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A B S T R A C T

Purpose
To identify a robust prognostic gene expression signature as an independent predictor of survival
of patients with acute myeloid leukemia (AML) and use it to improve established risk classification.

Patients and Methods
Four independent sets totaling 499 patients with AML carrying various cytogenetic and molecular
abnormalities were used as training sets. Two independent patient sets composed of 825 patients
were used as validation sets. Notably, patients from different sets were treated with different
protocols, and their gene expression profiles were derived using different microarray platforms.
Cox regression and Kaplan-Meier methods were used for survival analyses.

Results
A prognostic signature composed of 24 genes was derived from a meta-analysis of Cox regression
values of each gene across the four training sets. In multivariable models, a higher sum value of
the 24-gene signature was an independent predictor of shorter overall (OS) and event-free survival
(EFS) in both training and validation sets (P � .01). Moreover, this signature could substantially
improve the European LeukemiaNet (ELN) risk classification of AML, and patients in three new risk
groups classified by the integrated risk classification showed significantly (P � .001) distinct OS
and EFS.

Conclusion
Despite different treatment protocols applied to patients and use of different microarray platforms
for expression profiling, a common prognostic gene signature was identified as an independent
predictor of survival of patients with AML. The integrated risk classification incorporating this gene
signature provides a better framework for risk stratification and outcome prediction than the
ELN classification.

J Clin Oncol 31:1172-1181. © 2013 by American Society of Clinical Oncology

INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous
group of hematopoietic malignancies with diverse
cytogenetic and molecular abnormalities and vari-
able responses to treatment.1-5 Many gene expres-
sion profiling studies have been performed in AML
using DNA microarrays,6-21 and the results have
proven to be valuable in diagnosis, classification,
and prognosis.22-24 However, gene signatures from
different laboratories are not always consistent.23

Indeed, because of the lack of consistency between

different patient sets, no gene signature has been
incorporated into well-established risk classifica-
tions so far.

To identify genes that are consistently associ-
ated with prognosis of patients with AML, we used
four independent patient sets comprising 499 pa-
tients as training sets. We performed Cox regression
to assess the association of gene expression values
with overall survival (OS) of patients in each training
set and then conducted a meta-analysis of Cox re-
gression values of each individual gene across the
four training sets to identify the genes with the most
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consistent and robust prognostic impact. We identified 24 such genes
and then derived a prognostic gene signature. The prognostic impact
of this gene signature was confirmed in two independent validation
sets totaling 825 patients in both OS and event-free survival (EFS)
models. More importantly, we showed that this gene signature could
substantially improve the widely accepted European LeukemiaNet
(ELN) risk classification25 of AML. Thus, we developed an integrated
risk classification, which provided better risk stratification and out-
come prediction than the ELN risk classification in both test and
validation sets.

PATIENTS AND METHODS

Additional information about methods is provided in the Data Supplement.
Figure 1 illustrates the entire study design.

Patient Samples

All samples of patients with AML were obtained at time of diagnosis and
with informed consent at corresponding hospitals, and study protocols were
approved by the institutional review boards of corresponding institutes and
hospitals. All patients were treated according to the protocols of corresponding
institutes and hospitals. The clinical and molecular characteristics of these
patients are provided in the Data Supplement.

Gene Expression Profiling

Microarray assays of Germany Set 1 (n � 106),10 Netherlands Set 1
(n � 241),11 and Netherlands Set 2 (n � 277)17 were conducted using
Stanford cDNA (Stanford University, Stanford, CA), Affymetrix U133A
(Affymetrix, Santa Clara, CA), and Affymetrix U133 Plus2.0 arrays (Af-
fymetrix), respectively. USA Sets 1 (n � 65; data for 35 patients were
reported previously26) and 2 (n � 87)26 were analyzed using an Agilent
custom-designed microarray (Agilent Technologies, Santa Clara, CA) and
Affymetrix GeneChip Human Exon 1.0 ST array (Affymetrix), respec-
tively. Germany Set 2 (n � 548) was generated on Affymetrix U133A�B
and Affymetrix U133 Plus2.0 arrays. Data analyses are described in the
Data Supplement. The microarray data have been deposited in the Gene
Expression Omnibus, and the accession numbers include GSE425,
GSE1159, GSE14468, GSE30258, GSE30285, and GSE37642.

Statistical Analyses

OS was measured from the date the patient was enrolled onto the study
until the date of death, and patients alive at last follow-up were censored. EFS
was measured from the date of entry into a study to the date of induction
treatment failure, relapse from complete remission, or death resulting from
any cause; patients not known to have any of these events at last follow-up were
censored. Survival was estimated according to the Kaplan-Meier method. The
log-rank test was used to assess statistical significance. Cox regression was used
to assess the association of a given variable with OS or EFS. Multivariable
testing was performed using Cox proportional hazards models. P values � .05
were considered statistically significant.

A

B

USA Set 1 (n = 65; Agilent Custom-Design 
Arrays; University of Chicago Hospital protocols)

USA Set 2 (n = 87; Affymetrix Exon 1.0 ST
Arrays; CALGB treatment protocols 9222, 9621,
9720, and 19808 for patients without APL, 
protocol 9710 for patients with APL)

Netherlands Set 1 (n = 241; Affymetrix U133A
Arrays; HOVON protocols -04, -29, -32, -42, 
and -43)

Germany Set 1 (n = 106; Stanford cDNA Arrays;
protocols AML HD98A and HD98B)

Identification of a set of 24 prognostic genes
(including ALS2CR8, ANGEL1, ARL6IP5, BSPRY,
BTBD3, C1RL, CPT1A, DAPK1, ETFB, FGFR1,
HEATR6, LAPTM4B, MAP7, NDFIP1, PBX3, 
PLA2G4A, PLOD3, PTP4A3, SLC25A12, SLC2A5, 
TMEM159, TRIM44, TRPS1, and VAV3) via a 
meta-analysis of Cox regression P values 
across the four training sets (FDR < .05, 
Hommel adjustment)

Use Netherlands Set 2+ (n = 480; a part of the combination of the Netherlands Set 1 plus the
Netherlands Set 2 patients, who have Affymetrix U133 Plus2.0 Array expression data; HOVON protocols 
-04, -29, -32, -42, and -43) as a test set, in which the patients have ELN risk  classification information

Development of an integrated risk classification scheme through integration of the ELN risk classification 
and the 24-gene signature classification

)528 = n( steS noitadilaV)994 = n( steS gniniarT

Netherlands Set 2 (n = 277; Affymetrix U133 
Plus2.0 Arrays; HOVON protocols -04, -10, -12, 
-29, -32, -42, and -43)

Germany Set 2 (n = 548; Affymetrix U133 A+B 
or Plus2.0 Arrays; AMLCG-99 protocol for
patients without APL and M3-AMLCG protocol 
for patients with APL)

Validation of the new integrated risk classification in Germany Set 2  (n = 484; a part of Germany Set 2), 
in which the patients have ELN risk classification information

Assessment of the association between the 
gene signature and OS or EFS of the patients 
in each validation set

Derivation of a sum-value signature composed 
of the weighted expression values of the 
24 genes

Fig 1. Overview of research design and
work flow. (A) Identification and validation
of 24-gene signature; (B) development
and validation of integrated risk classifica-
tion scheme. AML, acute myeloid leuke-
mia; APL, acute promyelocytic leukemia;
CALGB, Cancer and Leukemia Group B;
EFS, event-free survival; ELN, European
LeukemiaNet; FDR, false discovery rate;
HOVON, Hemato-Oncologie voor Volwas-
senen Nederland; OS, overall survival.
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Identification of 24 Consistently Prognostic Genes From

Four Training Sets via Meta-Analysis

Cox regression was used to estimate the prognostication of OS for each
gene in each training set. A meta-analysis was then conducted on the Cox-
regression P values of OS from the four training sets using the Stouffer

method27: Stouffer_pj � 1 � ���i�l
k zj,i

�k
�, where Zi � � � 1�1 � pi�, pi is

a P value for the ith study of k studies in total, and � and ��1 denote the
standard normal cumulative distribution function and its inverse. A total of 24
genes (Data Supplement) remained significant predictors after false discovery
rate (FDR) adjustment for multiple comparisons of meta-analysis of P values
(FDR � 0.05; R Stats Package (http://www.r-project.org); Hommel adjust-
ment28). For genes with multiple probe sets (transcripts), the average expres-
sion value for a given gene was used in all analyses. Notably, our meta-analysis
did not require cross-platform normalization to combine the four individual
training sets into a single set, thus avoiding potential biases resulting from
cross-platform normalization.

Derivation of the 24-Gene Signature

As described previously,26,29 a compound covariate30 was derived for
each sample by computing a linear combination of expression values of the 24
genes. The value of the compound covariate for patient i was ci � � wj xij,
where xij is the log-transformed expression value for probe set j in patient i, and
wj is the weight assigned to probe set j (here wj was set equal to the average Cox
regression correlation coefficient from the four training sets for each gene;
Data Supplement). The sum was over all 24 genes.

RESULTS

Identification of a Common Prognostic 24-Gene

Signature in AML via Meta-Analysis of Four

Independent AML Sets

We collected four independent cohorts for a total of 499 patients
with AML, including USA Set 1 (n � 65), USA Set 2 (n � 87),
Netherlands Set 1 (n�241), and Germany Set 1 (n�106). All cohorts
contained at least four different cytogenetic subtypes of AML, and
except for USA Set 2, all contained cytogenetically normal AML (Data
Supplement). Notably, these four data sets were generated by four
different array platforms; patients were collected from different insti-
tutions and countries, and importantly, they were treated with distinct
protocols (Patients and Methods; Fig 1). We performed univariable
Cox regression analysis to assess the association of expression levels of
each gene with OS of patients in each training set, followed by a
meta-analysis of Cox regression P values. We identified 24 genes
(including ALS2CR8, ANGEL1, ARL6IP5, BSPRY, BTBD3, C1RL,
CPT1A, DAPK1, ETFB, FGFR1, HEATR6, LAPTM4B, MAP7,
NDFIP1, PBX3, PLA2G4A, PLOD3, PTP4A3, SLC25A12, SLC2A5,
TMEM159, TRIM44, TRPS1, and VAV3), the increased expression
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Fig 2. Survival curves of patients with acute myeloid leukemia (AML) in the two validation sets ([A] Netherlands Set 2, n � 277; [B] Germany Set 2, n � 548) predicted
by the sum-value signature of 24 genes. Patients in each set were dichotomized into two groups based on median value of the sum-value signature, and Kaplan-Meier
curves were generated to depict outcomes. P values were determined by log-rank test. Plus signs indicate censored patients. Patients with AML with higher sum
values experienced significantly shorter (P � .005) overall (left panels) and event-free survival (right panel) rates than those with lower sum values in (A) Netherlands
Set 2 and (B) Germany Set 2.
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levels of which were significantly associated with worse (22 genes) or
favorable (two genes: FGFR1 and PLOD3) OS after FDR adjustment
for multiple tests across four training sets (FDR � 0.05; Hommel
adjustment28; Data Supplement). Interestingly, based on the shortest-
paths method of GeneGO (Carlsbad, CA), we show that among the 24
genes, five genes (FGFR1, LAPTM4B, PLOD3, TRPS1, and VAV3)
form a mini-network, as do nine other genes (ARL6IP5/JWA, DAPK1,
CPT1A, MAP7, PBX3, PLA2G4A, PTP4A3, SLC25A12, and TRIM44;
Data Supplement), highlighting the frequent interactions among the
genes within this signature.

We then derived a gene sum-value signature, which is a linear
combination26,30 of the expression values of the 24 genes weighted by
the average correlation coefficient (Patients and Methods). Kaplan-
Meier and univariable Cox regression analyses demonstrated that
patients with AML with a higher sum value experienced significantly
(P � .01) shorter OS in all four training sets (Data Supplement).
Through multivariable testing, we revealed that the increased sum
value of the 24-gene signature remained significantly (P � .05) asso-
ciated with poor OS in all four training sets (Data Supplement), after
adjusting for all other variables that have a P � .1 in univariable
analyses (Data Supplement).

Increased Sum Value of 24-Gene Signature

Is Independent Predictor of Poor Survival in Two

Independent Validation Sets

We then validated the prognostic impact of this gene signature in
two independent AML sets, namely Netherlands (n � 277) and Ger-
many Sets 2 (n � 548). As expected, Kaplan-Meier and univariable
Cox regression analyses demonstrated that increased sum value of the
signature was significantly (P � .01) associated with shorter OS and
EFS (Fig 2; Data Supplement). Our gene signature performed well for
both younger (age � 60 years) and older patients (Data Supplement)
and patients with de novo and non–de novo AML (Data Supple-
ment). Through multivariable testing, we showed that the increased
sum value of the 24-gene signature remained significantly associated
with worse OS and EFS in both validation sets (Table 1), after adjust-
ing for all other variables [including age, WBC count, CEBPA muta-
tion, NPM1 mutation, KRAS mutation, FLT3 internal tandem
duplication (ITD), t(9;11), t(11q23), t(8;21), inv(16), t(15;17), �8,
complex, del(3q)/inv(3)/t(3;3), �7/del(7q), and/or other AML types]
that had P � .1 in univariable analyses (Data Supplement).

24-Gene Signature Provides Additional Prognostic

Power to ELN Risk Classification of AML

We then sought to investigate whether this gene signature pro-
vides additional prognostic value to established risk stratification sys-
tems. Recently, an international expert panel on behalf of the ELN
recommended a risk classification scheme for adult AML (acute pro-
myelocytic leukemia was excluded) based on major cytogenetic and
molecular genetic data (Data Supplement).25 All patient samples stud-
ied in Netherlands Set 111 (n � 241) had been reanalyzed using
Affymetrix U133 Plus2.0 arrays (Affymetrix) along with Netherlands
Set 217 (n � 277; Fig 1). Thus, we had Affymetrix U133 Plus2.0
platform–derived expression data for all 518 patients, of whom 480
(termed Netherlands Set 2�; Data Supplement) could be classified
into either the ELN favorable (n � 161), intermediate-I (n � 133),
intermediate-II (n � 108), or adverse (n � 78) risk group (Data
Supplement). An increased sum value of the 24-gene signature re-

mained an independent predictor of shorter OS and EFS in Nether-
lands Set 2� after adjusting for other variables (Data Supplement).

As shown in the Data Supplement, in both OS and EFS models,
there was no significant (P 	 .1) difference between intermediate-I
and intermediate-II risk groups in either the entire set of patients or
those younger or older than age 60 years, suggesting that the ELN risk
classification needs to be improved. We then incorporated the sum-
value information (ie, low or high) of the 24-gene signature into the
ELN risk classification and found that within each ELN risk group,

Table 1. Multivariable Analyses of OS and EFS of Patients With AML From
Validation Sets�

Variable HR 95% CI P

OS
Netherlands Set 2 (n � 277)

24-gene signature: high v low 1.9 1.4 to 2.9 � .001
KRAS mutation v wild type 92.2 23.9 to 356.3 � .001
Complex v others 3.8 2.2 to 6.4 � .001
FLT3-ITD v others 1.4 1.0 to 2.1 .04
t(8;21) v others 0.4 0.1 to 1.0 .04
Age group: � 60 v � 60 years 2.1 1.5 to 2.9 � .001

Germany Set 2 (n � 548)
24-gene signature: high v low 1.4 1.1 to 1.8 .002
FLT3-ITD v others 1.5 1.2 to 1.9 � .001
inv(16) v others 0.3 0.2 to 0.6 � .001
t(15;17) v others 0.4 0.2 to 0.6 � .001
Complex v others 2.1 1.5 to 2.9 � .001
Age group: � 60 v � 60 years 1.7 1.4 to 2.1 � .001
t-AML v others 2.8 1.3 to 6.1 .01

EFS
Netherlands Set 2 (n � 277)

24-gene signature: high v low 1.7 1.2 to 2.2 .001
KRAS mutation v wild type 87.3 23.2 to 328.3 � .001
Complex v others 3.0 1.8 to 4.8 � .001
t(15;17) v others 3.1 1.6 to 5.9 � .001
t(8;21) v others 0.4 0.2 to 0.9 .04
del(3q) v others 2.1 1.1 to 4.0 .03
Age group: � 60 v � 60 years 1.8 1.3 to 2.5 � .001

Germany Set 2 (n � 548)
24-gene signature: high v low 1.4 1.1 to 1.7 .005
NPM1 mutation v wild type 0.5 0.4 to 0.7 � .001
FLT3-ITD v others 1.6 1.3 to 2.1 � .001
inv(16) v others 0.4 0.2 to 0.7 .002
�7/del(7q) v others 2.1 1.2 to 3.6 .01
inv(3)/t(3;3) v others 3.0 1.6 to 5.4 � .001
Complex v others 2.2 1.6 to 3.0 � .001
Age group: � 60 v � 60 years 1.5 1.3 to 1.9 � .001
t-AML v others 2.9 1.4 to 6.0 .005

NOTE. The following variables were evaluated in univariable Cox regression
models for outcome: sum-value signature, age, sex, platelet count, WBC,
percentage of blood blasts, percentage of bone marrow blasts, presence or
absence of various chromosomal translocations 
ie, inv(16), t(8;21), t(15;17),
t(9;11), t(11q23), t(6;9), t(9;22)� or other abnormalities 
�8, �3/inv(3q)/t(3;3),
�7/del(7q)�, and presence or absence of gene mutations (ie, FLT3-ITD,
FLT3-TKD, NRAS, KRAS, NPM1, CEBPA, MLL-PTD). Variables for which P �
.1 in univariable models (Data Supplement) were included in multivariable
analysis for sum-value signature. Only variables for which P � .05 in
multivariable models are shown in Table. HRs 	 1 or � 1 indicate, respec-
tively, higher or lower risk of event for higher values of continuous variables
and for first category listed for categorical variables in OS or EFS models.

Abbreviations: AML, acute myeloid leukemia; EFS, event-free survival;
HR, hazard ratio; ITD, internal tandem duplication; OS, overall survival;
PTD, partial tandem duplication; t-AML, therapy-related AML; TKD, ty-
rosine kinase domain.
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patients with a higher sum value of 24-gene signature experienced
much shorter OS or EFS (Data Supplement). Thus, the 24-gene prog-
nostic signature could provide additional prognostic power to the
ELN risk classification of AML.

Development of an Integrated Risk

Classification Scheme

On the basis of the results shown in the Data Supplement, we
developed an integrated risk classification scheme through integration
of the ELN risk classification and the 24-gene signature classification

(Fig 3A): favorable, ELN favorable-risk patients with a low sum value
of the 24-gene signature; intermediate, ELN favorable-risk patients
with a high sum value and ELN intermediate-I– or intermediate-II–
risk patients with a low sum value; and adverse, ELN intermediate-I–
or intermediate-II–risk patients with a high sum value and all ELN
adverse-risk patients. We then applied this new risk classification to
the test set (ie, Netherlands Set 2�, n � 480; Fig 3B). Clearly, this new
integrated risk classification separated the patients into three distinct
risk groups, with significant (P � .05) differences in both OS and EFS
of patients in Netherlands Set 2� (Fig 3C). Similar patterns were
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Fig 3. Distribution and survival of pa-
tients with acute myeloid leukemia (AML)
in the test set (Netherlands Set 2�, n �
480) according to or predicted by inte-
grated risk categories. (A) Scheme of
reclassification of the four European Leu-
kemiaNet (ELN) risk groups into three
new integrated risk groups by integrating
the 24-gene signature classification (ie,
low or high) with ELN risk classification.
(B) Distribution of the whole set of pa-
tients, those age � 60 years, and those
age 	 60 years according to integrated
risk class criteria. (C, D, E) Overall (left
panels) and event-free survival (right pan-
els) rates of (C) the whole set of patients,
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age 	 60 years predicted by integrated
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observed when either the younger or older patients were considered
separately (Figs 3D, 3E).

Validation and Evaluation of the Integrated

Risk Classification

A total of 484 patients from Germany Set 2 could be classified
into four ELN risk groups (Fig 4A); this subset was termed Ger-
many Set 2� (Data Supplement) and was used as the validation set.
The 484 patients of Germany Set 2� were then reclassified into three
risk groups based on our new integrated risk classification (Fig 4A).
On the basis of the ELN risk classification, the intermediate-I,
intermediate-II, and adverse groups had fairly similar OS and EFS
(Table 2; Fig 4A), indicating that ELN risk classification did not
clearly distinguish the risk stratification of those patients. In con-
trast, on the basis of our new integrated risk classification, the
favorable risk group experienced significantly longer OS (P � .001)
and EFS (P � .01) than the intermediate risk group, and the latter
experienced significantly longer OS (P � .001) and EFS (P � .001)

than the adverse risk group (Fig 4A). Median OS for the favorable,
intermediate, and adverse risk groups were 3.8 (95% CI, 3.1 to 5.5),
1.2 (95% CI, 0.9 to 1.8), and 0.6 years (95% CI, 0.5 to 0.7),
respectively (Table 2). A similar trend was observed in younger
(age � 60 years; Data Supplement) and older (age � 60 years; Data
Supplement) patients (Table 2). As expected, the higher risk
grade of the integrated risk class (favorable, 1; intermediate, 2;
adverse, 3) remained an independent predictor of shorter OS and
EFS after adjusting other variables (Data Supplement). The statis-
tics of patients with risk classification changes between the ELN
risk and our integrated risk classifications is summarized in the
Data Supplement.

Moreover, we performed a Brier score analysis31 and calculated
prediction error curves32 in Netherlands Set 2� (n � 480) and Ger-
many Set 2� (n � 484). We showed that the 24-gene signature pro-
vided additional prognostic value to the ELN risk classification, and
the integrated risk classification provided higher prediction accuracy
than the ELN risk classification (Figs 4B and 4C).
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Fig 4. Validation and further evaluation of
new integrated risk classification. (A) Dis-
tribution (upper panels) and overall sur-
vival (OS; middle panels) or event-free
survival (lower panels) of patients with
acute myeloid leukemia in validation set
(Germany Set 2�, n � 484) according to or
predicted by the European LeukemiaNet
(ELN; left panels) or integrated (right pan-
els) risk categories. Additional predictive
value displayed by prediction error curves
for OS in (B) Netherlands Set 2� and (C)
Germany Set 2�. Lower curve (ie, lower
prediction error) indicates better predic-
tive value. Reference line indicates Kaplan-
Meier estimation without additional variables;
integrated risk class indicates combined pre-
diction model based on ELN and 24-gene
signature; 24 gene signature (categorial) indi-
cates model based on 24-gene signature cat-
egorized by median (ie, as high or low);
ELN indicates model based on ELN risk
classification; 24-gene signature (numer-
ical) indicates model based on numerical
24-gene signature.
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DISCUSSION

Despite different treatment regimens used in the various patient
groups, and different microarray platforms and normalization strate-
gies employed in data generation (Patients and Methods; Fig 1), we
identified a common prognostic gene signature composed of 24 genes
(Data Supplement) from four independent training sets (Fig 1; Data
Supplement). The prognostic impact of this signature was subse-
quently confirmed in two independent validation sets (Figs 1, 2; Data
Supplement). Thus, our study indicates that despite the heteroge-
neous genetic lesions found in AML, a common prognostic gene
signature can be derived, and the differential expression of the genes
contained in this signature likely contributes to the distinct outcome
among various subtypes of AML. Our strategy to identify the most
robust and consistent gene signature demonstrated that directly com-
paring different data sets obtained by different groups using different
microarray platforms and normalization methods can substantially
minimize false-positive discoveries caused by potential systematic bias
of any particular platform or normalization method. Therefore, this
strategy might also be applicable in identifying such gene signatures in
other types of cancers.

More importantly, we showed that this 24-gene signature could
substantially improve the ELN risk classification (Table 2; Figs 1, 3, 4;
Data Supplement). In both testing and validation sets, no significant
difference in OS or EFS was observed between the ELN intermediate-I
and intermediate-II groups (Data Supplement). A similar pattern was
previously observed in elderly patients with AML (age 	 60 years).33

To improve the ELN risk classification, we developed a new integrated
risk classification, which provided a better risk stratification and out-
come prediction in both the test and validation sets (Table 2; Figs 3, 4;
Data Supplement).

In the clinical setting, it is important to identify high-risk patients
with poor prognosis, for whom improved/novel treatment strategies
are needed. In fact, in Netherlands Set 2� (n � 480), median OS times
for the ELN favorable, intermediate-I, intermediate-II, and adverse
risk groups were 5.1, 1.1, 1.6, and 0.8 years, respectively; in Germany
Set 2� (n � 484), median OS times were 3.8, 0.7, 1.0, and 0.5 years,
respectively; similarly, in younger patients (age � 60 years) in the data

set of Rollig et al,33 median OS times were 5.3, 1.1, 1.6, and 0.5 years,
respectively. It seems the outcomes of many patients in the ELN
intermediate risk groups were indeed poor; thus, it is critical to reclas-
sify them into the adverse risk group. With our integrated risk classi-
fication, median OS times for patients in the favorable, intermediate,
and adverse risk groups in Netherlands Set 2�became 6.1, 2.6, and 0.8
years, respectively; in Germany Set 2�, median OS times were 3.8, 1.2,
and 0.6 years, respectively. Therefore, our integrated risk classification
seems to be more clinically useful than the ELN risk classification in
identification of high-risk patients.

Recently, extensive efforts have been devoted to identifying prog-
nostic gene mutations.34 In addition to CEBPA mutations,17,35-39

FLT3-ITD,35,40-44 and NPM1 mutations,45-49 which have been incor-
porated into the ELN risk classification, mutations with prognostic
implications in a number of other genes (eg, TET2,50 ASXL1,51

DNMT3A,52-54 p53,55-58 and KIT59) have also been identified.25 TET2
and ASXL1 mutations have also been shown to be able to improve the
risk stratification of the ELN favorable-risk patient group.50,51 We
expect that there are some correlations between gene mutations and
expression levels of the 24-gene signature. Indeed, we found that
CEBPA mutations were significantly associated with low levels of
expression of the 24-gene signature in both Netherlands Set 2� and
Germany Set 2�; the opposite was true for FLT3-ITD, whereas the
association of NPM1 mutations with high-level signature expression
was likely the result of frequently coexisting FLT3-ITD (Data Supple-
ment). In Netherlands Set 2�, DNMT3A mutations were significantly
correlated with high levels of expression of the 24-gene signature in the
whole data set as well as the ELN favorable risk group, whereas no
significant correlation was observed for ASXL1 mutations (Data Sup-
plement). Furthermore, several recent studies have shown that the
favorable prognostic impact of CEBPA mutations is dependent on
biallelic, not monoallelic, mutations.17,37 On the basis of our inte-
grated risk classification, 90% of the patients with biallelic CEBPA
mutations (nine of 10 patients), in contrast to approximately only half
of those with monoallelic mutations (six of 11 patients), remained in
the favorable risk group; the others were classified as belonging to the
intermediate risk group. Thus, our integrated risk classification also
accurately reflected the difference in prognosis between biallelic and

Table 2. CR Rate and Median OS and EFS of Distinct Risk Groups in Germany Set 2�

Risk Group

Whole Set (n � 484) Patients Age � 60 Years (n � 255) Patients Age � 60 Years (n � 229)

CR (%)

OS EFS

CR (%)

OS EFS

CR (%)

OS EFS

Median
(years) 95% CI

Median
(years) 95% CI

Median
(years) 95% CI

Median
(years) 95% CI

Median
(years) 95% CI

Median
(years) 95% CI

ELN risk classification
Favorable 72 3.8 2.7 to 4.8 1.8 1.2 to 3.2 76 4.4 3.3 to 5.8 2.5 1.6 to 4.8 63 1.7 0.6 to 3.9 0.9 0.3 to 2.0
Intermediate-I 60 0.7 0.6 to 0.9 0.4 0.2 to 0.6 62 0.7 0.6 to 1.1 0.5 0.2 to 0.7 59 0.7 0.5 to 0.8 0.3 0.2 to 0.5
Intermediate-II 53 1.0 0.8 to 1.5 0.3 0.2 to 0.7 62 1.4 0.8 to 2.3 0.7 0.2 to 1.4 44 0.6 0.1 to 1.3 0.1 0.1 to 0.7
Adverse 34 0.5 0.4 to 0.7 0.2 0.1 to 0.2 36 0.6 0.3 to 1.0 0.2 0.1 to 0.3 33 0.4 0.3 to 0.6 0.2 0.1 to 0.2

Integrated risk
classification

Favorable 75 3.8 3.1 to 5.5 1.8 1.3 to 3.3 80 4.2 3.1 to 6.4 2.5 1.6 to 4.3 66 3.5 1.1 to 6.5 1.2 0.2 to 3.3
Intermediate 60 1.2 0.9 to 1.8 0.7 0.3 to 0.9 64 2.1 1.0 to 4.2 1.0 0.4 to 1.9 54 0.9 0.5 to 1.3 0.4 0.1 to 0.8
Adverse 45 0.6 0.5 to 0.7 0.2 0.2 to 0.3 48 0.8 0.6 to 1.0 0.2 0.2 to 0.3 42 0.5 0.4 to 0.6 0.2 0.1 to 0.2

Abbreviations: CR, complete remission; EFS, event-free survival; ELN, European LeukemiaNet; OS, overall survival.
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monoallelic CEBPA mutations. Collectively, our gene signature may
reflect the sum of the prognostic impacts of many gene mutations.

Given the large number of prognostic gene mutations that have
been identified (and more will be identified) in AML,34 it will become
increasingly difficult to integrate all prognostic mutations into a risk
classification framework. Instead, our integrated risk classification, by
relying on a limited number of cytogenetic and molecular abnormal-
ities recommended by ELN plus the 24-gene signature classification,
could be easily used in routine clinical practice. A combination of
cytogenetic, molecular (using direct sequencing or RNA sequencing
to detect gene mutations), and gene expression (using custom-design
microarrays, real-time quantitative polymerase chain reaction, or
RNA sequencing to assess expression of the 24 genes) assays can be
used to classify all patients with AML into one of the three new risk
groups, which will provide accurate information for prognostic and
therapeutic decisions. Thus, although a large-scale independent, pro-
spective validation trial is needed to prove its robustness, this new
integrated risk classification does hold great potential for clinical ap-
plication in risk stratification and outcome prediction in AML.
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15. Bullinger L, Rücker FG, Kurz S, et al: Gene-
expression profiling identifies distinct subclasses of
core binding factor acute myeloid leukemia. Blood
110:1291-1300, 2007

16. Metzeler KH, Hummel M, Bloomfield CD, et
al: An 86-probe-set gene-expression signature pre-
dicts survival in cytogenetically normal acute my-
eloid leukemia. Blood 112:4193-4201, 2008
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45. Döhner K, Schlenk RF, Habdank M, et al:
Mutant nucleophosmin (NPM1) predicts favorable
prognosis in younger adults with acute myeloid
leukemia and normal cytogenetics: Interaction with
other gene mutations. Blood 106:3740-3746, 2005

46. Verhaak RG, Goudswaard CS, van Putten W,
et al: Mutations in nucleophosmin (NPM1) in acute
myeloid leukemia (AML): association with other
gene abnormalities and previously established gene
expression signatures and their favorable prognostic
significance. Blood 106:3747-3754, 2005

47. Schnittger S, Schoch C, Kern W, et al: Nucleo-
phosmin gene mutations are predictors of favorable
prognosis in acute myelogenous leukemia with a
normal karyotype. Blood 106:3733-3739, 2005

48. Thiede C, Koch S, Creutzig E, et al: Prevalence
and prognostic impact of NPM1 mutations in 1485
adult patients with acute myeloid leukemia (AML).
Blood 107:4011-4020, 2006
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