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Summary  

The   recurs ive   p red ic t ion   e r ror   methods   in   s ta te -space  
form  have  been  efficiently  used as pa rame te r  
ident i f iers   for   l inear   systems,   and  especial ly   Ljung 's  
innovations filter using a Newton  search  direct ion  has  
proved to be  quite  ideal.   In  this  paper,   the R P E  method 
in   s ta te-space  form  is   developed  to   the  nonl inear  case 
and   ex tended  to inc lude   the   exac t   form of a 
nonl inear i ty ,   thus   enabl ing  s t ructure   preservat ion  for  
cer ta in   c lasses   of   nonl inear   systems.   Both  the  discrete  
and  the  cont inuous-discrete   vers ions  of   the   a lgori thm 
in   an   innovat ions   model  are invest igated,   and  a  
nonl inear   s imulat ion  example shows a quite 
convincing  performance of t he  filter as combined 
parameter   and   s ta te   es t imator .  

From  the  nonlinear  filtering  theory  [Jazwinski, 
1970][Mayback, 19821 it  is  known  that  an  attractive  and 
appliable  nonlinear  filter  is  the  first-order  filter  with  bias 
correction  term  (FOFBC),  which  is  based  on  using  first-order 
covariance  and  gain  computations,  but  with  the  second-order 
terms  in  state  expectation  and  prediction  error  equations.  In 
this  study we use the FOFBC method for identification of the 
nonlinear model (1-a,  b).  When  a fixed value 0 is  given,  the 
predictor  corresponding to (1-a,  b) will be 

I j ; ( t+1 ,8 )=f (8 ,u ; t , i ( t , 8 ) )+B~t )+K! t i [v i t ) -h (8 ; t ,~ ( t , 8 ) j -By( t ) l  (2-a) 

1 ;ctle)=h ce;t,at,e)) (2-b) 

1. Introduction  where  the second order  term  Bx(t)  is  the n,-vector with K t h  
component 

In  this  paper we present two parameter  identifiers for 
nonlinear  discrete  and  continuous-discrete  state-space 
models.  These  algorithms  are  investigated by using  the 
linear  recursive  prediction  error (RPE) method,  Ljung  and 
Soderstrom  [1983],  in  combination  with  nonlinear second- 

Zhou [ 19851. 
order  filtering  theory  Jazwinski [ 19701, Mayback [ 19821, B,(t)= 2 

and  By(t)  is  the  ny-vector  with  Kth  component 

2. Model and  algorithm  in  discrete  version 

We assume  a  nonlinear  discrete  state-space model of the 
following form, 

where f()  and  h()  are  nonlinear  functions of the  state,  v(t)  is 
white process noise,  and  e(t)  is  uncorrelated  measurement 
noise  with  statistics 

The  initial  value of the  state x(o) has  the  properties 

One  finds  that use of the  recursive  prediction  error  method by 
Ljung  and  Soderstrom,  [1983],  directly  on  the  nonlinear 
predictor mndel (2-a,  b)  is  hardly  feasible,  due to computa- 
tional  complexity. If a  linear  measurement  equation  is 
chosen  instcad,  however,  complexity of the  algorithm  is  re- 
duced  significantly.  Then  the  predictor  has  the  following 
form 

I i ( t+ I , e )= f (e ,u ; t ,~ ( t , e ) )+Bs i t )+K[ t j [v ! t ) -~ I i e ) i c t ,O) l  (3-3) 

jYt/e)=H (e)E(t,e) (3-b) 

The  assumption of a  linear  measurement  is  valid  in a wide 
class of practical  applications.  Then  the  recursive  prediction 
error  method  using  a  Newton  search  direction for parameter 
updating  can be applied to the model (3-a,  b).  The  algorithm 
will consist of the following set of recursive  equations: 
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where 

is  the  derivative of x(t,6)  in  the  right-hand  side of (3-a)  with 
respect  to 8. Further 

is  the  derivative of the  parameter  matrices  in  the  bracket 
with  respect to 8, and 

(5-f) 

BJt) isdelined in (2 -c) (5-9) 

This  version of the  filter (4-a-&includes a calculation of the 
Kalman  gains  in  (I-d,e,O  and K t  is  calculated  from  (4-d,e,f). 
As per  the  suggestion  given by Ljung  (1979),  the  parameter 
identifier  can  assume  an  innovations model of the  form: 

where &(t) is  the  innovation  due to measurement t, and  K(8) 
is  a  set of (as yet  undetermined)  steady  state  Kalman  gains, 
which  is  parameterized  and  will be identified  directly  along 
with  the  system  parameters.  This  gives  less complex 
compatations,  and  the  algorithm  corresponding to (6-a,b) will 
then be as follows: 

where 

- 
vd,(t,H), Ro(t), Dt are  defined  in  (5-c,d,f)  respectively,  and 
E, ( t )  is  defined in (2-c).  It  is  noted  that  in  version  (7-a-h)  one 
has to use equations  (4-e)  and  (4-0  in  order  to  obtain  the 
covariance  matrix  P(t)  in B,(t).  If the  measurement  vector 
y( t ) has  the  same  dimension  as  the  state x, and  the  matrix H 
is ;in identity  matrix  then  the  covariance  matrix  is 

P ( t ) =  E { c x r ~ l - i i l ) ) c x ( t j - t ( t ) j T ]  

= E { c ( t ) c T ( t ) /  

Since  y(t) = H, .?it) =i(t) .  Consequently,  the  matrix P(t) can 
be replaced by A(t)  in  this  case,  and P(t) need  no  longer be 
ralculated. 

3.  Model and  algorithm  in  continuous-discrete  version 

In most applications  involving  the  identification of para- 
meters of a physical continuous  time  system,  it  is  generally 
preferable to use a  continuous-discrete  algorithm.  The 
reasons  are  primarily  structure  preservation of known  parts 
of the  system  and  the  possibility  to  inclme  bounds on 
parameter  estimates of physical  parameters whose  con- 
straints  are known. The  latter  is  a  practical  way  to overcome 
part of the  difficulties  with possible local minima  when 
identifying  parameters of nonlinear  systems. As in  the 
presentation  in section 2, the  discrete  measurement  equation 
will be chosen  in  its  linear  version,  and  an  innovations model 
is  employed. We hence  assume  the  nonlinear  continuous- 
discrete  state-space model of the  form: 

where f( ) is  the  nonlinear  function of state.  v(t(ti)  is  white 
process noise,  e(ti)  is  uncorrelated  measurement  noise  with 
statistics, 

The second order  predictor  using  an  innovations  model  will 
be 

where E( ti+ 1 ) is  the  innovation  due to measurement t i +  1 ,  
and  K(  ti+ 1 ,e) comprise  parameterized  steady  state  Kalman 
fains.  The  algorithm  corresponding to (9-a,b,c)  will be as 
ollows: 
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(1  0-b) 

(1  0-c) 

After  integration of (lO-a,b,c), :(ti - I - ) ,  P(t i+ I-), W(tiA 1-1 are 
available,  and 

is  the  derivative of x(t)ti,8)  in  the  right-hand  side of (9-a)  with 
respect  to 8. 

is  the  derivative of the  parameter  matrices  in  the  right-hand 
side of (9-a)  with  respect  to 8. Further  the  following  notation 
is  used 

4. Example 

The  ability of the  nonlinear  RPE  method  to  estimate 
parameters  and  states of a  nonlinear  system of practical 
importance is demonstrated  in  this  example. 

The  continuous  discrete  version of the  nonlinear  filter 
derived above is  compared  with  the  corresponding  linear 
algorithm by Gavel  and Azevedo [1982]. The  results 
demonstrate  the  advantages  in  terms of bias  correction of the 
nonlinear  filter. 

The  nonlinear  system  considered is an  equivalent to the  ship 
speed  equation.  The  parameters  identified  will, for the  real 
ship,  mean  hull  resistance  and efficiency in  utilizing  the 
prime  mover of the  vessel for forward  thrust. Both values  are 
of major  technical  importance  and  as  they  change over time, 
they  have  vast  impact on the  ships's  fuel economy and 
efficiency. The  criteria for maintenence of the  ship's  hull, 
propeller,  and  prime  mover  system  can be directly  derived 
from  these  parameters,  and  it  is  hence of prime  importance 
that  they  are  estimated  without  bias. 

The second order  nonlinearity  type of system  is  furthermore 
technically  important  when  identifying  propulsion  losses of 
ships  at  sea  aiming at autopilot  and  steering  gear 
performance  evaluation,  Blanke  [1981],  Blanke  and 
Sorensen  [1984],Blanke  [1986]. 

The  responses  and  parameter  estimates below were  obtained 
using  a  square  wave  pertubation to the  input  u(t).  The 
amplitude of the  pertubation  is 10 percent of its  steady  state 
value.  The  practical  equivalent to this  experiment would be a 
stepwise  increaseidecrease  in  propeller  thrust. 

The  matrices B,, w,*, Re, and N in  the  algorithm  (10-a-1) 
corresponding to the  example will be 

B, (tlk) = a p(ti) = a  A(ti) 

Wx* (tit;) = 2aii(ti)w(tIti) (12) 

Me (ti) = [(kz(ti)  +P(ti)),u(ti),oI = [(?2(ti) + A(ti)),u(ti),~l 

N (ti) = [o,o,c(ti)l 

- 

- 

Figure 1 shows  results of identifying  the  parameters a and b 
in  the  nonlinear  equation  using  the  nonlinear  filter.  The 
curves  plotted  in  figure 2 illustrate  the  performance of a 
linear RPE filter  applied  to  the  same  nonlinear  equation. 
Although  the  driving  signal's  pertubation  is  only  10  percent 
of its  average,  the  bias of the  linear  estimator  is  apparent, 
and  the  superior  performance of the  nonlinear  filter  is 
obvious. 

The  same  treatment  will be used  when Hi is  an  identity 
matrix  and  has  the  same  dimension  as  the  state vector x. In 
this  case  the  P(ti)  matrix  will  not be calculated  any  longer 
and is replaced by h( to .  

1639 
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5 .  Conclusions 

This  paper  has  presented two algorithms for identifying 
parameters of a nonlinear  discrete  state-space  system  model 
and a nonlinear  continuous-discrete  state-space  system 
model. Both  versions  are  treated  using  a  linear  discrete 
measurement  equation.  These  algorithms were investigated 
with  reference  to  the  theory of linear  RPE  methods  and  the 
theory of nonlinear  filtering.  The  innovations model formula- 
tion  was  found to be attractive,  and  the  algorithms  were 
implemented  and  tested  against  computer  simulations 
showing  excellent  convergence,  and  bias  properties  that by 
far exceed those of a linear  continuouddiscrete  filter.  The 
analysis of the  convergence  properties of the  nonlinear 
estimator  and  further  tests of applications of these 
algorithms  should be persued  in a further  study. 
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linear version is used 

9 
9.0 i0 .0  4bo.o r8o.o i0o.o 2jo.o 3bo.o k o . 0  

WBEf? OF SAMPLES (.OS SEC) 

0 

4 I 
Identification  of a nonlinear 

1. estimated, 2. true 
nonlinear version is used 

d/dt  (X) = -0.58~2 + 0 . 2 ~  

i l  

model 

? r 0.0 50.0 1bo.o 450.0 200.0 2ko.o 300.0 J50.0 

NUMBER OF SAMPLES ( - 0 5  SEC) 
* 
d l  3 

l i -  

Identification of a nonlinear  model 

1. estimated, 2. true 
d/dt(x) = -0.58~2 + 0 . 2 ~  

W nonlinear version is used 

'0.0 50.0 400.0 150.0 200.0 250.0 300.0 350.0 
NUMBER OF SAMPLES (-05 SEC) 

?- 

Identification  of a nonlinear  model 
d/dt(x) = -0.58~2 + 0 . 2 ~  

2 z- 1. estimated, 2. true 
0 

I1 
linear version is used 

* 9. 

2 
2 3. 
Y I  
I- 
ffl 
W 

9 
V o  50.0 4h.o r5o.o h 0 . o  ~ o . 0  5oo.o 5so.o 

NUMBER OF SAMPLES (.OS SEC) 
c 

Identification of a nonlinear  model 

1. estimated, 2 .  true 
linear version is used 

d/dt(x) = -0.58~2 + 0 . 2 ~  

nonlinear version is used 

v 

50.0 Ibo.0 i50.0 2Llo.o zko.0 300.0 

61 
linear version is used 

1 
350.0 '80 50.0 4bO.O 450.0 2bO.O 250.0 3 M . O  350.0 

I NUMBER Of SAMPLES (.OS SEC) I NUMBER OF SAMPLES (.OS SEC) 

Figure 1 Identification of Parameters a and b of Figure 2 Identication of parameters a and b of equation 
equation 11 with square  wave pertubation  on 11 with similar excitation as in figure 1. 
the  input signal. 
The nonlinear estimator is used. 

The nonlinear estimator is used. 
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3. input (square step) 
1 .  corrupted output 
2. theoritic 
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Figure 3 Same  example as figure 1 with the nonlinear 
filter,  but measurement corrupted with noise. 
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Figure 4 Same  example as figure 2 with the linear filter, 
but measurement corrupted with noise 
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