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Identification of 12 genetic loci associated with
human healthspan
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Peter O. Fedichev1,5 & Yurii Aulchenko 2,3,6,7

Aging populations face diminishing quality of life due to increased disease and morbidity.

These challenges call for longevity research to focus on understanding the pathways con-

trolling healthspan. We use the data from the UK Biobank (UKB) cohort and observe that the

risks of major chronic diseases increased exponentially and double every eight years, i.e., at a

rate compatible with the Gompertz mortality law. Assuming that aging drives the acceleration

in morbidity rates, we build a risk model to predict the age at the end of healthspan

depending on age, gender, and genetic background. Using the sub-population of 300,447

British individuals as a discovery cohort, we identify 12 loci associated with healthspan at the

whole-genome significance level. We find strong genetic correlations between healthspan

and all-cause mortality, life-history, and lifestyle traits. We thereby conclude that the

healthspan offers a promising new way to interrogate the genetics of human longevity.
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Age is the most important single risk factor for multiple
diseases, see, e.g., ref. 1. Likewise, extreme longevity in
human cohorts is associated with a delayed incidence of

diseases: Kaplan-Meyer curves of disease-free survival, stratified
by age, demonstrate a consistent delay in the onset of age-related
diseases with increasing age of survival2. Therefore, the emerging
premise is that aging itself is the common driver of chronic
diseases and conditions that limit the functional and disease-free
survival3. Healthy and morbidity-free lifespan, often termed
“healthspan”, is thus a promising phenotype for longevity
research4 and possibly a target for future anti-aging interven-
tions3,5. The thorough delineation between the healthspan and
lifespan is more than of academic interest: the last century saw a
dramatic increase in lifespan, not necessarily followed by a
matching improvement in the healthspan6.

Genomics provide a hypothesis-free approach to study the
biology of complex traits, including aging5. The increasing
number of available genomes of very old people7–9, though
representing a rather specific and a relatively small sub-group of
exceptionally successfully aging individuals, can provide an
insight into the genetic architecture of exceptional life-spans and
health-spans by use of Genome-Wide Association Studies
(GWAS). While such studies suggested a fair number of loci, the
APOE locus is probably among the few consistently implicated in
multiple studies, see ref. 10 for a review. GWAS of the disease-free
survival has been performed in relatively large cohorts (n=
25,007), however, without producing genome-wide significant
associations11, highlighting the complexity of healthspan phe-
notype. Further gains can be naturally achieved by increasing the
population size with the help of proxy phenotypes, such as a
search for genetic variants that predispose one to age-related
disease and hence are depleted in long-lived persons compared to
controls8. Another promising alternative involves GWAS of
parental lifespans12–14.

In this paper, we focused on aging and morbidity in mid-life
using clinical histories for over 300,000 people, aged 37 to 73, and
participating in the UK Biobank (UKB) cohort. We checked the
for incidence of chronic diseases and identified a cluster of the top
eight morbidities strongly associated with age after the age of 40
and ranked by the number of occurrences. We observed that the
risk of the selected diseases increases exponentially at similar rates.
The corresponding doubling time is approximately eight years,
close to the mortality risk doubling time from Gompertz law of
mortality15. The close association between disease and mortality
risk dynamics suggests the possibility of a single underlying
mechanism, that is aging. We hypothesize that the incidence of the
selected diseases is therefore a natural measure of the organism
resilience and hence of aging process progression. Accordingly,
the disease-free survival, the healthspan, is expected to be a useful
phenotype, directly associated with the rate of aging. To reveal the
genetic determinants of the healthspan, we built a proportional
hazards model to predict the age corresponding to the incidence of
the first disease from the “Gompertzian cluster” depending on an
individual’s age, gender, genetic variation, and a number of more
“technical” covariates. We used the sub-population of 300,447
genetically confirmed white British ancestry individuals (hereafter
referred to as GCW-British) as a discovery cohort for a GWAS
and identified 12 loci associated with healthspan at the whole-
genome level of significance. The genetic signature of healthspan
has high and significant genetic correlations with GWAS of obe-
sity, type 2 diabetes, coronary heart disease, traits related to
metabolic syndrome, and all-cause mortality (as derived from
parental survival). We conclude by noting that the healthspan
phenotype offers a promising new way to investigate human aging
by exploiting the data from large cohorts of living individuals with
rich clinical information.

Results
Healthspan in UK Biobank. We studied the dynamics of disease
incidence using the clinical data available from the UKB. We
followed2 and selected the top eight morbidities strongly asso-
ciated with age after the age of 40, having a discrete clinically
apparent outcome (for example, hypertension was not included
because if present, it was probably being treated with medication,
thus markedly decreasing its effect upon morbidity) and ranked
by the number of occurrences. The shortlist included Congestive
Heart Failure (CHF), Myocardial Infarction (MI), Chronic
Obstructive Pulmonary Disease (COPD), stroke, dementia, dia-
betes, cancer, and death (Table 1, Supplementary Data 1). The
risks of the selected conditions were found to increase expo-
nentially with age at approximately the same rates (Fig. 1; see
Supplementary Data 2 and Methods section Incidence of diseases
calculation from UKB data for details). The characteristic dou-
bling time is approximately seven to eight years. The risk of death
in the dataset also grows exponentially with age following
empirical Gompertz mortality law15,16. The manifested similarity
between the diseases and the mortality risk doubling time suggest
that the most plausible single unifying mechanism behind the risk
acceleration with age is aging itself.

We chose to define healthspan as the age of the onset of the
first disease from our list of the selected “Gompertzian” diseases
or death. As expected, the first morbidity incidence rate also
increases exponentially with age (see the brown “healthspan” line
in Fig. 1), the corresponding doubling time matches the mortality,
and the specific disease risk doubling times. In the UKB cohort,
healthspan is ended by cancer in more than half of the cases,
followed by diabetes and MI, and very rarely by death, see
Table 1. These three diseases alone account for over 86% of the
end of healthspan period (although cancer can be considered a
large variety of diseases). Death occurs later in life and follows the
end of the disease-free survival by approximately a decade (there
are less than 2% cases when death precedes incidence of any of
the chronic diseases). The total number of the participants with
one or more chronic diseases, 84,949, is dramatically larger than
that of death events, 8365, out of 300,447 study population (see
below for the GWAS inclusion criteria). Pearson correlation
between healthspan and lifespan event time in 8365 participants
for whom both events were available was r= 0.726 (at the
number of deaths preceding the chronic diseases in the dataset,
the inclusion of death in the definition of healthspan does not
substantially contribute to the correlation estimate). Iterative
multiple imputation method17 that is often used for comparison
of survival data gives ρ= 0.573 (0.530–0.613 95%CI).

Genome-wide association study design. Next, we assumed there
is a group of genetic factors, predisposing individuals to the early
onset of chronic diseases and identified gene-variants associated
with the shorter healthspan. Since the incidence of the first
morbidity risk grows exponentially with age, we propose to
employ the Cox-Gompertz proportional hazard model (see, e.g.,
ref. 18) to test statistical associations between specific genes and
disease risks. In subsection Cox-Gompertz proportional hazards
model and healthspan we explain how to use a maximum like-
lihood version of Cox-Gompertz model to predict the age cor-
responding to the end of healthspan for each study participant.

We started by characterizing each of the 300,447 individuals in
the study cohort by sex and age, followed by the technical
(genotyping batch, assessment center), and the ethnicity-related
genetic variables (40 first genetic principal components). A
maximum likelihood optimization produced the best fit propor-
tional hazards model parameters. The morbidity incidence
growth rate was found to be 0.098 per year, which corresponds
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to a doubling time of seven years and is compatible with the
mortality rate doubling time of approximately eight years from
Gompertz mortality law. As expected, being male is a significant
risk factor (log-hazard ratio, log(HR)= 0.26 at the significance
level of p= 5 × 10−301), with a corresponding healthspan
difference of approximately three years. The genetic principal
components PC4 and PC5, and some of the assessment center
labels were also highly significantly associated with the healthspan
(see Supplementary Data 3 and Methods, Cox-Gompertz
proportional hazards model and healthspan, for details). From
these numbers, we observed that human mortality and the first
morbidity incidence follow a version of Gompertz law. The
average healthspan can be readily estimated from the Gompertz
model parameters as 72 years, which is 14 years less than the
Cox-Gompertz lifespan estimate for the same cohort. Since

we did not expect a substantial effect on healthspan from any of
the individual gene-variants, the effect sizes and the significance
testing could be performed using a form of linear regression to
the Martingale residual of the Cox-Gompertz model above, see
subsection Gene variant-healthspan association testing. In this
study, we limited the discovery association screen to the study
cohort (300,447 individuals) with available genetic information
with 11,309,218 imputed autosomal variants.

GWAS results. A total of 394 SNPs at 14 loci achieved a genome-
wide significance threshold of p < 5 × 10−8 (Supplementary
Data 4). Using the median estimator, the genomic control infla-
tion parameter λ19 was 1.18. The LD score regression20 yielded
the healthspan heritability of 0.102 (se= 0.009), and the LD score
regression intercept was 1.053 (se= 0.008, ratio= 0.24). After
adjusting the results of the discovery GWAS for genomic control
of 1.053, a total of 328 SNPs positioned in 12 loci remained
statistically significant at the genome-wide level (Fig. 2). The
conditional and joint analysis (COJO) as implemented in the
program GCTA21 confirmed that all the regions were indepen-
dent except a locus on chromosome 6, at 161Mb (Supplementary
Data 5). We detected two signals in this locus (rs140570886 and
rs10455872) that had linkage disequilibrium R=−0.04 and D′=
1.0. The distance between these SNPs was 3kbp, and they had
relatively small frequencies (0.08 and 0.016, respectively).

For replication, we used a combination of the UK Biobank
participants not included in the discovery set whose self reported
ancestry was European (white, data-field 21000, n= 81,099),
African (n= 3073), South Asian (Indian, Pakistani, and Bangla-
deshi; n= 6921), Chinese (n= 1422) and Caribbean (n= 3799).
Using meta-analysis for the selected subsets (total N= 96,313),
we performed the analysis on the 12 genome-wide significant
SNPs for the replication group (Supplementary Data 5). Of the 12
SNPs, for all but one, the same allele turned out to be risk-
increasing both in the discovery and in the replication samples.
Five associations were significant after correction for multiple
testing with p < (0.05/12). We subsequently refer to these five
SNPs as ‘replicated’.

Genetic correlation analysis. First we checked the genetic cor-
relations between the healthspan GWAS results and the genetic
signatures of the individual diseases used to build the healthspan
phenotype. To do this, we produced a series of independent
GWAS of the age at onset of the individual conditions, using the
same Cox-Gompertz methodology (Fig. 3, Supplementary
Data 6). The healthspan GWAS exhibits strong correlations with
most of the disease traits, with the notable exception of dementia
(see the discussion below). Interestingly, the mortality, stroke,
CHF, diabetes, and MI traits showed higher genetic correlations
with healthspan, than did cancer, even though cancer was the
most frequent healthspan-terminating event in our study.

We checked if any of the the gene variants associated with
shorter healthspan in our study could be common risk factors for
multiple diseases. Since cancer had approximately the same
prevalence as all the other diseases combined, we tested the SNPs
from Table 2 in Cox proportional hazard models of incidence of
all cancers, on one hand, and the first incidence of diabetes, MI,
stroke, COPD, dementia or death, on the other hand (see
Supplementary Data 7). Of 12 tested SNPs, 5 and 4 SNPs turned
out to be independent cancer and non-cancer disease risk factors,
whereas the other 3 (rs1049053, rs1126809, and rs159428)
appeared to be significantly associated with both outcomes.

To obtain a broader insight into biological significance of our
findings we analyzed genetic correlations between healthspan and
235 complex traits studied in samples other than the UK Biobank
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Fig. 1 The incidence of the most prevalent chronic diseases, risk of death
(the mortality rate) and healthspan for UKB participants. The disease
incidence increases approximately exponentially with age at approximately
the same rates. Disease incidence rates are calculated independently,
participants that have more than one condition during follow-up period are
counted for every disease they have, except for healthspan which is defined
as the first event occurred. Shaded area represents 95% confidence interval

Table 1 Number of events derived from clinical and
interview data for selected diseases and combined data (see
Methods section for details) used for healthspan calculation
for total 300,447 participants

Clinical data Interview data Combined data

Events % Events % Events %

Cancer 66,214 51.4 41,485 48.6 74,172 51.3
Diabetes 20,019 15.5 23,134 27.1 26,026 18.0
MI 25,649 19.9 10,150 11.9 24,751 17.1
Stroke 4731 3.7 6070 7.1 6902 4.8
COPD 6211 4.8 1484 1.7 5881 4.1
Dementia 769 0.6 2889 3.4 2706 1.9
Death 2411 1.9 0 0.0 2399 1.7
CHF 2850 2.2 231 0.3 1883 1.3
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and available from the LD-hub (231 traits after removing
duplicates)22. Overall, we observed significant genetic correlations
(p < 0.01/231= 4.3 × 10−5) between the healthspan and 46 traits
(Supplementary Data 8). The strongest positive correlations (rg >
0.4) were found in association with coronary artery disease
(CAD)23 (rg= 0.62), Type 2 Diabetes24 (rg= 0.58),
glycated hemoglobin level (HbA1C)25 (rg= 0.42), cigarettes
smoked per day26 (rg= 0.44), and insulin resistance index
(HOMA-IR)27 (rg= 0.41). The strongest negative correlations
(rg <−0.4) were for the age of first birth28 (rg=−0.43), father’s
age at death, mother’s age at death, and combined parental age at
death defined as a sum of standardized mother’s and father’s age
at death29 (rg=−0.74, −0.66, −0.76, respectively) former vs.
current smoker26 (rg=−0.48) and HDL related traits30 (choles-
terol esters in large HDL, total lipids in large HDL, total
cholesterol in large HDL, mean diameter for HDL particles, free
cholesterol in large HDL, with rg=−0.44, −0.41, −0.44, −0.42,
and −0.43, respectively). Figure 4 summarizes the results of the
clustering analysis of the top genetic correlations selected by
significance and magnitude. We found, that 35 traits with large
and significant genetic correlation with healthspan (|rg| > 0.3 and
p < 4.3 × 10−5) fall into four distinct clusters: (1) the group of
sociodemographic factors (including education), lifespan traits,
smoking, CAD and lung cancer; (2) HDL-related traits; (3) the
cluster of obesity-related traits including BMI and (4) Type 2
diabetes-related traits. The healthspan itself clusters together with
CAD and parental age at death (a sub-cluster of cluster 1). We
note, however, the absence of any substantial genetic correlation
between the healthspan and Alzheimer disease (rg=−0.03,
Supplementary Data 8).

Functional annotation in-silico. For the five replicated loci we
selected SNPs that most likely include the functional variant (99%
credible set). In total, we picked 924 SNPs (Supplementary
Data 9) for further variant effect predictor analysis. The results of
the variant effect predictor31 annotation are presented in Sup-
plementary Data 10. We observed missense variants for some
transcripts of HLA-DQA1, HLA-DQB1, LPA, MC1R (TUBB3
exon 1), SPATA33, and CASP8 genes.

DEPICT32,33 analysis using first the 14 “top” SNPs from
Supplementary Data 5, and then a larger set of 135 independent
SNPs with p ≤ 10−5 (Supplementary Data 11) did not yield any
significant gene-sets or tissues/cells types enrichment, or
prioritized genes (all FDR > 0.2, Supplementary Data 11). We
have also applied DEPICT to separately analyze GWAS of the
cancer-alone and non-cancer-major-diseases outcomes. Similar to
the healthspan, we did not observe any significant results (all
FDR > 0.2) for non-cancer-major-disease, and did not observe
gene-sets enrichment or prioritized genes for cancer-alone. We
did however observed tissue expression enrichment for cancer-
alone; namely, “fetal blood” (hemic and immune systems) for
SNP selection threshold of 5e-8 and nine tissues–with orophar-
ynx (respiratory system) being the most significant–for SNP
selection threshold of 10−5 at FDR < 0.2, see Supplementary
Data 12 and 13.

Finally, we investigated the overlap between associations
obtained here and elsewhere, using the phenoscaner v1.1
database34. For the 12 most significant SNPs (Table 2) we looked
up traits that have demonstrated genome-wide significant (p <
5 × 10−8) associations at the same or at strongly (r2 < 0.8) linked
SNPs. The results are summarized in Supplementary Data 14. For
the five replicated loci we observed co-associations with a number
of complex traits. The loci on chromosome 2 at 202Mb (nearest
gene ALS2CR12) associated with melanoma skin cancer35 and
esophageal squamous cell carcinoma36. Next, loci on chromo-
some 6 at 0.4 Mb (IRF4) associated with different aspects of
pigmentation, such as color of skin, eye and hair, pigmentation,
tanning and freckles37,38, but also with non-melanoma skin
cancer38 and the mole count in cutaneous malignant melanoma
families39. Two loci (on chromosome 6 at 161Mb and on
chromosome 9 at 22Mb, LPA and CDKN2B-AS1, respectively)
were associated with coronary artery disease, myocardial infarc-
tion, LDL and cholesterol levels23,40. The remaining replicated
locus on chromosome 10 at 114Mb (TCF7L2) was associated
with glucose levels, BMI and type 2 diabetes41,42.

Effects of known lifespan-associated loci onto healthspan. We
have compared whether SNPs previously reported to be
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Fig. 2 Discovery GWAS of healthspan in GCW-British individuals. The trait is a form of Martingale residual of the Cox-Gompertz proportional hazards
model of healthspan as described in section Cox-Gompertz proportional hazards model and healthspan. The loci are tagged by SNPs from Table 2, labeled
by the nearest gene symbol, replicated SNPs marked in bold
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associated with lifespan, (extreme) longevity7,8,12,13,43, and
disease-free survival11 are also associated with healthspan in our
data (Supplementary Data 15). Some SNPs we tested fall into the
same region and some were discovered using the same resource
(UKB). After correction for multiple testing, we find that four
variants (located in or near CDKN2B, ABO, LPA, and HLA-
DQA1), which have been reported to be associated with (extreme)
longevity in refs. 8,13 were also significantly associated with the
healthspan. Two of these variants reached genome-wide sig-
nificance and were independently discovered as healthspan loci in
this study.

Discussion
Survival free of major disease and healthspan are related, broadly
and almost interchangeably used terms that are commonly
understood as the age of first chronic disease, or disability-free
life-expectancy44. In practice, there is no widely accepted defini-
tion of healthspan45. Practical use of the terms “healthspan” and
“disease-free survival” varies depending on the scope of a research
or the availability of the relevant data. For example, Walter et al.11

defined the disease-free survival as the time to the first of the
following adjudicated events: myocardial infarction, heart failure,
stroke, dementia, hip fracture, cancer, or death. In the interest of
consolidating terms, in this study, we followed a more empirical,
data-driven, definition of healthspan as the age of occurrence of
the first prevalent disease with a discrete clinical manifestation
and following Gompertz dynamics. To do so, we used the UKB
clinical information and systematically investigated the incidence
of the most prevalent chronic diseases. We found that the risks of
the most prevalent age-related diseases (i.e., cancer, cardiovas-
cular disease, diabetes, dementia, COPD) grow exponentially with
age at nearly the same “Gompertzian” rates. The first morbidity
signifies the end of the functional or disease-free period, the
healthspan, and may signal a transition into a biologically or
clinically distinct and relatively short-lived state, linked with the
progressive accumulation of frailty, multimorbidity, and death.
The manifestly close relation between the prevalent chronic dis-
eases and mortality suggests that the healthspan may be a very
relevant aging phenotype.

Since gene variant contributions to health-span and life-span
are usually small, we obtained the corresponding effect size and
test statistics with the help of a simple perturbative procedure first
proposed in ref. 46 and adopted here. It resembles a regression of
the independent variable (the gene variant, in our case) against
the martingale residuals of the proportional hazard model, the
difference between the predicted and the observed morbidity, see,
e.g., ref. 12. We obtained explicit analytic expressions for the
regression coefficient and statistics for the specific case of para-
metric Cox-Gompertz mortality model, see Eqs. (2) and (3). We
suggest using the proposed equations or the relevant general-
izations for non-parametric risk models for fast and accurate
statistical analysis involving small survival effects.

Using healthspan for quantitative studies relies on the avail-
ability of the accurate information regarding the age corre-
sponding to onset of the diseases involved. The actual date,
however, may never be known. Diagnosis always lags behind
onset, and the difference may lead to a systematic bias towards
later ages for diseases with gradual or hidden symptoms. MI,
stroke and death from our list of morbidities have the smallest
possible lag between the condition onset and corresponding
diagnosis/event. Conversely, cancer, dementia, COPD, CHF and
diabetes may develop gradually and hence it is difficult to obtain
accurate age corresponding to the onset of these conditions. The
discrepancy between the the actual and the reported ages is
random and yet, for large enough cohorts, the incidence statistics
should still provide a good estimation of real incidence rates.
Moreover, the events are defined based on information coming
from multiple sources, such as registries, hospital records, and
interviews, which introduces additional sources of bias47–49,
again, in morbidity-specific fashion. Altogether, the lack of the
exact timing of the events is likely to introduce additional noise
(thus somewhat decreasing the power of our analyses),
while possible biases introduced by collection of disease incidence
information from multiple heterogeneous sources may introduce
some—most likely, negative—bias in incidence rate estimates.
Also, on the technical side, the replication sample included people
with different ethnicity, similar to ref. 12. This allowed us to
achieve larger size of replication sample, hopefully, increasing the
power of replication, although it can bias the results toward the
confirmation of effects that are common to different human
populations. At the same time, the total size of non-European
ancestry sub-sample was much smaller than of the European
ancestry (15,215 vs. 81,099), and we expect the bias, if any, to be
small.

Since the first morbidity risk grows exponentially with age, we
proposed to employ the probabilistic language of Cox-Gompertz
proportional hazard model to test for associations between the
demographic and genetic variables, on the one hand, and
healthspan, on the other. For example, the Cox-Gompertz model
estimates that the healthspan is 2.5 years lower for males than
females, while the lifespan difference—using the same methods
and cohort–is estimated as 3.2 years. Indeed, females in the UK
(the population relevant to this study) live longer than males,
although the gap between the sexes has decreased over time and is
now 3.7 years50. The number is very close to our healthspan
difference estimate. It is therefore intriguing to see if this
numerical coincidence is a model artifact, or if indeed the
observed difference in the lifespans could be attributed to the
difference in healthspan. Four of the 12 loci identified here as
associated with healthspan demonstrated significant differences
of effects between males and females, see Supplementary Data 16.
The observed difference could be a starting point for con-
templating the significant sex-specific difference of lifespan
extending effects of the same therapies typically observed in
experiments in mice, see e.g., refs. 51,52.
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It is tempting to consider the results of our GWAS as infor-
mative for potential anti-aging targets. The healthspan, as well as
lifespan, however, is an integrated quantity and therefore may
depend on the gene activation patterns during subsequent
development stages and/or associated with life-long exposure.
Therefore, our GWAS ‘hits’ may not necessarily be good targets

for an intervention at advanced ages. The appearance of sig-
nificant genetic correlations with such traits as the years of
schooling (p= 5.74 × 10−33) and the age of the first birth (p=
2.37 × 10−22) could be indicators of such possibilities. One pos-
sible way to deconvolute the effects of human development,
diseases and longevity could thus involve using longitudinal

Table 2 Variants, tagging regions, significantly associated with the first morbidity hazard (end of healthspan) in 300,447 GCW-
British individuals, and results of replication in 96,313 individuals

SNP Chr Position (bp) EA RA EAF beta P βrep Prep
rs10197246 2 202,204,741 C T 0.734 −0.033 3.67e-09 −0.035 2.43e-04
rs12203592 6 396,321 T C 0.214 0.063 1.80e-25 0.043 2.10e-05
rs1049053 6 32,634,405 T C 0.671 0.037 1.40e-11 0.013 1.46e-01
rs10455872 6 161,010,118 G A 0.081 0.057 4.11e-10 0.027 1.19e-01
rs140570886 6 161,013,013 C T 0.016 0.116 2.18e-08 0.131 4.09e-04
rs7859727 9 22,102,165 T C 0.488 0.031 7.41e-10 0.041 1.52e-06
rs34872471 10 114,754,071 C T 0.292 0.061 9.73e-29 0.062 2.86e-11
rs2860197 10 123,351,302 A G 0.613 −0.029 1.22e-08 −0.007 4.47e-01
rs1126809 11 89,017,961 A G 0.304 0.04 2.35e-13 0.017 7.59e-02
rs4784227 16 52,599,188 T C 0.24 0.032 3.02e-08 0.018 7.75e-02
rs4268748 16 90,026,512 C T 0.311 0.038 1.55e-12 0.004 6.24e-01
rs159428 20 31,099,311 C T 0.527 0.028 2.36e-08 −0.005 5.84e-01

EA, effective (coded, tested) allele; RA, reference (non-coded) allele; EAF, effect allele frequency; β, regression coefficient estimate (units of measurement is log(hazard ratio) per allele); p, p-value after
adjustment for genomic control; βrep, regression coefficient estimate in replication sample; prep p-value in replication sample. In bold: replicated loci. In italics: locus demonstrating opposite effect in
replication
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Fig. 4 Thirty-five traits with significant and high genetic correlations with healthspan (|rg| ≥ 0.3; p≤ 4.3 × 10−5). PMID references are placed in square
brackets. Note the absence of genetic correlation between the healthspan and Alzheimer disease traits (rg=−0.03)
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clinical data to see if there are gene variants responsible for the
rate of aging or biological aging acceleration separately in every
age group to negate the effects of accumulation in the course of
development.

Overall, the strongest genetic correlate of the healthspan is
parental longevity. More specifically, HLA-DQB1, LPA, and
CDKN2B loci identified in relation to healthspan in this study
were recently associated with parental longevity, a proxy for
lifespan, in ref. 13. Such overall correlation and specific overlap is
indeed a desired property of an aging-associated phenotype.
Other traits, belonging to the same cluster, are firstly coronary
artery disease, and then lung cancer, smoking behavior, age of
first birth, and years of schooling (Fig. 4). The remaining large
clusters correspond to traits associated with type 2 diabetes,
obesity and lipid metabolism, most of which are known to relate
to biological age acceleration, see e.g., ref. 53. The findings thus
provide further evidence suggesting that healthspan and the
related diseases could be controlled by common and highly
conserved evolutionary mechanisms, such as nutrient sensing and
insulin signaling, most robustly implicated in longevity studies in
model animals1,54.

In order to test if the observed genetic correlation between
healthspan and lifespan may be driven by the inclusion of the
death events in the healthspan definition (1.7% of events), we re-
run the GWAS considering death as a censoring event. The
results changed only marginally. For example, the genetic corre-
lations of newly defined healthspan with individual lifespan,
parental, maternal and paternal age at death, became 0.80, −0.74,
−0.65, and −0.74, respectively (which is very close to our original
results of 0.82, −0.76, −0.66, and −0.74). All the twelve loci that
were genome-wide significant (Table 2) were significant in this
analysis as well.

The notable absence in our study of the gene variants around
the APOE locus known for association with early onset of Alz-
heimers disease55 requires special consideration. First, as shown
in Fig. 1, dementia occurs later in life and its incidence rate
appears to grow faster than that of the other diseases investigated
here in relation with healthspan. The estimated risk doubling
time is shorter and is closer to 5 years, in agreement with, e.g.,
ref. 56. Next, we performed the dementia GWAS in the same UKB
cohorts and failed to produce strong genetic correlations with the
healthspan (Fig. 3; note, however, the appreciable correlation
between the dementia and mortality traits). We also note the
absence of significant genetic correlations between our healthspan
and the non-UK Biobank-based Alzheimer GWAS57 (Fig. 4).
These findings could be an artifact of the age composition of our
discovery cohort leading to possible under-representation of
dementia incidence and its influence on healthspan. It could be,
however, an indication of distinct underlying biology between the
late life neurodegenerative conditions and the more prevalent
diseases of aging occurring at the earlier age, corresponding to the
average lifespan in the population. The latter is in line with
independent findings that genetic correlations between dementia
and cardio-metabolic diseases is low58. Also, there has been
reported a lack of direct effect of polygenic risk score for coronary
artery disease onto dementia59. The absence of the associations in
the APOE locus is potentially an important example of the dif-
ferences between the genetic signatures of the healthspan and
lifespan (in the form of parental survival12 and parental age at
death29). While genetic correlation between these traits is high
(ρ > 0.7), the remaining ‘uncoupled’ variance leaves room for
genetic variants affecting healthspan and lifespan (parental sur-
vival) in distinct ways.

The genetic loci associated with healthspan and identified in
this study together comprise the simplest form of a genetic risk
model to predict early onset of chronic diseases or the age of

serious disability. We used the same statistical model to perform
GWAS for every ailment from our “Gompertzian” diseases list.
Our analysis shows that there are at least three loci simulta-
neously associated with risk of multiple diseases or death and as
such could be a part of the genetic signature of aging. HLA-DQB1
is significantly (p= 4.18 × 10−8) associated with COPD, diabetes,
cancer and dementia in this study and was demonstrated to be
associated with parental survival earlier in ref. 13. The gene var-
iant near TYR are predictors of death in the prospective UKB
cohort and has been implicated in earlier onset of macular
degeneration, a notable example of age-related disease60, not
present in our healthspan definition. Most notably, the chro-
mosme 20 locus containing C20orf112 was not associated with the
incidence of any of the disease at the full-genome level (see
Supplementary Data 15), and yet is discovered in our healthspan
GWAS.

On a population level, factors such as social status, sleep pat-
terns or food habits produce a very significant contribution to
longevity61, and yet are not not easy to collect and hence are hard
to include in most forms of genetic studies. Modern large
population studies involve prospective cohorts and produce a
very rich characterization of the participants, yet at the expense of
limited follow-up times and an insufficient number of recorded
death events. The end of healthspan comes, by its very nature,
earlier than the end of lifespan, and therefore allows for predic-
tions to be made on the living. The healthspan as the target
phenotype should thus be particularly suited for investigation of
the effects of interactions between the genetic and phenotypic
variables and eventually assist in the discovery of many more
genes implicated in the control of human aging and diseases.

The burden of diseases increases with age, and the first mor-
bidity is usually quickly followed by the second and more.
Therefore it is worthwhile to understand if the same or different
genes than those regulating the onset of the first morbidity (the
end of healthspan, as defined in this study) also control the
dynamics of multiple morbidities later down the road. The
comparison and better understanding of the results of such stu-
dies will help to differentiate the biology of health- and life-span.
Human development and aging is a multi-stage process, and
therefore longevity emerges as a genuinely complex trait. The
presented study highlights a need for further systematic advances
in aging GWAS methodology to elucidate the practical potential
of genetics in diagnosis of aging and, subsequently, help to shape
the anti-aging therapeutic target space.

Methods
UK Biobank. UK Biobank is a prospective cohort study of over 500,000 individuals
from across the United Kingdom62. Participants, aged between 37 and 73, were
invited to one of 22 centers across the UK between 2006 and 2010. Blood, urine
and saliva samples were collected, physical measurements were taken, and each
individual answered an extensive questionnaire focused on questions of health and
lifestyle. All participants gave written informed consent and the study was
approved by the North West Multicentre Research Ethics Committee. UKB has
Human Tissue Authority research tissue bank approval, meaning separate ethical
approvals are not required to use the existing data. UKB provided genotyping
information for 488,377 individuals. Data access to UKB was granted under
application #21988. Phenotypes and genotypes were downloaded directly from
UKB.

Genotyping and imputations. UKB participants were genotyped on two slightly
different arrays and quality control was performed by UKB63. 49,950 samples were
genotyped as part of the UK BiLEVE study using a newly designed array, with
438,427 remaining samples genotyped on an updated version (UK Biobank Axiom
array), both manufactured by Affymetrix (96% of SNPs overlap between the
arrays). Samples were processed and genotyped in batches approx. 5000 samples
each. In brief, SNPs or samples with high missingness, multi-allelic SNPs and SNPs
with batchwise departures from Hardyâ€“Weinberg equilibrium were removed
from the data set. After quality control, genotypes were available for 488k subjects
at 805k sites. UKB provided 40 principal components (PCs) of genetic relatedness
(UKB field id 22009) and a binary assessment of whether subjects were genetically
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confirmed European Ancestry (UKB field id 22006), based on principal compo-
nents analysis of their genetic data.

We have computed Pearson correlations between self reported ethnicity (UKB
field id 21000), coded as binary variable, and the 40 principal components in UKB
data set of 488,363 participants with genetics principal components analysis data
available. The estimates could be found in Supplementary Data 17.

Imputed data were prepared by UKB. In summary, autosomal phasing was
carried out using a version of SHAPEIT364 modified to allow for very large sample
sizes. Imputation was carried out using IMPUTE265 using the merged UK10K and
1000 Genomes Phase 3 reference panels to yield higher imputation accuracy of
haplotypes. The imputations resulted in 92,693,895 SNPs, short indels and large
structural variants, imputed in 488,377 individuals63.

Discovery and replication samples. For the discovery and replication we used
only the data from PCA cohort (QC passed, Data-Field 22020, N= 407,208). This
cohort also represents the largest possible unrelated individuals subset63 with all
relatives of third degree or closer removed. For the discovery set we selected
300,447 genetically confirmed white (GCW) British individuals according to the
genetic principal components provided by the UK Biobank who were not included
in UK BiLEVE study (UKB Resource 531). For replication, we used a combination
of the UK Biobank participants not included in the discovery set that comprised
rest of European ancestry individuals (self-reported white, data-field 21000, n=
81,099), individuals of African ancestry (self-reported Africans, n= 3073), indi-
viduals of South Asian ancestry (Indian, Pakistani, and Bangladeshi; n= 6921),
Chinese individuals (n= 1422) and Caribbean individuals (n= 3799). Remaining
self-declared ethnicities that were mixed, or were ambiguous (Other ethnic group,
Prefer not to answer, Not available) were not analyzed. To reduce the risk of bias
due to population stratification, all groups were analyzed separately followed by a
meta-analysis. Total resulting sample size for replication was 96,313 individuals.
Additionally, we checked that there is no individuals with kinship coefficient r >
0.01 between discovery and replication cohorts, using relationship data provided by
UKB (UKB data category 100315). For more details see Supplementary Data 18.

The replication threshold was set as p < 0.05/12= 0.004. For each SNP,
statistical power (or probability) of replication was estimated using the fact that
under alternative hypothesis (H1:β ≠ 0) the test statistics T2 from replication sample
is expected to follow the χ2df¼1;NCP distribution, where NCP is the expected non-
centrality parameter computed as ðT2

disc � 1Þ ´Nrep=Ndisc, where T2
disc ¼ðβdisc=sediscÞ2=λLDSC is test statistic for particular SNP in discovery cohort,

corrected for LD score regression interecept λLDSC, Nrep is the sample size of the
replication cohort and Ndisc is the sample size of the discovery cohort. The the
power of replication is equal to the probability that such distributed statistics would
exceed the threshold value k= 8.2 that corresponds to right-hand integral of χ21
equal to 0.004.

Incidence of diseases calculation from UKB data. We used in-patient hospital
admissions data (UKB data category 2000) and self-reported diagnoses obtained via
verbal interview (UKB data category 100074) to extract information in relation to the
disease history, the nature of and the age at the available diagnosis. For each of the
condition, we follow the instructions similar to the ones given by the UK Biobank
outcome adjudication group for algorithmic-defined stroke and MI (UKB data
category 42). For each selected condition, except for cancer and death we compile a
list of hospital data codes (ICD-10, Supplementary Data 19) and self-reported data
codes (UKB data coding 6) that defines these conditions in our study. We used
National cancer registries linkage to UKB (UKB data category 100092) in addition to
hospital data for cancer and National death registries linkage to UKB (UKB data
category 100093) to define death event. First, for each condition we set the age of first
occurrence of any of corresponding hospital data codes as age this condition was
manifested. Next, if there was missing hospital data (for hospital data it is impossible
to distinguish between missing data and absence of any disease) we added self-
reported data if there was any. Therefore we obtained age each condition was
occurred. The minimal age from this data set for every individual from UKB was
taken as age the healthspan terminates. When calculating disease incidence rates, each
participant was counted despite the existence of any other disease earlier in life,
therefore some participant may have different event times for different conditions. By
definition, the incidence rate of a disease is the limit m(t)=Δt−1Nd(t, Δt)/Nh(t) when
Δt is sufficiently small. Here t is the age, Nh(t) is the number of people healthy at the
age t and Nd(t, Δt) is the number of people diagnosed between the ages t and t+Δt
(both Nh and Nd are presumed to be large). This definition does not rely on any
specific underlying model. In practice, datasets are of limited size and the interval Δt
cannot be made arbitrarily small, and therefore precautions should be taken to avoid
possible artifacts in the calculation. To compute the incidence rate at a given age t, one
shall consider a set of participants Υ(t, Δt) defined as those who are healthy at the age
t and whose health status is available in the whole age range [t, t+Δt):
ϒðt;ΔtÞ ¼ fujððδu ¼ 0Þ _ ðδu ¼ 1 ^ t � tud ÞÞ ^ ðt þ Δt < tu2 Þg. Here u is the par-
ticipant’s id, δu= 1 if the participant was diagnosed and δu= 0 otherwise, tud is the age
when diagnosed, and tu2 is the maximal age at which the information about the
diagnosis (if any) would still be recorded. From this Nh(t)= |Υ(t, Δt)| and
Ndðt;ΔtÞ ¼ jfu 2 ϒðt;ΔtÞjδu ¼ 1 ^ t � tud < t þ Δtgj, where |..| is the size of the
set.

The maximum follow-up age tu2 does not coincide with the age at the diagnosis
tud and shall be inferred from the study setup. Assuming tu2 ¼ tud for diagnosed
participants would overestimate the risks. Also, the age is often rounded and hence
Δt may be not large enough to treat the rounding errors as negligible. We
addressed the issue by consistently using half-open intervals [..) definitions. Finally,
our prescription relies on the implicit assumption, that the diagnosis does not
influence the enrollment. This is not always true. If someone is dead, this would,
naturally, prevent that person from being enrolled at a greater age. This can be
addressed by the following modification: ϒ′ðt;ΔtÞ ¼ fu 2 ϒðt;ΔtÞjtu1 < tg, where
tu1 is the age at enrollment. In this study, we assumed that the enrollment in UKB
was not biased by diagnoses and thus we used the Υ for all diseases and conditions,
Υ' participants set was only employed for the mortality rate calculation.

Cox-Gompertz proportional hazards model and healthspan. By design of the
UKB study, every participant is admitted into the cohort at the age tn1 . According to
the medical history information, the participant may be diagnosed with any of the
diseases relevant to determination of lifespan at the age of the first tnd (if applicable).
By the end of the followup age, tn2 , we labeled every study participant as frail,
δn= 1, if the participant is already diagnosed with any of the diseases, tnd � tn2 ,
or δn= 0, otherwise.

Under then Cox-Gompertz proportional hazards model the risks of frailty
acquisition or healthspan end at the age t is hðt; xnÞ ¼ h0e

Γtþβxn , where xn is a
vector of age-independent parameters, characterizing the participant. Here h0, Γ,
and β are the baseline morbidity incidence, the Gompertz exponent and the log-
odds-ratio regression coefficients vector, the model parameters. The (negative log
of) likelihood of the data can be presented in the following form:

L¼ P

n

h0e
βxn

Γ eΓmin tnd ;t
n
2ð Þ � 1

� �

�δnðlog h0 þ βxn þ Γminðtnd ; tn2 ÞÞ:
ð1Þ

Given a necessary amount of data the model parameters could be obtained by
the likelihood maximization or, equivalently, minimization of the cost function L.

We built the first version of the Cox-Gompertz healthspan model by including
GCW-British UKB participants information, including gender and the first genetic
principal components variables, assessment center codes and genotyping batch
labels (see Supplementary Data 3 for the summary of the model parameters).
The morbidity incidence growth rate is 0.098 per year, which corresponds to a
doubling time of seven years, compatible with the mortality rate doubling time
of approximately 8 from the Gompertz mortality law. As expected, being male
is a risk factor (log-hazard ratio, log(HR)= 0.26 at the significance level of
p= 5 × 10−301) corresponding to an average healthspan difference of about
five years. The genetic principal component PC4 was highly significant log(HR)=
3.4 × 10−2, p= 9.2 × 10−23. PC5 was also highly significant log(HR)= 4.6 × 10−2,
p= 1.7 × 10−40. The average healthspan or lifespan can be estimated from Cox-
Gompertz model parameters as �t � ðlnðΓ=h0Þ � γÞ=Γ, where γ= 0.577 is the
Euler-Mascheroni constant, see, e.g.,66.

Gene variant-healthspan association testing. If the participants state vector xni is
extended by the genetic variants variables sn, in principle, the model has to be re-
evaluated, to obtain a new versions of all model parameters. We do not expect,
however, large effects of any of the gene variants on lifespan. Therefore the model
parameters should not change much as well and the variation of the Cox-Gompertz
model with respect to the genetic variables can be accurately obtained by iterations,
using the model from 4.5 as the zeroth order approximation (see a related example
of a perturbation theory application in a proportional hazards model involving
prediction of all-cause mortality in ref. 46).

We note, however, that the simultaneous determination of the weak effects of a
gene on the baseline hazard h0 and the rate of aging Γ is an ill-defined
mathematical problem66. Only the combination of the two parameters, the change
in the life expectancy can be determined with accuracy. We therefore fix the
Gompertz exponent Γ to its most probable value in the zeroth order model and
allow for all other model parameters adjustment. The perturbation theory
expansion for the small effect βs associated with the gene variants yields (the
derivation is not shown):

βs ¼
P

n s
n δn � Ndρ

nð Þ
Nd δs2h iρ

; ð2Þ

where, for convenience, we introduced the weights

ρn ¼
eβx

n
eΓmin tnd ;t

n
2ð Þ � 1

� �

P

n
eβxn eΓmin tnd ;t

n
2ð Þ � 1

� �

normalized in such a way that
P

n ρn ¼ 1. We used the notation 〈δs2〉ρ for the
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corresponding weighted average. The effect determination error

σ2s ¼
1

Nd δs2h iρ
; ð3Þ

and hence the statistical power of the gene variant association with the healthspan
is explicitly dependent on the number of people with diagnoses, Nd ¼

P
n δ

n .
In our analyses, we used imputed variants with the expected effective minor

allele count (defined as twice the minor allele frequency multiplied by sample size
and by the imputation quality) more than 200 for discovery cohort genotypes and
imputation info score (as IMPUTE info, calculated by RegScan67 for discovery
cohort with–info2 option) more than 0.7.

Conditional and joint multi-SNP analysis. Conditional and joint analysis (COJO)
as implemented in the program GCTA21 was used to find SNPs independently
associated with the phenotypes of interest. As input, this method uses (meta-
analysis) summary statistics and a reference sample that is utilized for the LD
estimation. The method starts with the “top SNP” (the one with smallest p-value,
conditional that p < p0, where p0 is specific threshold defined by user) as provided
by the summary-level data and then the p-values for all the remaining SNPs are
calculated conditional on the selected SNP. The algorithm then selects the next top
SNP in the conditional analysis (provided p < p0) and proceeds to fit all the selected
SNPs in the model dropping all those SNPs with p-values > p0. The iteration
continues until no SNP is added or dropped from the model thus finding a subset
of associated SNPs with a threshold for LD (r2 < 0.9) among SNPs. Finally, a joint
analysis of the subset of associated SNPs is performed. We had performed analyses
with p0= 5 × 10−8 and p0= 1 × 10−5.

As the LD reference, we used a sub-sample of 10,000 people, randomly chosen
from the total set of 120,286 people used for GWAS discovery phase. Additional to
our previous SNP filters described in the Association testing section, in selecting
LD reference data, we further filtered out the SNPs with imputation info scores less
than 0.7 and minor allele frequencies (MAF) less than 0.002.

Sex-specific analysis. We performed sex-specific genetic association analysis
(males: n= 137,469, females: n= 162,978) for 12 genome-wide significantly
associated SNPs from Table 2. We estimated the difference of SNP effects between
males and females using approach from ref. 68 (see “SNP selection strategy” sub-
section in Methods, Eq. (1)) that allows testing difference between effect sizes
accounting for their possibly correlated joint distribution. The results are reported
in Supplementary Data 16. For this method Spearman correlation for effect sizes
between males and females was estimated using only called SNPs with MAF > 0.05
(377,781 SNPs in total). The significance threshold was set as p < 0.05/12= 0.042.

Heritability and genetic correlation analyses. We used LD hub and ldsc58 tools
for estimation of captured heritability and genetic correlations between HS and
different traits and common diseases58. A total of 231 traits were analyzed after
removing duplicates via using only the most recent study for each trait as indicated
by the largest PMID number. Genetic correlations between HS and the traits with
p < 4.3 × 10−5 (Bonferroni corrected, 0.01/231) were considered statistically sig-
nificant. Pair-wise genetic correlations between all the traits selected as described
above were obtained from the LD-hub. To focus on the largest magnitude genetic
correlations, we selected only the traits with absolute values of genetic correlations
with HS more than 0.3. This filtering led to the total of 36 traits (including HS).
Clustering and visualization was carried out using corrplot package for R and basic
hclust function. For clustering, we estimated squared Euclidean distances by sub-
tracting absolute values of genetic correlation from 1 and used Ward’s clustering
method.

For genetic correlation analysis between each disease comprising healthspan
phenotype and healthspan itself we used LDSC (LD Score) v1.0.0 software.
Genotype calls were filtered by MAF > 0.01 using LDSC ‘munge-sumstats’ script to
produce total 659,079 variants valid for downstream analysis. Genomic reference
was constructing by randomly sampling 10,000 individuals from the UKB
population. Then, we ran LDSC genetics correlation analysis with default
parameters and input data as described above. Cross-correlations can be seen at
Fig. 3 and Supplementary Data 16.

For analysis of heritability, genomic control inflation factor λ19 and genetics
correlations we have used SNPs defined by overlap between our set of SNPs and
‘high quality SNPs’ as suggested by the authors of the LD hub (these represent
common HapMap3 SNPs that usually have high imputation quality; also, this set
excludes HLA region)20, 1,162,742 SNPs in total).

Variant effect prediction (VEP). We used PAINTOR software69 to prepare the
set of SNPs for VEP annotation. For this analysis, we provided PAINTOR with
clumping results, LD matrices and annotation files calculated using the same
10,000 UKB individuals reference set that we used for COJO analysis. With
PLINK70 and we performed clumping analysis with ‘p1’ and ‘p2’ p-value threshold
parameters set to 5 × 10−8, ‘r2’ set to 0.1 and MAF > 0.002. Then, we generated
pair-wise correlation matrix for all SNPs in each region in clumping analysis results
using plink–r option. When running PAINTOR, we did not use annotations; we

changed options controlling input and output files format only, and otherwise we
have used default parameters. We choose 159 SNPs marked by PAINTOR as 99%
credible set for further analysis. In the next step, each SNP was extended with a list
of proxy SNPs with R2 > 0.8 calculated using EUR cohort from 1000 Genomes
Project Phase 371 (N= 503) with 84.4 million variants as reference set. Total 924
SNPs was chosen for functional annotation by VEP with GRCH37 genomic
reference.

Gene-set and tissue/cell enrichment analysis. For prioritizing genes in asso-
ciated regions, gene set enrichment and tissue/cell type enrichment analyses,
we have used the DEPICT software v. 1 rel. 19432 with following parameters:
flag_loci= 1; flag_genes= 1; flag_genesets= 1; flag_tissues= 1; param_ncores
= 10. Independent (as selected by COJO procedure) variants with p < 5 × 10−8

(14 SNPs) and p < 10−5 (135 SNPs) has resulted from these analyses. We have used
UKB subset of 10,000 individuals for computations of LD (the same subset as used
for COJO analysis).

Pleiotropy with complex traits. We investigated the overlap between associations
obtained here and elsewhere, using PhenoScaner v1.1 database34. For five repli-
cated SNPs (Table 1) we looked up traits that have demonstrated genome-wide
significant (p < 5 × 10−8) association at the same or at strongly (r2 < 0.8) linked
SNPs.

Code availability. All computer code used in this research is available at https://
github.com/azenin/healthspanpaper.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
All UK Biobank data are available upon application. Summary statistics from the
GWAS reported in this study are available for exploration at GWASarchive
(https://www.gwasarchive.org) and for download from Zenodo72 under the CC BY
4.0 license.
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