with derivative
based methods significantly reduces the computational burden (see Demos and
Sentana (1996b)), it would be interesting to have simpler estimation procedures,
which are nevertheless based on firm statistical grounds.

It is also of some interest to have a simple preliminary test for the presence of
ARCH effects in the common factors. Moreover, since the way in which standard
errors are usually computed in static factor models is only valid under conditional

homoskedasticity, it is convenient to have a model diagnostic to assess the validity




of such a maintained assumption.

Finally, given that the justification of such estimators and hypothesis tests is
asymptotic in nature, it is useful to investigate their finite sample properties by
means of simulation methods.

The rest of the paper is organized as follows. We formally introduce the model
in section 2, and relate it to the most common conditional variance parametrisa-
tions. Identification issues are discussed in detail in section 3. Then, in section 4.1,
we propose a simple two-step consistent estimator. We also derive an LM test for
ARCH in the common factors in section 4.2. Finally, we carry out a Monte Carlo

analysis in section 5. Proofs and auxiliary results are gathered in appendices.

2 Conditionally Heteroskedastic Factor Models

Consider the following multivariate model:

x; = Cfy, + wy (1)

f; 0 A, O
| X, 4 ~N ! (2)

Wi 0 0 I‘

where X; is a N X 1 vector of observable random variables, f; is a k£ X 1 vector
of unobserved common factors, C is the NV x k matrix of factor loadings, with
N > k and rank (C) = k, w; is a N x 1 vector of idiosyncratic noises, which are
conditionally orthogonal to f;, T is a N X N positive semidefinite (p.s.d.) matrix
of constant idiosyncratic variances, A; is a k x k diagonal positive definite (p.d.)
matrix of (possibly) time-varying factor variances, which generally involve some
extra parameters, ¢, and X, ; is an information set that contains the values of
X; up to, and including time ¢ — 1.

Our assumptions imply that the distribution of x; conditional on X;_; is nor-

mal with zero mean, and covariance matrix 3, = CA,;C’' +TI'. For this reason, we
’ t t )
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shall refer to the data generation process specified by (1-2) as a multivariate con-
ditionally heteroskedastic factor model. Note that the diagonality of A; implies
that the factors are conditionally orthogonal.

Such a formulation nests several models widely used in the empirical litera-
ture. In particular, it nests the conditionally heteroskedastic latent factor model
introduced by Diebold and Nerlove (1989) and extended by King, Sentana and
Wadhwani (1994), and the factor ARCH model of Engle (1987). These models typ-
ically assume that the unobserved factors follow univariate dynamic heteroskedas-
tic processes, but differ in the exact parametrisation of A; and I'.

For instance, in the conditionally heteroskedastic latent factor model, the id-
iosyncratic covariance matrix is assumed diagonal, and the variances of the factors
are parametrised as univariate ARCH models, but taking into account that the val-
ues of the factors are unobserved. In particular, for the GQARCH(L,1) formulation

of Sentana (1995),
At = 00 + @i fit-11e-1 + e (fi_ 11 + Mja—vje-1) + BiaNjje (3)

where fy; = E(f;|X;) and Ay, = V(£|X;), which can be easily evaluated via the
Kalman filter (see Harvey, Ruiz and Sentana (1992)). Note that the measurability
of A;j: with respect to X1 is achieved in this model by replacing the unobserved
factors by their best (in the conditional mean square error sense) estimates, and
including a correction in the standard ARCH terms which reflects the uncertainty
in the factor estimates.

Similarly, the factor GARCH(p,q) model can also be written as a particular case

of (1-2), with I non-diagonal, and the conditional variances of the factors given

by:

g b4
s = D e g + 3 BirNijoer (4)
s=1 r=1
where X; = D'x; and D = (dy]...|d;) is a N x k matrix of full column rank




satisfying D'C = I (see Sentana (1997a)). Note that the measurability of A;;;
with respect to X;_; is achieved here by making the time-variation in second
moments a function of k¥ linear combinations of x;.

Finally, if f; is conditionally homoskedastic, which usually corresponds to
9 = 0, (1-2) reduces to the static orthogonal factor model (see e.g. Johnson and
Wichern (1992)). But even if f; is conditionally heteroskedastic, provided that
it is covariance stationary, the assumption of constant factor loadings implies an
unconditionally orthogonal k factor structure for x;. That is, the unconditional

covariance matrix of x;, 3 =F(3;), can be written as:
3 =CACHT (5)

where A =V (f;) = E(A;). This property makes the model considered here com-

patible with traditional factor analysis.

3 The Effects of Modelling Conditional Hetero-

skedasticity on Identification

3.1 Identification of Idiosyncratic Factors

The most distinctive feature of factor models is that they provide a parsi-
monious specification of the (dynamic) cross-sectional dependence of a vector of
observable random variables. In our case, the factor structure allows us to decom-
pose the conditional covariance matrix ¥, into two parts: one which is common
but of reduced rank k, X, = CA;C', and one which is specific, ¥y = I'. Un-
fortunately, without further restrictions on I', or on the constant part of A, we
cannot separately identify one from the other. The reason is twofold. On the one
hand, we are not able to differentiate the contribution to the conditional variance

of conditionally homoskedastic common factors (see Engle, Ng and Rothschild
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(1990)). On the other, we may be able to transfer unconditional variance from
the idiosyncratic terms to the common factors. For instance, if I' is non-singular,
we can take 3,(2) = C(A, + Q)C', and X;(Q) = T' — CQC', where £ is any
k % k p.s.d. diagonal matrix such that the eigenvalues of QC’ ' 'C are less than
or equal to 1 (see Sentana (1997a)).

The most common assumption made to differentiate common from idiosyn-
cratic effects is that I' is diagonal (see e.g. Diebold and Nerlove (1989) or King,
Sentana and Wadhwani (1994)). In this case, we say that the conditional fac-
tor structure is exact. However, in some applications, diagonality of I' may be
thought to be too restrictive. For that reason, Chamberlain and Rothschild (1983)
introduced the concept of approximate factor structures, in which the idiosyn-
cratic terms may be mildly correlated. Their definition is asymptotic in IV, and
amounts to the largest eigenvalue of V [(wye, war, . .., wit)'] remaining bounded as
N increases (as in band-diagonal matrices).! In practice, the eigenvalues of T' are
always bounded as N is finite, and it is difficult to come up with realistic models

that ensure such an asymptotic restriction.

An alternative way to differentiate common from idiosyncratic effects is to
assume that I' has reduced rank.? In some cases, in fact, it may be necessary
to assume that T' is both diagonal and of reduced rank. As a trivial example,
consider an exact conditionally homoskedastic single factor model with N = 2

and A\j; = 1. Its covariance matrix can be written as

*2 * * ok
it Cnfa

*2 *
co1 + Voo

IThis suggests an intuitive interpretation by analogy with univariate time series: if y; is a
covariance stationary and ergodic process (e.g. an MA model), then all the eigenvalues of the
intertemporal covariance matrix V [(y1, ¥z, . .. yr)’] remain bounded as T' — oo. Unlike in a time
series framework, though, there is generally no natural ordering for the variables in X.

2The rank of I is related to the observability of the factors. If rank(I') = N — k the factors
would be fully revealed by the x; variables; otherwise they are only partially revealed (see King,
Sentana and Wadhwani (1994))
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with cf; = 1/} + 711 — Vi1, 651 = earen/cly and ¥y = 22+ ¢5, [1 = (en/e}y)?] for
any vi € [0,711 + 21722/(c3; + y22)]. Note that the extreme values of this range

correspond to the two possible Heywood (i.e. singular) cases.

3.2 Identification of Common Factors

But the most fundamental identification issue in factor models relates to the
decomposition of X, into C and A;. Since the scaling of the factors is usually
irrelevant, then in the case of constant variances, it is conventional to impose the
assumption that the variance of each factor is unity, that is A= I, Vi. By analogy,

we may impose here the same scaling assumption on the factors unconditional

variances.?

Suppose that we were to ignore the time-variation in the conditional vari-
ances and base our estimation in the unconditional covariance matrix of x; in
(5). As is well known from standard factor analysis theory, it would then be
possible to generate an observationally equivalent (o.e.) model up to uncondi-
tional second moments as x;= C*ff+w;, where C*=CQ/, f;= Qf;, and Q is
an arbitrary orthogonal k X k matrix, since the unconditional covariance matrix,
3 = C*CY+TI' = CC'+T, remains unchanged.

Hence, some restrictions would be needed on C. One way to impose them
would be to use Dunn’s (1973) set of sufficiency identification conditions for the
homoskedastic factor model with orthogonal factors. These conditions are zero-
type restrictions that guarantee that C is locally identifiable up to column sign
changes. For instance, when C is otherwise unrestricted, imposing ¢;; = 0 for

§>i4,i=1,2,...k (ie. C lower trapezoidal) ensures identification.* Although

3Tf the unconditional variance is unbounded, as in Integrated GARCH-type models, other
scaling assumptions can be made. For instance, we can fix the constant part of the conditional
variance of each factor, or the norm of each column of C.

40ther alternative sets of sufficient local identifiability restrictions have been suggested. For
example, Jennrich (1978) proves that when C is otherwise unrestricted, fixing not necessarily to
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such restrictions are often arbitrary, the factors can be orthogonally rotated to
simplify their interpretation once the model has been estimated. In some other
cases, identifiability can be achieved by imposing plausible a priori restrictions.
For example, if in a two factor model it is believed that the second factor only
affects a subset of the variables (say the first Ny, with Ny < N, so that c;o = 0
for i = N1+ 1,..., N) the non-zero elements of C will always be identifiable.
However, when time variation in A; is explicitly recognized in estimation, the
set of admissible Q matrices is substantially reduced, as the conditional covariance
matrix of the transformed factors ff= Qf, has to remain diagonal V¢. In this

context, the following result can be stated:

Proposition 1 Let A\; = vecd(A;) denote the k x 1 vector containing the diagonal
of A¢. If the stochastic processes in Ay are linearly independent, in the sense
that there is no vector « €R* a # 0, such that o/ )y = 0,Vt, C is unigue under
orthogonal transformations other than column permutations and sign changes.

Notice the generality of Proposition 1 since it has been obtained without as-
suming any particular parametrisation for the dynamic heteroskedasticity; it re-
lies only on the conditional orthogonality of the factors, the linearly independent
time-variation of their variances, and the constancy of C. One possible way to
gain some intuition on this result is to recall that parameter identifiability can
be obtained in many econometric models by looking at higher order moments.
Since conditional normality with changing variances is incompatible with uncon-
ditional normality, but at the same time implies autocorrelation in vech(x;x}),
Proposition 1 provides an example in which identifiability comes from considering
dynamic fourth-order, as opposed to second order, moments.

If the processes in A, were linearly dependent, though, identification problems

would re-appear. Given the parametrisations used in empirical work (see section

zero the k(k - 1)/2 supra-diagonal coeflicients of (a permutation of) C also guarantees identifi-
ability. From a computational point of view, though, the most convenient uniqueness condition
in the unrestricted case is C'I'"'C diagonal (see e.g. Johnson and Wichern (1992)).
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2.1), it is difficult to envisage situations in which this will be the case, unless two or
more factor variances are constant. Nevertheless, consider as an example a model
in which for all time periods, a group of ks factors (1 < kg < k) is characterized by
a scalar covariance matrix Agg+Iz,, while the others have an unrestricted diagonal
covariance matrix Ay;. If we partition C conformably as C = (C, | Cg), where
C, and C; are N X ky and N X kj respectively, with k1 + ko = k, the following

result can be stated:

Proposition 2 Let A\, = vecd(Ay). If the stochastic processes in (N, Akxe) GTe
linearly independent, C, is unique under orthogonal transformations other than
column permutations and sign changes.

For practical purposes, Proposition 2 could be re-stated so that it would refer
only to the empirically relevant case in which Ay, = 1,Vt. However, in its present
form it makes it clear that the lack of identifiability comes from the factors having
common, rather than constant, variances.

Finally, note that the imposition of unnecessary restrictions on C by anal-
ogy with standard factor models may produce misleading results. An important
implication of our results is that if such restrictions were nevertheless made, at
least they could then be tested. However, the accuracy that can be achieved in
estimating C depends on how much linearly independent variability there is in Ay,
for if the elements of this matrix are essentially constant, identifiability problems

will reappear.

3.3 Extensions

Proposition 1 can also be applied to other closely related models, and in par-
ticular to the model in Harvey, Ruiz and Sentana (1992). Theirs is a general state
space formulation for x;, with unrestricted mean dynamics, in which some unob-

servable components show dynamic conditional heteroskedasticity. In this section,
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we shall explicitly consider the application of Proposition 1 to some well-known

special cases which are empirically relevant.

3.3.1 Conditionally Heteroskedastic in Mean Factor Models

Several recent studies based on dynamic versions of the APT have estimated
conditionally heteroskedastic factor models in which the variances of the common
factors affect the mean of x; (see e.g. Engle, Ng and Rothschild (1990), King,
Sentana and Wadhwani (1994), or Ng, Engle and Rothschild (1992)). The models

typically considered in those studies can be expressed as:
Xi= CAtT + Cft+wt

where 7 is a k X 1 vector of “price of risk” coefficients. Notice that if 7 =0,
we return to the previous case. Since the proof of Proposition 1 is based on the
diagonality of the conditional variance of f;, it is straightforward to show that
the columns of C and 7’ corresponding to factors with linearly independent time-

varying variances are identifiable (up to sign changes and permutations).

3.3.2 Conditionally Heteroskedastic Dynamic Factor Models

The formulation considered in section 2 is also a special case of the so-called
dynamic factor model, which constitutes a popular specification for multivariate
time series applications because of its plausibility and parsimony (see e.g. Engle
and Watson (1982) or Pefia and Box (1987)). For simplicity, we shall just consider
here the case in which the factor dynamics can be captured by a VAR(1) process.
Specifically,

xi= Cy,+wWy; yi= Ay, +f;

where y; is a k X 1 vector of dynamic factors, A is the matrix of VAR coefficients

and f; and w; are defined as in (1-2). If A =0, we go back to the traditional
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(i.e. static) factor model. On the other hand, when A =T we have the com-
mon trends model (see e.g. Harvey (1989) or Stock and Watson (1988)). If f;
is conditionally homoskedastic, it is well known that an o.e. model (up to un-
conditional second moments) can be obtained by orthogonally rotating y;. That
is, for any orthogonal matrix Q, the model x;= C*y;+wy, y;= A'y;_;+f; where
yi= Qy,, fi= Qf,,C*'= CQ and A*= QAQ/, is o.e. Again, Proposition 1 im-
plies that linearly independent time-variability in the conditional variances of f;

will eliminate the nonidentifiability of the matrix C.
3.3.3 Vector Autoregressive Moving Average Models

Our results also apply to models with N common factors, no idiosyncratic noise
and linear mean dynamics, such as VARMA(r, s) models. Again, for simplicity

consider the following VAR(1):

X= AXt.._ 1 +ut, U= Cft

where f;, a IV x 1 vector defined as in (1-2), could perhaps be better understood in
this context as conditionally orthogonal “fundamental” shocks affecting the pro-
cess X;. Given that f; is white noise, we can estimate this model without taking
into account the time-variation in conditional variances. But then C is not iden-
tifiable without extra restrictions. This problem is well known and has received
substantial attention in macroeconometrics. To solve it, some authors impose
short run restrictions such as C lower triangular (cf. the discussion in section
3.2). More recently, Blanchard and Quah (1989) have achieved identifiability by
means of restrictions on some elements of the long run multipliers (I — A)™'C.
But suppose that some elements of f; have time-varying conditional variances and
this is explicitly recognized in estimation. Then Proposition 2 implies that the

columns of C associated with those disturbances are identifiable.
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In this context, we can perhaps shed more light on Proposition 1 by re-
interpreting it as a uniqueness result for the disturbances, f;. Given the way in
which the model is defined, we know that there is a set of disturbances, condition-
ally uncorrelated with each other, that can be written as a (time-invariant) linear
combination of the innovations in X;, namely, f;= C 'u,. If k,<1, Proposition 2

then says that there is only one such set.’
3.3.4 Oblique Factor Models with Constant Conditional Covariances

So far we have assumed that the factors are conditionally orthogonal, since this
has been a maintained assumption in all existing empirical applications. However,
as the following proposition shows, it turns out that most of the identifiability
is coming from the fact the conditional covariances of conditionally orthogonal

factors are (trivially) constant over time

Proposition 3 Let A; be a kx k positive definite matriz of (possibly) time-
varying factor variances but constant conditional covariances, and let Ay = vecd(Ay).
If the stochastic processes in (X}, 1) are linearly independent, C is unique under
orthogonal transformations other than column permutations and sign changes

Notice that the main difference with Proposition 1 is that identification prob-
lems reappear in oblique factor models when a single factor has constant condi-
tional variance. The reason is that we can transfer unconditional variance from
the conditionally homoskedastic factor to the others. This is not possible if the
factors have to remain conditionally orthogonal.

Factor models with constant conditional covariances arise more commonly than
it may appear. For instance, the factor ARCH model of Engle (1987) is o.e. to
a whole family of oblique factor models with constant conditional covariances,

whose limiting cases are the conditionally orthogonal factor model in (4), and a

SHowever, it is important to emphasize that Proposition 1 is not an existence result, in that
it does not say whether or not such disturbances exist to begin with. Rather, it takes them as
given.
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model with a singular idiosyncratic covariance matrix (see Sentana (1997a) for
details). In fact, we can always express any conditionally heteroskedastic factor
model as an oblique factor model with constant conditional covariances and a

singular idiosyncratic covariance matrix, since:
_ G G
x; = Cf; + w;

£e (o) [ A+@©ric)! 0
Y ix o on|[0). [ AHerio) )
wS 0 0 r-cr-cy c
where f¢ = (C'T7!C)"'CT 'x,; are the Ceneralized Least Squares (GLS) es-
timates of the common factors (see Gourieroux, Monfort and Renault (1991)).

These factor scores are different from the minimum (conditional) mean square

error estimates, but closely related as f& = {I + (C I‘—lc)‘lA; 1} £ie-

4 Estimation and Testing

In model (1-2), the parameters of interest, ¢'=(c/,v,¢'), where ¢ =vec(C) and
v =vech(T') or vecd(I'), are usually estimated jointly from the log-likelihood func-
tion of the observed variables, x;. Ignoring initial conditions, the log-likelihood

function of a sample of size T takes the form Ly(¢) =L lt(¢), where:

N 1 1 .
h(¢) =— 5 27— SIn|CAC +T| - Sx, (CAC +T) 'x. (6

and A;=diag [A\¢(¢)], which allows the conditional variances of the factors to de-
pend not only on v, but also on the static factor model parameters ¢ and 7.
Since the first order conditions are particularly complicated in this case (see
appendix B), a numerical approach is usually required. Unfortunately, the ap-
plication of standard quasi-Newton optimisation routines results in a very time
consuming procedure, which is disproportionately more so as the number of series

considered increases. In this respect, Demos and Sentana (1996b) show that using
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the EM algorithm combined with derivative-based methods significantly reduces
the computational burden. Nevertheless, it is still of some interest to have simpler

alternative estimation procedures.

4.1 Two-step consistent estimation procedures

Most empirical applications of the factor GARCH model have been carried out
using a two-step univariate GARCH method under the assumption that the ma-
trix D is known. First, univariate models are fitted to #;; = d/x;,j = 1,2,...,k.
Then, the estimated conditional variances are taken as data in the estimation
of N univariate models for each z;,% = 1,2,..., N. However, such a procedure
ignores cross-sectional correlations and parameter restrictions, and thus sacrifices
efficiency. For that reason, Demos and Sentana (1996b) proposed an EM-based re-
stricted maximum likelihood estimator which exploits those restrictions but main-
tains the assumption of known D. In the general case, an equivalent assumption
would be that the matrix D’ = (C'T"'C) 'C'T" is known, which is tantamount
to f¢ being observed. Under such a maintained assumption, it is possible to prove
that consistent estimates of C,T" and 1 can be obtained by combining the esti-
mates of the marginal model for £ with the estimates from the OLS regression
of each z;; on fF (see Sentana (1997b) for details). Unfortunately, the consistency
of such restricted ML estimators crucially depends on the correct specification of
the factor scores (see Lin (1992) for the factor GARCH case).

Here, we shall develop a two-step consistent estimation procedure which does
not rely on knowledge of f¢ for those cases in which the idiosyncratic covariance
matrix is diagonal. For clarity of exposition, we initially assume that the matrix
C is identifiable even if we ignore the time-variation in A,.

The rationale for our proposed two-step estimator is as follows. We saw in

section 2 that if f; and w; are covariance stationary, the unconditional covariance
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matrix, X, inherits the factor structure (cf. (5)). As our first step, therefore, we
can estimate the unconditional variance parameters ¢ and 7y by pseudo-maximum
likelihood using a standard factor analytic routine. Note that such estimators
satisfy (€,79) =argmax., Lr(c,7,0). It is easy to see that (&,7¥) are root-T' con-
sistent, as the expected value of the score of the estimated model evaluated at
the true parameter values is 0 under our assumptions. However, since the first
derivatives are proportional to vech(x;X}) (see appendix B), the score does not
preserve the martingale difference property when there are ARCH effects in the
common factors, and it is necessary to compute robust standard errors which take
into account its serial correlation.

Having obtained consistent estimates of ¢ and 7y, we can then estimate the
conditional variance parameters by maximizing (6) with respect to 9 keeping c
and vy fixed at their pseudo-maximum likelihood estimates. That is, our second
step estimator is P = arg maxy Lr(€,%,%). On the basis of well-known results
from Durbin (1970), it is clear that 1 is also root-T' consistent. However, since
the asymptotic covariance matrix is not generally block-diagonal between static
and dynamic variance parameters (see appendix B), standard errors will be un-
derestimated by the usual expressions. Asymptotically correct standard errors
can be computed from an estimate of the inverse information matrix correspond-
ing to (6) evaluated at the two-step estimators €,% and 1,/3 (see Lin (1992) for an
analogous correction in the factor GARCH case).

When C is not identifiable from the unconditional covariance matrix, % re-
mains consistent, but € is only consistent up to an orthogonal transformation. As
discussed in section 3.2, the reason is that by assuming unconditional normality
in estimation, we are neglecting very valuable information in dynamic fourth or-
der moments. One possibility would be to replace the Gaussian quasi-likelihood

in the first-step by an alternative objective function which took into account the
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autocorrelation in vech(x,x}). Unfortunately, the evidence from univariate ARCH
models suggests that the resulting estimators are likely to be rather inefficient.
In any case, note that if we were to iterate our proposed two step procedure and
achieved convergence, we would obtain fully efficient maximum likelihood esti-
mates of all model parameters. Such an iterated estimation procedure is closely
related to the zig-zag estimation method suggested in Demos and Sentana (1992),
which combined the EM algorithm to estimate the static factor parameters condi-
tional on the values of the conditional variance parameters, followed by the direct

maximization of (6) with respect to ¥ holding ¢ and ~ fixed.

4.2 A simple LM test for ARCH in the common factors

Despite the simplicity of the two-step procedure, the numerical maximization
of (6) with respect to 1 in models such as (3) still involves the use of the Kalman
filter to produce estimates of fj;_1.~1 and Ajj:—1¢—1 once per parameter per iter-
ation. Therefore, it is of some interest to have a simple preliminary test for the
presence of ARCH effects in the common factors. Moreover, since the way in which
standard errors are usually computed in static factor models is only valid under
conditional homoskedasticity, it is convenient to have a model diagnostic to assess
the validity of such a maintained assumption.

If the factors were observable, we could easily carry out standard LM tests
for ARCH on each of them. For the ARCH(1) case, for instance, that would entail
regressing 1 on (f3—1)(f%_;—1), or equivalently f2—1on f2%_,—1. Unfortunately,
the factors are generally unobserved. Nevertheless, we can derive similar tests

using some factor estimates instead. Under conditional normality, f;;, the Kalman

filter based estimates of the underlying factors, satisfy:
£ Xeo1 ~ N [0,Ay,] (7)
where Ay, = [A;l + (CT"IC)“I]_I. As a result, £, will be conditionally ho-
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moskedastic if and only if A; is constant over time. Hence, had we data on f;;, we
could test whether or not the moment condition cov [ f7.2t|t, fft_ut_l] = 0 holds for
j =1,...,k. Importantly, the aggregation results in Nijman and Sentana (1996)
imply that linear combinations of multivariate factor models like (1-2), whose
weights are not orthogonal to C, will follow weak GARCH processes. Therefore,
such moment tests will have non-trivial power since under the alternative fjy, will
show serial correlation in the squares.

In practice, we must base the tests on f;; evaluated at the parameter estimates

under the null. In particular, we will use
?t|t = At[télf‘_lxt

where
PO | -1

Atft - I —l— (C,F IC) Vt

It turns out that the presence of parameter estimates does not affect the asymp-
totic distribution of such tests, as the information matrix is block diagonal between
¥ and (c,y) under the null (see appendix B). Furthermore, we also prove in ap-
pendix B that our proposed moment test is precisely the standard LM test for
conditional homoskedasticity in the common factors based on the score of (6) eval-
uated under Hy. Therefore, we can compute a two-sided x? test against ARCH(1)
in each common factor as T times the uncentred R? from the regression of either
1 on (f;.zt[t + Ajjge — 1) times (szt—llt—l + Ajji-1je-1 — 1) (outer-product version),
or ( f].zt|t + Ajjage — 1) on ( ffﬂt + Njjas — 1) (Hessian-based version). In fact, more
powerful variants of these tests can be obtained by taking the one-sided nature of
the alternative hypothesis into account through the sign of the relevant regression

coefficient (see Demos and Sentana (1996a)).
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5 Monte Carlo Evidence

In a recent paper, Lin (1992) analyzes different estimation methods for the
factor GARCH model of Engle (1987) by means of a detailed Monte Carlo anal-
ysis. In this section, we shall conduct a similar exercise for the conditionally
heteroskedastic latent factor model in (3). Unfortunately, given that the estima-
tion of these models is computationally rather intensive, we are forced to consider
here a smaller number of series than in many empirical applications. Nevertheless,
we select the parameter values, and in particular the signal-to-noise ratio, so as

to reflect empirically relevant situations.

5.1 A single factor model

We first generated 8000 samples of 240 observations each (plus another 100 for
initialization) of a trivariate single factor model using the NAG library GO5DDF
routine. Such a sample size corresponds roughly to twenty years of monthly data,
five years of weekly data or one year of daily data. Since the performance of
the different estimators depends on C and T' mostly through the scalar quantity
(C'T1C), the model considered is:

iz — cz‘ft + Wit (’L = 1, 2, 3)

withe = (1,1,1), Ay = (1—a—ﬁ)+a(ff_l|t~1+)\t_1|t~1)+ﬂ)\t_1 and I' =yI. Two
values of v have been selected, namely 2 or 1/2, corresponding to low and high
signal to noise ratios, and three pairs of values for a and 3, namely (0,0), (.2,.6)
and (.4,.4), which represent constant variances, persistent but smooth GARCH
behaviour, and persistent but volatile conditional variances respectively. It is
worth mentioning that the pair o = .2, 8 = .6 matches roughly what we tend to
see in the empirical literature. In order to minimize experimental error, we use

the same set of underlying random numbers in all designs. Maximization of the
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log-likelihood (6) with respect to c,7y,a and § was carried out using the NAG
library E04JBF routine. Initial values of the parameters were obtained by means
of the EM algorithm in Demos and Sentana (1996b).

For scaling purposes, we use c? + c2 + ¢ = 1, and leave the constant part of
the conditional variance free. In order to guarantee the positivity and stationarity
restrictions 0 < 8 < 1 — a < 1, we use the re-parametrisation o = sin?(6;)
and 8 = sin?(05)(1 — ). Similarly, we used v; = (7;)?. We also set \; to the
unconditional variance of the common factor to start up the recursions. But since
this implies that § is not identified if a = 0, we set § = 0 whenever a = 0.

In this respect, it is important to mention that when « and/or 8 are 0, the
parameter values lie on the boundary of the admissible range. The distribution
of the ML estimator and associate tests in those situations has been studied by
Self and Liang (1987) and Wolak (1989). When o« = 0, for instance, we could
use the result in case 2, theorem 2 of Self and Liang (1987), to show that the
asymptotic distribution of the ML estimators of (4, a,c,7') should be a (3, 3,7)
mixture of a) the usual asymptotic distribution, b) the asymptotic distribution of a
restricted ML estimator which sets « = 3 = 0, and ¢) the asymptotic distribution
of a restricted ML estimator which only sets 3 = 0. We take into account these
results in order to compute standard errors.

It is also important to mention that joint estimates are always at least as
efficient as two-step estimates in this context, since the information matrix is
block-diagonal between unconditional and conditional variance parameters under
the null of no ARCH.

Table 1 presents mean biases and standard deviations across replications for
joint and two-step maximum likelihood estimates of the static factor model pa-
rameters ¢ and «y. For simplicity of exposition, only averages across equations are

included (in particular, ¢ = (¢1 + ¢ + ¢3)/3 and v = (71 + 72 + 73)/3). Note that
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all estimates are very mildly downward biased. At the same time, it seems that
the more variability there is in conditional variances, the better joint estimates
are relative to two-step estimates. Nevertheless, the differences are minor, at least
for the sample sized used.

Given the large number of parameters involved, we summarize the performance
of the estimates of the asymptotic covariance matrix of these estimators by com-
puting the experimental distribution of some simple test statistics. In particular,
we test ¢y = ¢y = c3, and 73 = 7y = 73. Both tests should have asymptotic x2
distributions under the null. Standard errors for joint ML estimates are computed
from the Hessian. On the other hand, the usual sandwich estimator with a 4-lag
triangular window is employed for two-step estimates of the static factor param-
eters. The results, which are not reported for conciseness, suggest that the size
distortions are not very large.

Our experimental design also allows us to analyze the performance of the
different LM test for ARCH under the null, and under two alternatives. In order
to evaluate their size properties, we employ the p-value discrepancy plots
proposed by Davidson and MacKinnon (1996), which are plots of the difference
between actual and nominal test size versus nominal test size for all possible
test sizes. If the asymptotic distribution is correct, p-value discrepancy plots
should be close to the x axis. Figure 1 shows such plots for the one-sided and
two-sided versions of the outer-product and Hessian-based forms of the LM test.
As expected, the outer-product versions have much larger distortions than the
Hessian-based ones, whose sizes are fairly accurate.

In order to display the simulation evidence on the power of the different tests,
we employ the size-power curves of Davidson and MacKinnon (1996), which
are plots of test power versus actual test size for all possible test sizes. The main

advantage of size-power plots is that they allow us to see immediately the effect
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on power of different parameter values, as well as to compare the relative powers
of test statistics that have different null distributions. Figure 2 presents such plots
for the Hessian-based one-sided and two-sided tests. As can be seen, power is an
increasing function of both the value of o, and the signal-to-noise ratio. Also, our
results confirm that one-sided versions are always more powerful than two-sided
ones, although not overwhelmingly so (cf. Demos and Sentana (1996a)).

Table 2 presents the proportion of estimates of @ and @ which are at the
boundary of the parameter space. Asymptotically, the proportions of o = 3 =0
and a # 0,4 = 0 should be (1, 1) under the null of no ARCH, and (0,0) under
the alternative. However, the results show that @ = 0, and especially § = 0
occur more frequently than what the asymptotic distribution would suggest. This
is particularly true when the signal-to-noise ratio is small. These results are
confirmed in Table 3, which presents mean biases and standard deviations across
replications for joint and two-step maximum likelihood estimates of o and 3. In
this respect, it is important to mention that since § is not identified when a = 0,
the reported values for 3 correspond to those cases in which « is not estimated
as 0. Note that the o’s obtained are rather more accurate than the #'s. Also
note that the biases for the joint estimates of « are smaller than for the two-step
ones, although the latter have smaller Monte Carlo variability. In contrast, the

downward biases in 8 are larger for joint ML estimates. To some extent, these

biases reflect the larger proportion of zero 3's in Table 2.

5.2 A two factor model
We have also simulated the following six-variate model with two factors:
Ty = Caf1e + Ciafor + Wi

with Aj1e = (1—a—08) + a(f%tﬁljz%l + AM1e-1pe-1) FBAie-1, Azer = 1 and T =1

Please note that according to Proposition 1, the parameters in C are identified

25




without further restrictions, provided that o # 0 and we take into account the
time-variation in conditional second moments.

Two sets of values for C have been selected, ¢'=(0,0,0,1,1,1;1,1,1,0,0,0)
and ¢'=(4,%,5,1,1,1;1,1,1, T 1,%)- The first design corresponds to two trivari-
ate single factor models like the one considered in the previous subsection put
together, while the second design introduces “correlation” in the columns of C.
For each value of ¢, two values of 7 have been selected, namely 2 and 1/2, cor-
responding to low and high signal to noise ratios. Then for each of the four
combinations, we consider two pairs of values for o and (3, namely (4,.4) and
(.2,.6), in order to obtain persistent but volatile conditional variances, and the
more realistic persistent but smooth GARCH behaviour. Given that this model
is four times as costly to estimate as the previous one, we only generated 2000
samples of 240 observations each. The remaining estimation details are the same
as in section 5.1.°

Table 4 presents mean biases and standard deviations across replications for
joint and two step maximum likelihood estimates, as well as a restricted ML es-
timator which imposes the same identifying restriction as the two step estimator,
namely cgo = 0. Such an estimator is efficient when the overidentifying restriction
is true, but becomes inconsistent when it is false. More precisely, if C is not uncon-
ditionally identifiable, restricted and two-step ML estimators of ¢ are consistent
for the orthogonal transformation of the true parameter values which zeroes ces.
For simplicity of exposition, only certain averages across equations are included (in
particular, c,; = (€11+ca1+¢31)/3, ey = (car+cs1+¢61)/3, Caz = (c12+c29+c32) /3,
o = (caz + ¢52)/2, and ¥ = (M + 72 + 75 + 7 + 75 + 7%6)/6)-

80mne additional issue that arose during the simulations with two factor models was that,
occasionally, some idiosyncratic variances were estimated as 0. The incidence of these so-called
Heywood cases increased with the value of 7, and especially cez. Nevertheless, since at worst
only 35 out of 2000 replications had this problem, we discarded them, and replaced them by
new ones.

26




The first panel of Table 4 contains the results for those designs in which
c¢'=(0,0,0,1,1,1;1,1,1,0,0,0). Not surprisingly, the restricted ML estimator is
clearly the best as far as estimates of the factor loadings are concerned. However,
it turns out that the two-step estimator performs very similarly, except when there
is significant variability in conditional variances, which is in line with the results
for the single factor model. On the other hand, the joint ML estimator is the
worst performer when the signal to noise ratio and the variability in Ay;; are low,
but comes very close to the restricted ML in the opposite case.” This behaviour
is not unexpected, given that the identifiability of the joint ML estimator comes
from the fact that Aj1¢ changes over time, while the identifiability of the other two
estimators is obtained from the restriction cgg = 0. Nevertheless, it seems that the
latter identifiability condition is more informative than the former, which should
be borne in mind in empirical work.

In contrast, there are only minor differences between the different estimates
of the idiosyncratic variance parameters, which are always identified. Obviously,
their Monte Carlo standard deviations increase when ~y changes from 1/2 to 2,
but the coefficients of variation remain approximately the same.

The second panel of Table 4 contains the results for those designs in which
c’:(;}:, ;11, i, 1,1,1;1,1,1, L—i, ;11-, 71) Note that the different estimates of 7y, are hardly
affected. As expected, though, the behaviour of both restricted and two-step
factor loading estimators radically changes, as they clearly become inconsistent.
In contrast, the performance of the joint estimates of c is basically the same as in
the first panel.

In order to summarize the performance of the estimates of the asymptotic

covariance matrix of these estimators, we computed the experimental distribution

of some simple test statistics. In particular, we test c13 = co1 = €315 a1 = 51 = Co1;

7Since the joint estimates of ¢ are not identified when o = 0, the reported values correspond
to those cases in which ¢ is not estimated as 0.
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Clg = Cg9 = C39; 71 = Y2 = 73 and Y4 = Y5 = Y. Given our choice of parameter
values, the plims of all the estimators satisfy these restrictions even when the
assumption cgy = 0 is false. Therefore, all five tests should have asymptotic X3
distributions. The results, not reported for conciseness, suggest that the size
distortions associated with the two-step estimator, for which the usual sandwich
expression with a 4-lag triangular window is employed, are small, but larger than
those for joint and restricted ML estimators.

Our design also allows us to consider the finite sample distribution of the like-
lihood ratio test for the restriction cgs = 0, both under the null and under the
alternative. The p-value discrepancy plot presented in Figure 3 shows that nomi-
nal test sizes are fairly accurate at the 5% level, although less so when <y is small.
For very large significance levels, however, the size distortions are higher, because
the LR test takes the value 0 when « is estimated as 0. The distribution of this
test under the alternative, though, is far more interesting, as it provides a sum-
mary indicator of the determinants of the information content in our identifiability
restrictions. Figure 4 present the size-power curves for the four experimental de-
signs in which cgy # 0. Although null and alternative experimental designs differ
in more than one parameter, we have done the required implicit size-corrections
in these plots using the closest match (cf. Davidson and MacKinnon (1996)). Not
surprisingly, the absolute power of the test is small, as the Monte Carlo variability
in the joint estimator of cgy is large relative to the re-scaled value of this param-
eter (=~ .14) for the sample size considered (see Table 4). Nevertheless, it is clear
that the power of the test increases with the signal-to-noise ratio, and especially,
with the variability of the conditional variance of the factor. This confirms the
crucial role that changes in A;;, play in the identifiability of the model, as stated
in Proposition 1.

Table 5 presents the proportion of estimates of o and # which are at the
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boundary of the parameter space. In all cases, the proportions of &« = # = 0
and a # 0,8 = 0 should be (0,0) asymptotically. But as in the single factor
model, the results show that a = 0, and especially 8 = 0 occur more frequently
than what the asymptotic distribution would suggest. This is particularly true
when the signal-to-noise ratio is small. These results are confirmed in Table 6,
which presents mean biases and standard deviations across replications for joint,
restricted and two-step maximum likelihood estimators of & and 3. Once more, the
o/s are estimated rather more accurately than the §'s, which reflects the larger
proportion of zero @'s in Table 5. As in Table 4, though, there are significant
differences between the first and second panel. While the performance of joint ML
estimator is by and large independent of whether or not cgy = 0, the behaviour of
the restricted and two-step estimators radically changes, and they clearly become

Inconsistent.

6 Conclusions

In this paper we investigate some important issues related to the identification,
estimation and testing of multivariate conditionally heteroskedastic factor models.
We begin by re-examining the identification problems of traditional factor analysis.
It turns out that the model considered here only suffers from lack of identification
in as much as the variances of some of the common factors are constant. Thus,
there is a non-trivial advantage in explicitly recognizing the existence of dynamic
heteroskedasticity when estimating factor analytic models. Our results also apply
to other popular time series models, and in particular, to dynamic versions of
the APT in which the variances of the common factors affect the mean of x;.
Importantly, our result could also be useful in the interpretation of common trend-
dynamic factor models, and in the identification of fundamental disturbances from

vector autoregressions.
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Secondly, we propose a root-T' consistent two-step estimation procedure for
these models which does not rely on knowledge of (some consistent estimates
of) the factors. For those cases in which the idiosyncratic covariance matrix is
diagonal, and the factor loadings are identified even if we ignore the time-variation
in the factor variances, our procedure involves estimating the factor loadings and
idiosyncratic variances by pseudo-maximum likelihood based on the unconditional
covariance matrix. Then, the conditional variance parameters are estimated by
maximizing the log-likelihood function of the observed variables keeping the static
factor model parameters fixed at their pseudo-maximum likelihood estimates. In
this respect, we also explain how to compute correct standard errors.

Thirdly, we develop a simple preliminary moment test for the presence of ARCH
effects in the common factors, which can also be employed as a model diagnostic.
This is particularly relevant because the way in which standard errors are usually
computed in static factor models is only valid under conditional homoskedasticity.
Importantly, we prove that our proposed test is precisely the standard LM test
for conditional homoskedasticity in the common factors based on the score of the
joint model evaluated under the null. Not surprisingly, it can be computed as T’
times the uncentred R? from an auxiliary regression involving squares of the best
estimates of the factors and their lags. In fact, more powerful versions of these
tests can be obtained by taking the one-sided nature of the alternative hypothesis
into account.

Finally, we investigate the finite sample properties of our proposed estimators
and hypothesis tests by simulation methods in order to assess the reliability of
their asymptotic distributions in practice. Our results suggest that: (i) the effi-
ciency of joint ML estimates of ¢ and ~y relative to two-step estimates increases
with the variability in conditional variances; (ii) standard errors of the estimates

are fairly accurate; (iii) size distortions of the LM test for ARCH are far smaller for
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Hessian-based versions than for outer-product ones; (iv) the power of this test is
an increasing function of o and the signal-to-noise ratio, with one-sided versions
being preferred; (v) ARCH and GARCH parameters are estimated as 0 more fre-
quently than they should, especially when the signal-to-noise ratio is small, which
results in significant downward biases; and (vi) although time-variation in factor
variances ensures identification in practice, traditional conditions on C are more
informative, as long as they are correct.

The conditionally heteroskedastic factor model in (1-2) is a special case of
the general approximate conditional factor representation = C,C,+I" +, Where
C; is a N X k matrix of measurable functions of the information set and T : 18
such that its eigenvalues remain bounded as NN increases. In this framework, our
model can be-written as x; = Cff" + wy, where V (wy|X,_,) = I,V (£# X 1) =1
and C,= CA,}/ 2, so that the loadings of different variables on each condition-
ally homoskedastic factor change proportionately over time (see Engle, Ng and
Rothschild (1990)). The motivation for such an assumption is twofold. First, it
provides a parsimonious and plausible specification of the time variation in X,
and for that reason has been the only one adopted so far in empirical applications.
Second, it implies that the unconditional factor representation of x; is well defined
(provided unconditional variances are bounded), which makes it compatible with
the standard approach based on X, and therefore empirically relevant. Notice
that even if I'; is diagonal, the unconditional variance of a process characterized
by a conditional factor representation may very well lack an unconditional factor
structure for any k¥ < N (see Hansen and Richard (1987)). Although the model is
not identifiable if C; is unspecified, this paper shows that the statistical properties
of alternative plausible formulations of the general conditional factor model would

certainly merit a close look.
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Appendices

A Proofs

A.1 Proposition 1

Let Q be an arbitrary k x k orthogonal matrix with typical element [Q],; = g
such that Q'Q = QQ'= I;. Since the covariance matrix of the transformed factors
fr= Qf,, is A} = QA,Q’, with typical element [A}];; = K L Auedags, conditional
orthogonality requires 3°F_, Auggagp =0forj>4,1=1,2,...kandt=1,2,...T.

For a given ¢, (j > 4), these restrictions can be expressed in matrix notation as:

Aqu'j =0-ur (8)
A1 Asgn ot Arka A
- A A D AL
where Ap = | 12 . 222 . R - . ? lisaTxk matrix, tp a T x 1
A AT ot AmkT A
!
vector of ones and q;; = < gigin Qi2di2 .- QkQjk > a k x 1 vector. We can

regard (Al) as a set of T homogenous linear equations in k£ unknowns, q;;. Given
that rank (./-XT) = k when the stochastic processes in A are linearly independent,
the only solution to the above system of equations is ATqij = 0- 1. irrespectively
of i and j. That is, we must have that for all j > 4,4 = 1,2,...k, guq; = 0 for
1 =1,2,...,k, which in turn requires ¢; = 0 and/or g;; = 0. Therefore, there
cannot be two elements in any column of Q which are different from 0. Given that
Q is an orthogonal matrix, the only admissible transformations are permutations
of Cholesky square roots of the unit matrix, I,lc/ 2, where {I,lc/ 2}ij =4lfori=j
and 0 otherwise. | O
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A.2 Proposition 2

In this case (Al) also applies, but since X, = (Xy;, Akk,tly,), We can re-write it
p t 1t tliy

as
Ar@i; =0 9)
AM11 A921 t Akkl o Akkd M, Ak
where Ay — ./\11,2 .)\22,2 .)\k1k1,2 .)\kk,Q _ ')\'12 .)\kk,Q s T x
Mir e ot MkT  ARKT Nip Ak,
!
(k1 + 1) matrix, and §;; = ( G191 Gadiz - GkQik Soreki 41 Qadsi ) a (k+

1) x 1 vector.

Since rank (I&T) = ky + 1 by assumption, §;; = 0- tx,41 irrespectively of ¢ and
4. That is, for all j > 4,4 = 1,2,...k we must have ¢;g;; = 0 for I =1,2,... k
and also Y°f . 11 ¢ags = 0. The first set of restrictions implies that there cannot
be two elements in the first k; columns of Q which are different from 0. Let’s

partition Q comformably as:

Qll Q12
Q?l Q22

Then, given that Q is orthogonal, if we exclude mere permutations of the factors,

it must be the case that Qq; = I,lcfz, Q2 =0, Qi3 = 0 and Qg9 is orthogonal. O

A.3 Proposition 3

First of all, note that A = QA,Q = Qdg(A,)Q + Q[A, — dg(A,)]Q'. But
since A;—dg(A;) is time-invariant by assumption, constant conditional covariances
for Af simply requires that Qdg(A,)Q’ is also time-invariant. Given that the
i element of Qdg(A,)Q is S5, Mutgags, this requires S5 Aiigugy = ¢ for
j>i,i=12...kandt=1,2...T For a given 4,5 (j > i), these restrictions
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can be expressed in matrix notation as:
Arqsj = ¢ - or (10)

We can regard (A3) as a set of T non-homogenous linear equations in k unknowns,
q;;. Given that rank (j-XTlLT) = k + 1 when the stochastic processes in (X}, 1) are
linearly independent, the only way the above system of equations can have a
solution is if ¢;; = 0 for all § > 4,4 = 1,2,... k. That is, if Qdg(A,)Q’ remains
diagonal for t = 1,2,...T. In that case, the proof of Proposition 1 applies. O

B The score and information matrix of a condi-
tionally heteroskedastic factor model

Let ¢'=(c’,7',1') denote the vector of parameters of interest, with ¢ =vec(C)
and 7 =vecd(T'). Bollerslev and Wooldridge (1992) and Kroner (1987) show that
the score function s;(¢) =0l:(4)/0¢ of any conditionally heteroskedastic multi-

variate model with zero conditional mean is given by the following expression:

1 8vec [%]

st(o) 2 o8 [Et_l@Zt_l} vec [xix; — By

Then, since the differential of 3; is
d(CA,C' +T) = (dC)A,C + C(dA,)C' + CA(dC') +dT’

(cf. Magnus and Neudecker (1988)), we have that the three terms of the Jacobian

corresponding to ¢,7y and v will be:

Gl A
‘%c[ftl = (In2 + Ky)(CARIy) + (C® C)EkTi'@
uec[%] _ OA(9)
oy Eyn + (C® C)E; 5
DuecB] _ M(9)

By (Co OE:—;
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where E,, is the unique n x n? “diagonalization” matrix which transforms vec(A)
into vecd(A) as vecd(A) = E vec(A), and K,, is the square commutation matrix
(see Magnus (1988)).

After some straightforward algebraic manipulations, we get

vec [E{lxtx’til{lCAt - z;cht}

si(¢) = vecd [Et_lxtxﬁ){l - 2{1] +
0
. oX,(¢)/0c
5 | ON(¢)/0y | vecd (O3 %X, 'C - O/ 'C
OX(¢)/ 0

Assuming that rank(I') =N, we can use the Woodbury formula to prove that
Zt_lxtxgzt_cht — Et_lCAt = I‘_IE [(Xt — Cft)f;lXT, d)]

ok, 57— B = T E [(x¢ — Cf ) (% — Cf) | X7, 6] T
O3 xx, 3 1C - C'S7IC = A E[ff, — A Xr, ] A"

where F [-|Xr, @] refers to expectations conditional on all observed xis and the
parameter values ¢. Therefore, we can interpret the score of the log-likelihood
function for x; as the expected value given Xr of the sum of the (unobserv-
able) scores corresponding to the conditional log-likelihood function of x; given f;,
and the marginal log-likelihood function of f; (cf. Demos and Sentana (1996b)).
Note that these expressions only involve fyr = E [£:| X7, 9] = fyr and Agr =
B8 Xr, 4] = Ay

As a simple yet important example, consider the following ARCH(1)-type con-

ditional variance specification
2
g = (1= ) + @i (fro1je-1 + Ajje-1e-1)
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so that ¢ = (ou1, a1, ..., ax1). If the true parameter configuration corresponds
to the case of conditional homoskedasticity, i.e. Y= 0, so that A; = 1, V¢, then
a/\aﬂt(¢0)/ac =0, 3/\77t(¢0)/37 0 and 3/\77t(¢0)/30471 = (fyt 1t— 1 H A =17

1). Since Aj;; = 1 under the null, and
E [ f%+ Njoie — 1|=E [E( N —1X,)| = E % - 1] =0
then the orthogonality conditions implicit in the last k elements of the score are

simply Cw(faztlt: fy?tﬂllt—l) =0.
Let Hy(¢) =0%1,(¢)/0¢O¢' denote Hessian matrix of I,(¢). Bollerslev and

Wooldridge (1992) also prove that
Ovec [X4]

1 Qvec’ [34]
e ]

- -1
e 'ox;"]

—E [Hy(¢g)[Xs1] =

When 1/y= 0

alt(¢0) 8/\/(¢0) x(ed> /N —
[&/}8,1 } 5. E(CECe0RTo)

Ply(¢o) _ 1OX(90) [ a1 o gt
_E[(ww }Xt_1J~§ S (Cs o0

where we use the fact that the Hadamard (or element by element) product of two

m X n matrices, R and S, can be written as RO S = E, (R ® S)E_ (see Magnus
(1988)).

Since B [0As;(¢0)/0cn] = B [f% 1oy + Ajje-ne- 1 — 1] = 0, it is clear that
the information matrix is block diagonal between static and dynamic variance
parameters under the null of conditional homoskedasticity.

Finally, it is also worth noting that under conditional homoskedasticity

82lt e — .
—E[ acéi?) 1XHJ =2(C'z'Cox)

azlt(qﬁo) o -1 -1
_E[ B5y00 X1 =Ex(Z7'CoX™)
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ap=0.0
Bo=0.0

a0=0.2
a():().ﬁ

a0=0.4
Bo=0.4

Table 1: One Factor Model

Mean biases and standard deviations

for unconditional variance parameters

’)/0=0.5 ’)’022.0
c Y c g
ML 28 ML 25 ML 2S ML 2S
bias -.0006  -.0006 | -.0036 -.0036 | -.0054 -.0051 | -.0297 -.0287
std.dev. .0265 .0265 .0729 .0730 .0789 0771 3093 3025
bias -.0006 -.0006 | -.0036 -.0036 | -.0055 -.0054 | -.0290 -.0292
std.dev. .0269 .0270 .0720 .0729 .0795 .0786 .3045 3034
bias -.0006 -.0006 | -.0035 -.0037 | -.0055 -.0058 { -.0282 -.0300
std.dev. 0277 .0282 .0700 .0729 0795 .0818 2913 3047

Table 2: One Factor Model

Proportion of estimates at the boundary of the parameter space

29=0.0,8p=0.0 | .556
@=0.2,80=0.6 | .022
a0:0.4,ﬁ0=0.4 .003

o0=0.2  Dbias
Bo=0.6  std.dev.

ag=0.4 Dbias
Fo=0.4  std.dev.

70=0.5 7o=2.0
a=0,8=0 a#0,=0 a=0,=0 a#0,8=0
ML 28 ML 23 ML 25 ML 2S
557 | .265 .264 | .552 .552 .286 282
.027 | .091 .086 | .118 137 .198 167
005 | 074 .070 | .049 .059 218 185
Table 3: One Factor Model
Mean biases and standard deviations
for conditional variance parameters
v=0.5 Y¥o=2.0
« B o Jéj
ML 25 ML 28 ML 28 ML 25
.007 -.002 | -.106 -.103 019  -.007 | -.183 -.162
112 .104 .253 .250 172 .149 302 .299
-.004 -030 { -.043 -.039 | -.015 -.065 | -.081 -.058
151 134 .196 .195 222 .190 257 257
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Table 4: Two Factor Model
Mean biases and standard deviations

for unconditional variance parameters

co = (0,0,0,1,1,1;1,1,1,0,0,0)
o9 =02 Fop=0.6 ap =04 Bo=04
Yo = 0.5 Y0 = 2.0 Yo = 0.5 Yo = 2.0
ML R 2S ML R 28 ML R 28 ML R 25

cq1 bias| .0014 -.0013 -.0012| .0215 -.0001 -.0004| .0026 -.0014 -.0014]| .0136 -.0003 -.0004
s.d. | .1349 .0554 .0556| .1912 .1006 .1003| .1018 .0570 .0577| .1603 .1005 .1034

cp1 bias[-.0120 -.0033 -.0034[-.0504 -.0147 -.0149 [-.0011 -.0035 -.0037 |-.0357 -.0145 -.0159
s.d. | .0600 .0279 .0282| .1365 .0814 .0829| .0578 .0286 .0295| .1187 .0803 .0858

cq2 bias|-.0178 -.0016 -.0016]-.0549 -.0117 -.0117{-.0069 -.0015 -.0016 |-.0347 -.0113 -.0117
s.d. | .0611 .0269 .0269| .1513 .0810 .0809| .0306 .0271 .0271| .1208 .0808 .0807

cpy bias| .0033 -.0005 -.0006| .0098 -.0026 -.0020]|-.0004 -.0003 -.0005| .0036 -.0018 -.0012
s.d. | .1285 .0405 .0407| .1934 .1010 .1011| .0835 .0396 .0408| .1556 .0974 .0974

v bias|-.0058 -.0057 -.0058|-.0437 -.0428 -.0441|-.0059 -.0058 -.0059|-.0429 -.0417 -.0444
s.d. | .0724 0723 .0730| .3141 .3100 .3136| .0712 .0712 .0730| .3048 .3018 .3142

co=(341,11,1,1;1,1,1, 4,1, 1)
ap=0.2 By =06 ap =04 Bo=04
Yo = 0.5 Yo = 2.0 ~o = 0.5 Yo = 2.0
ML R 2S ML R 2S ML R 2S ML R 28

cq1 bias[-.0121 .0955 .1040|-.0038 .0920 .0987|-.0072 .0955 .1076|-.0045 .0841 .1007
s.d. | .1206 .0424 .0417| .1820 .0815 .0809| .0939 .0473 .0455( .1526 .0841 .0838

cpy bias|[-.0158 -.0373 -.0394 [-.0457 -.0437 -.0468|-.0079 -.0360 -.0415[-.0305 -.0406 -.0486
s.d. | 0622 .0296 .0297( .1305 .0787 .0785| .0439 .0315 .0317] .1057 .0778 .0813

cq2 bias[-.0151 .0151 .0150[-.0562 -.0021 -.0035|-.0048 .0149 .0150|-.0337 -.0009 -.0038
s.d. | 0611 .0309 .0312| .1655 .0997 .1012| .0324 .0306 .0313| .1326 .0977 .1018

cpy Dbias|-.0142 -.1339 -.1418|-.0164 -.1433 -.1561 |-.0075 -.1210 -.1417}-.0210 -.1260 -.1566
s.d. | .1203 .0480 .0485| .1916 .1344 .1399| .0796 .0473 .0488| .1564 .1283 .1413

4  bias|-.0060 -.0063 -.0060 |-.0517 -.0519 -.0524|-.0060 -.0067 -.0061 |-.0505 -.0525 -.0537
s.d. | .0725 .0726 .0732| .3269 .3267 .3210| .0711 .0715 .0732| .3117 .3266 .3114
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Proportion of estimates at the boundary of the parameter space

Table 5: Two Factor Model

Cpo = (Oa070) ]-» la 1, 1a 17 170a 070)/

’)’():0.5 ’70:2.0
a=0,6=0 a#0,6=0 a=0,6=0 a#0,6=0
ML R 28 ML R 2S ML R 25 ML R 2S5
0p=0.2,60=0.6 | .034 .034 .038| .114 .088 .084 | .146 .145 .153|.226 .190 .166
ap=0.4,60=0.4 | .004 .004 .004|.097 .077 .072).064 .064 .072 | .260 .222 .188
Co = (ia }11, i) ]-7 ]-a 1a 1a ]-a 17 7117 ia i)/
’Y():OS 70:20
a=0,=0 a#0,6=0 a=0,=0 a#0,6=0
ML R 2S ML R 2S ML R 2 ML R 28
00=0.2,60=0.6 | .034 .048 .054 | .095 .124 .117].156 .167 .195].201 .225 .183
0p=0.4,0,=0.41.004 .011 .015(.095 .099 .093|.062 .095 .109 | .297 .227 .186
Table 6: Two Factor Model
Mean biases and standard deviations
for conditional variance parameters
Co = (07 0,0,1,1,1;1,1,1,0, Oa 0),
~0=0.5 0=2.0
a Jél e Jé)

ML R 2S ML R 2S ML R 2S ML R 28
ap=0.2 bias .025 .007 -.003|-.128 -109 -.1061.062 .025 -.014|-.219 -192 -.166
Bo=0.6 std.dev.|.115 .112 .103| .259 .248 246 .192 .181 .146} .305 .301 .301
op=0.4 Dbias .010 -.003 -.032|-.057 -.047 -.041 | .017 -.012 -.081|-.108 -.080 -.055
Bo=0.4 std.dev.|.150 .150 .131 ] .197 .193 193 | .224 226 .186| .258 .256 .258

Co = (21{, i) 717 1,1,1,L,1,1, %7 %’ 711)’
~0=0.5 0=2.0
o Jé] o Jéj

ML R 28 ML R 2S ML R 28 ML R 28
op=0.2 bias 027 -.021 -.030}-.116 -.120 -.115] .064 -.013 -.047|-.201 -.207 -.175
B0=0.6 std.dev.}.120 .108 .100| .256 .273 .269| .208 .164 .134| .306 .312 311
co=0.4 Dbias 012 -.061 -.08%|-.055 -.027 -.019].017 -.079 -.1441]-.095 -.074 -.036
Fo=0.4 std.dev. ] .156 .150 .133 | .202 .214 .215|.234 217 .176| .266 .271 .275
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Figure 1: Test for ARCH in common factor
P-value discrepancy plots
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Figure 2: Test for ARCH in common factor
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Figure 3: Likelihood Ratio Test for overidentifying restriction
P-value discrepancy plots
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Figure 4: Likelihood Ratio Test for overidentifying restriction
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