
 Open access  Proceedings Article  DOI:10.1109/ACC.2007.4282899

Identification for gain-scheduling: a balanced subspace approach — Source link 

Marco Lovera, Guillaume Mercère

Institutions: Polytechnic University of Milan, University of Poitiers

Published on: 09 Jul 2007 - American Control Conference

Topics: System identification, Subspace topology and Gain scheduling

Related papers:

 Identification of linear parameter varying models

 Identification of Linear Parameter-Varying Systems Using Nonlinear Programming

 Subspace identification of MIMO LPV systems using a periodic scheduling sequence

 Kernel methods for subspace identification of multivariable LPV and bilinear systems

 Experimental modelling and LPV control of a motion system

Share this paper:    

View more about this paper here: https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-
2crtxxl8z7

https://typeset.io/
https://www.doi.org/10.1109/ACC.2007.4282899
https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-2crtxxl8z7
https://typeset.io/authors/marco-lovera-4qx92yt9st
https://typeset.io/authors/guillaume-mercere-j2xc4caeq0
https://typeset.io/institutions/polytechnic-university-of-milan-2jo8jgz1
https://typeset.io/institutions/university-of-poitiers-10lyr8s4
https://typeset.io/conferences/american-control-conference-3mrhqreo
https://typeset.io/topics/system-identification-22o9x6fw
https://typeset.io/topics/subspace-topology-f4wzzyg4
https://typeset.io/topics/gain-scheduling-1iyfn1tu
https://typeset.io/papers/identification-of-linear-parameter-varying-models-2em6hdz0hu
https://typeset.io/papers/identification-of-linear-parameter-varying-systems-using-1a3fl6dihn
https://typeset.io/papers/subspace-identification-of-mimo-lpv-systems-using-a-periodic-4bnb8nm6vi
https://typeset.io/papers/kernel-methods-for-subspace-identification-of-multivariable-5a2f8cb6xe
https://typeset.io/papers/experimental-modelling-and-lpv-control-of-a-motion-system-os1o3lrawh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-2crtxxl8z7
https://twitter.com/intent/tweet?text=Identification%20for%20gain-scheduling:%20a%20balanced%20subspace%20approach&url=https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-2crtxxl8z7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-2crtxxl8z7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-2crtxxl8z7
https://typeset.io/papers/identification-for-gain-scheduling-a-balanced-subspace-2crtxxl8z7


HAL Id: hal-00164365
https://hal.archives-ouvertes.fr/hal-00164365

Submitted on 20 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification for gain-scheduling: a balanced subspace
approach

Marco Lovera, Guillaume Mercère

To cite this version:
Marco Lovera, Guillaume Mercère. Identification for gain-scheduling: a balanced subspace approach.
American Control Conference 2007, ACC’07, Jul 2007, New York, United States. pp.CDROM. ฀hal-
00164365฀

https://hal.archives-ouvertes.fr/hal-00164365
https://hal.archives-ouvertes.fr


Identification for gain-scheduling: a balanced subspace approach

Marco Lovera and Guillaume Mercère

Abstract— The problem of deriving MIMO parameter-
dependent models for gain-scheduling control design from data
generated by local identification experiments is considered and
a numerically sound approach is proposed, based on subspace
identification ideas combined with the use of suitable properties
of balanced state space realisations. Simulation examples are
used to demonstrate the performance of the proposed approach.

I. INTRODUCTION

In the practice of control engineering there is a significant

number of applications in which a single control system must

be designed in order to guarantee the satisfactory closed

loop operation of a given plant in many different operating

conditions. The gain scheduling approach to the problem,

which has been part of the engineering practice for decades,

can be roughly summarised as follows: find one or more

scheduling variables which can completely parameterise the

operating space of interest for the system to be controlled;

define a parametric family of linearised models for the plant

associated with the set of operating points of interest; finally,

design a parametric controller which can both ensure the

desired control objectives in each operating point and an

acceptable behaviour during (slow) transients between one

operating condition and the other. As is well known, a wide

body of design techniques is now available for this problem

(see, e.g., [1]–[3]), which can be reliably solved, provided

that a suitable model in parameter-dependent form has been

derived.

This modelling problem, however, raises a number of

significant issues. While the literature on non linear iden-

tification can now provide advanced tools for the estimation

of a wide variety of model classes, in such a case it

would be useful to separate conventional input variables from

scheduling variables (i.e., variables defining the operating

point of the plant), by letting them enter the model in distinct

ways ( [4], [5]).

Linear Parametrically Varying (LPV) models have been

recently proposed as a way of dealing with this kind of prob-

lems. A LPV model is linear in the parameters and a vector of

scheduling variables enters the system matrices in an affine

or linear fractional way ( [6]–[11]). Such a representation for

general nonlinear models can be useful in view of control

design using modern robust control theory (see, e.g., [12])

This paper has been supported by the Italian MIUR project Identification
and Adaptive Control of Industrial Systems

M. Lovera is with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano, Italy. lovera@elet.polimi.it

G. Mercère is with the Laboratoire d’Automatique
et d’Informatique Industrielle (LAII), Poitiers, France.
guillaume.mercere@univ-poitiers.fr

and gain-scheduling control techniques. Unfortunately, the

underlying assumption of the above cited LPV identification

techniques is that the identification procedure can rely on one

global identification experiment in which both the control

input and the scheduling variables are (persistently) excited

in a simultaneous way. This assumption may not be a

reasonable one in many applications, in which it would be

desirable to try and derive a parameter-dependent model on

the basis of local experiments only, i.e., experiments in which

the scheduling variable is held constant and only the control

input is excited.

Such a viewpoint has been considered in [13]–[15], where

numerical procedures for the construction of parametric

models for gain scheduling on the basis of local experiments

and for the interpolation of local controllers have been

proposed. The aim of this paper is to further elaborate on

such approaches, in order to provide a number of extensions,

namely:

• The identification of local models is performed using

subspace techniques, so enabling the straightforward

treatment of MIMO as well as SISO modelling prob-

lems, in state space form;

• Well known properties of subspace methods with re-

spect to balancing of identified models are exploited

in order to improve the numerical reliability of the

subsequent model interpolation procedure.

The paper is organised as follows. The considered system

identification problem is formulated in Section II, while the

proposed approach is described in Section III. Finally, some

simulation results are presented in Section IV.

II. PROBLEM STATEMENT

The system identification problem considered in this paper

can be summarised as follows. Consider the MIMO linear

parametrically-varying system given by

ẋ = A(p)x + B(p)u (1)

y = C(p)x + D(p)u (2)

where u ∈ R
m, y ∈ R

l, x ∈ R
n and p ∈ R

r and

assume that the results of a number of P identification

experiments are available, associated with the operation of

the system near P different values of the parameter vector

p. The aim of the identification procedure proposed in this

paper is to determine a set of parameter dependent matrices

Â(p), B̂(p), Ĉ(p) and D̂(p) either in affine (A) or linear

fractional transformation (LFT) which can provide a good

approximation of the system (2) over the considered range

of operating points.



III. A BALANCED SUBSPACE APPROACH TO

IDENTIFICATION FOR GAIN SCHEDULING

The approach to the problem of identification for gain

scheduling proposed in this paper can be summarised in the

following steps:

• Linear discrete-time state space models are estimated

for each operating point, using a frequency-domain SMI

algorithm (see [16]);

• The identified models are balanced using the numerical

algorithm of [17] (as implemented in the Matlab Control

Toolbox);

• If necessary, the balanced models are converted to

continuous-time using a bilinear transformation;

• Finally, the parameter-dependent model is obtained by

direct interpolation of the state-space matrices of the

local models, made possible by the unique properties

of balanced realisations (see [17]), and can eventually

be converted to LFT form using results from the LPV

identification literature [6].

Each of the above mentioned steps will be described in

detail in the following.

A. Frequency domain subspace identification

The problem of frequency-domain identification of MIMO

linear time invariant systems using subspace methods has

been extensively studied (see [16], [18]–[20]). More pre-

cisely, most of the developed methods try to fit a discrete time

state space model to different types of measured frequency

data, either Fourier transforms of the I/O data or samples

of the frequency response of the system [16], [18] at some

discrete set of frequencies. For reasons which will become

clearer in the following, in this paper we focus on a particular

algorithm, which was originally proposed in [16]. Such

algorithm assumes that the ”true” system is of finite order

n and can be described by a discrete-time linear state space

model

x(t + 1) = Ax(t) + Bu(t) (3a)

y(t) = Cx(t) + Du(t), (3b)

with u(t) ∈ R
m the input vector, y(t) ∈ R

p the output vector

and x(t) ∈ R
n the state vector. The corresponding frequency

response will be denoted as

G(ejω) =

∞
∑

k=0

gke−jωk = C(ejωI − A)−1B + D (4)

with gk the Markov parameters

gk =

{

D for k = 0

CAk−1B for k > 0
. (5)

The identification problem considered in [16] can be formu-

lated as follows: given M noise corrupted samples of the

frequency response of the system

Gk = G(ejωk ) + nk, k = 1, . . . , M (6)

on a set of uniformly spaced frequencies ωk = πk
M , k =

1, . . . , M , where nk is a zero mean complex random variable

with covariance

E

{[

ℜ{nk}
ℑ {nk}

]

[

ℜ
{

nT
s

}

ℑ
{

nT
s

}]

}

=

[

1

2
Rk 0
0 1

2
Rs

]

δks

(7)

such as this covariance function is uniformly bounded, i.e.,

Rk ≤ R, estimate the system matrices up to a similarity

transformation and, by extension, the transfer function of the

process such as

lim
M→∞

∥

∥

∥
Ĝ − G

∥

∥

∥

∞

= 0 (8)

with probability 1.

The algorithm proceeds by first estimating the impulse re-

sponse coefficients (5) from the available frequency response

samples and subsequently applying a realization algorithm.

The Markov parameters are calculated by using the two sided

inverse discrete Fourier transform

ĥi =
1

2M

2M−1
∑

k=0

Gke
j2πik

2M , i = 0, . . . , 2M − 1 (9)

with GM+k = G∗

M−k, k = 1, . . . , M − 1. Knowing these

estimates, the following block Hankel matrix can be built

Ĥqr =











ĥ1 ĥ2 · · · ĥr

ĥ2 ĥ3 · · · ĥr+1

...
...

. . .
...

ĥq ĥq+1 · · · ĥq+r−1











∈ R
qp×rm (10)

with q > n, r ≥ n and q + r ≤ 2M .

Since this Hankel matrix can be factored as [16]

Ĥqr = Oq

(

I − A2M
)−1 Cr (11)

with

Oq =
[

CT (CA)T · · · (CAq−1)T
]T

(12)

Cr =
[

B AB · · · Ar−1B
]

, (13)

computing the singular value decomposition (SVD) of Ĥqr

we get

Ĥqr = Û Σ̂V̂ T =
[

Ûs Ûn

]

[

Σ̂s 0

0 Σ̂n

] [

V̂ T
s

V̂ T
n

]

, (14)

and we can estimate the observability subspace as Ôq = Ûs

or Ôq = ÛsΣ̂
1/2
s . Finally, the extraction of the system

matrices can be carried out using conventional subspace

techniques.

B. Balancing of the identified models

Once P local models have been obtained, the problem of

recovering the whole parameter-dependent system has to be

faced. It turns out that this task is greatly simplified if the

local models are converted to a suitable balanced form. In

order to clarify this point, the main properties of internally

balanced realisations have to be briefly summarised ( [21],

[22]).



Definition 3.1: Consider the discrete-time system (3) and

the matrices

Wo =

∞
∑

k=0

(

Ak
)T

CT CAk, Wc =

∞
∑

k=0

AkBBT
(

Ak
)T

which are respectively known as the observability and con-

trollability Gramians of the state space system (3). The state

space realization is internally balanced if

Wo = Wc = Σ = diag (σ1 · · · σn) , (15)

where {σi}n
i=1

are the singular values of WcWo.

Definition 3.2: Consider the observability matrix Oq and

the controllability matrix Cr defined in (12) and (13). The

corresponding state space realization is qr internally bal-

anced if OT
q Oq = CrCT

r = Σ.

In the noise free case, the frequency domain realization

algorithm presented in the previous subsection leads to the

following factorization [16]

Ĥqr = Oq

(

I − A2M
)−1 Cr (16)

with q > n, r ≥ n and q + r ≤ 2M . Now, the SVD (14)

allows to write

Ĥqr = ÛsΣ̂
1/2
s ΣT/2

s ÛT
s . (17)

Thus, the estimates of the observability and controllability

matrices satisfy

Ôq = ÛsΣ̂
1/2
s , Ĉr = ΣT/2

s ÛT
s . (18)

Hence, we obtain

OT
q Oq = Σ̂s (19)

CrCT
r =

(

I − A2M
)

Σ̂s

(

I − A2M
)T

. (20)

For a stable system, the state space realization given by the

proposed algorithm is therefore qr balanced when M tends

to infinity.

In order to improve the numerical performance of the

algorithm, it is proposed to fix the state space basis of the

estimated matrices by finding a similarity transformation T

such that
{

T−1ÂT, T−1B̂, ĈT, D̂
}

is in internally balanced

form. To this purpose, we use the algorithm first derived in

[17], which consists in the following steps:

1) Compute the Gramians Wo and Wc of the identified

model;

2) apply a Cholesky factorisation to obtain Wo = LoL
T
o ,

Wc = LcL
T
c , where Lo and Lc are the lower triangular

factors of the Gramians;

3) compute the SVD LT
o Lc = UΣV T .

The balancing transformation is then defined by T =
LcV Σ−1/2, T−1 = Σ−1/2UT LT

o .

The most interesting properties of balanced realisations, as

far as this contribution is concerned, is associated with the

uniqueness properties of the balancing transformation (see

[17] and [21] for details). Essentially, the question turns

on the eigenvalues (real and nonnegative) of the product

of the reachability and observability Gramians, and their

corresponding eigenvectors, i.e., the columns of the balanc-

ing transformation T . If these eigenvalues are distinct, then

the corresponding eigenvectors are uniquely determined to

within sign, i.e., T is essentially unique. If, on the other

hand, two or more eigenvalues are repeated, then their

corresponding eigenvectors can be rotated arbitrarily in the

corresponding eigenspace. This, in turn, implies that as long

as the eigenvalues are distinct, if the true system exhibits

a smooth dependence from the scheduling parameter p, so

that the overall parameter dependent model can be directly

reconstructed from the identified local models.

Since, in general, the assumption of distinct eigenvalues

cannot be guaranteed a priori, as far as our identification

problem is concerned, the following situations may arise:

• If the elements of the state space matrices of the

identified local models exhibit a smooth variation as a

function of the parameter p, then the overall parameter-

dependent model can be directly recovered using the

interpolation techniques outlined in the following sub-

sections.

• If, instead, the behaviour of the elements of the state

space matrices exhibit abrupt sign changes (associated

with sign changes in the columns of the balancing

transformations), then one should check for situations

in which the eigenvalues of the balanced Gramians are

not distinct.

• If signs changes are present but the eigenvalues are

distinct, then a ”mild” nonuniqueness is occurring,

which can simply be corrected by adjusting the signs

of the ”stray” matrix elements;

• If, on the other hand, sign changes are associated with

non unique eigenvalues, then the best solution is to

momentarily neglect the local model giving rise to the

problem and performing the model interpolation (as

described in the following subsections) using P−1 local

models only.

C. From discrete-time to continuous-time

Until now, only discrete time frequency domain identifi-

cation has been considered. If the goal of the identification

procedure, however, is to work out a continuous-time model

for the system, then the well known bilinear transformation

can be applied. In particular, explicit formulas exist for the

direct transformation of the state space matrices from discrete

to continuous time (see [16]):

Ac =
2

Ts
(I + A)−1(A + I), Bc =

2√
Ts

(I + A)−1B

Cc =
2√
Ts

C(I + A)−1, Dc = D − C(I + A)−1B,

where Ts is the sampling period. The main advantage of the

bilinear transformation with respect to other approaches to

the discrete/continous conversion is that this transformation

preserves balancing, i.e., when applied to a discrete-time

system in balanced form, yields a balanced continuous-time

system (see also [23]). Therefore, the above comments on the



essential uniqueness of balanced realisations in the discrete-

time can be successfully exploited for model interpolation

also in the continuous-time case.

D. Model interpolation

Once the elements of the state space matrices of the

system have been estimated following the above steps, a

number of options are available as far as the derivation of

the actual parameter dependent model is concerned. The

first, and simplest, would be to directly fit to the system

matrices of the local models using suitable regressors formed

from the scheduling parameter p. This would directly yield

a parameter dependent model in so-called affine form (LPV-

A), i.e.,

ẋ = A(δ)x + B(δ)u (21)

y = C(δ)x + D(δ)u (22)

where δ ∈ R
d is the vector of regressors (formed from linear

or non linear functions of the elements of p) such that the

parameter dependent matrices can be written as

A(δ) = A0 + A1δ1 + . . . + Adδs (23)

and similarly for B(δ), C(δ) and D(δ). In some applications,

however, it is desirable to obtain as output of the system

identification procedure a model in so-called LPV-LFT form,

i.e., in which the state space matrices are expressed as a

linear fractional transformation over a suitable linear operator

representing time-varying parameters:

ẋ = Ax + B0w + B1u (24)

z = C0x + D00w + D01u (25)

y = C1x + D10w + D11u (26)

w = ∆z, ∆ = diag(δ1Ir1
. . . δdIrd

) (27)

and w, z ∈ R
r, r = r1 + . . . + rd.

As is well known in the robust control literature and also

pointed out in [6], [8], LPV-A and LPV-LFT representations

are related to each other. Denoting the composition of the

system matrices

M(δ) =

[

A(δ) B(δ)
C(δ) D(δ)

]

= M0 + M1δ1 + . . . + Mdδd,

by expressing each of the M ′

is, i = 1, ..., d by means of

a rank ri decomposition as Mi = UiVi one can write

M(δ) as M(δ) = M0 + U∆V , where U = [U1 . . . Ud],
V = [V T

1 . . . V T
d ]T and ∆ is given by equation (27).

The obtained form for the system matrices coincides with

the one which is obtained in the special case of a linear

fractional transformation characterised by having D00 = 0,

hence the transformation between the two forms.

E. Comments and discussion

As mentioned in the Introduction, the proposed approach

seems to offer a useful trade-off between the two classes

of solutions to this problem which have been so far pro-

posed in the literature. On one hand, subspace methods for

the identification of LPV state space models such as the

ones in [10] provide a very general way of dealing with

the problem, at the cost of critical requirements on the

experimental conditions which might not be easily realisable

in many applications. On the other hand, the technique of

[13], [14] has the advantage of being much closer to the

actual practice of system identification but suffers from the

numerical drawbacks associated with the adoption of a fixed

(generally not well conditioned) basis for the manipulation

of state space models.

IV. SIMULATION EXAMPLES

Example 1

Consider the parameter-dependent system given by the

equations

x(k + 1) = A(p)x(k) + Bu(k) (28)

y(k) = Cx(k) (29)

where

A =





0 1 0
0 0 1

0.01p −(p − 0.004) −0.39



 (30)

B =
[

0 0 1
]T

, C =
[

0.02 0 −0.5
]

(31)

and the parameter p ranges in the interval from 0.1 to 0.95.

The Bode plots of the frequency responses associated with

the system for different values of p are given in Figure 1.

As can be seen, the dynamics of the system is significantly

affected by the parameter variations. For this system it is
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Fig. 1: Example 1: frequency response of the parameter

dependent system for p = (0.1 : 0.05 : 0.95).

assumed that frequency domain data, i.e., measurements

of its frequency response around each operating point are

available. On the basis of such data, linear time-invariant

state space models have been identified and balanced using

the SMI algorithm outlined in Section III. The resulting

model parameters (elements of the estimated A, B, C and

D matrices) are presented in Figure 2. Its is apparent from

the Figure that, as expected from the previous theoretical
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Fig. 2: Example 1: elements of the estimated A, B, C and

D matrices as functions of p.

analysis, the estimated matrix elements exhibit a smooth

and clearly recognizable dependence from the scheduling

parameter p. In particular, no sign changes due to the non

uniqueness of the balancing transformation are present (as

previously mentioned, however, this effect can be removed

either manually or by means of an easily automated proce-

dure). Note, in passing, that in this case sign changes can be

the only possible obstacle to the straightforward interpolation

of the system matrices as the singular values of the balanced

Gramians (see Figure 3) are distinct for all the considered

values of p. It is also interesting to note that while the Grami-
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p

Fig. 3: Example 1: eigenvalues of the balanced Gramian

matrices, as function of p.

ans are not very well conditioned (i.e., a part of the system

is poorly controllable/observable), the estimated elements of

the system matrices are characterised by ”nice” numerical

values, so that the final interpolation step is not likely to

give rise to significant numerical issues. As a comparison,

in Figure 4 the numerator and denominator coefficients of

the transfer functions associated with the identified state

space models are presented. As can be seen, their numerical

values span a wide range of orders of magnitude, so that

this representation for the parameter dependent model is

much more likely to give rise to numerical issues in the

subsequent controller design phase. It is striking that such an

ill-conditioned model can arise even for small scale examples

such as the one presented herein.
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Fig. 4: Example 1: numerator and denominator coefficients

of the transfer functions of the estimated models.

Example 2

Consider now a parameter-dependent system with

A =





0 1 0
0 0 1

0.25 −0.25 + p 0.5 − p



 , (32)

B and C as in Example 1 and the parameter p ranging

from 0.1 to 0.8. The Bode plots of the frequency responses

associated with the system for different values of p are given

in Figure 5, while the parameters of the identified local

models are shown in Figure 6. As can be see from the

Figure, in this case sign changes are clearly visible, which are

due to the non uniqueness in the used balancing transforma-

tion. A check of the eigenvalues of the balanced Gramians,

however,shows (see Figure 7) that the sign changes are due

to a ”mild” nonuniqueness, since the eigenvalues are distinct

for all considered values of p. Therefore, it is possible to

proceed with model interpolation once the sign changes have

been corrected.

V. CONCLUSIONS

The problem of deriving MIMO parameter-dependent

models for gain-scheduling control design from data gener-

ated by local identification experiments has been considered

and a novel approach based on subspace identification ideas

combined with the use of suitable properties of balanced state

space realisations has been presented and discussed. The

numerical advantages of the adopted state space viewpoint

have been demonstrated in a number of simulation examples.
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