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Abstract: Lung adenocarcinoma (LUAD) is often diagnosed at an advanced stage, so it is necessary
to identify potential biomarkers for the early diagnosis and prognosis of LUAD. In our study, a
gene co-expression network was constructed using weighted gene co-expression network analysis
(WGCNA) in order to obtain the key modules and genes correlated with LUAD prognosis. Four hub
genes (HLF, CHRDL1, SELENBP1, and TMEM163) were screened out using least absolute shrinkage
and selection operator (LASSO)–Cox regression analysis; then, a prognostic model was established for
predicting overall survival (OS) based on these four hub genes..Furthermore, the prognostic values
of this four-gene signature were verified in four validation sets (GSE26939, GSE31210, GSE72094,
and TCGA-LUAD) as well as in the GEPIA database. To assess the prognostic values of hub genes,
receiver operating characteristic (ROC) curves were constructed and a nomogram was created. We
found that a higher expression of four hub genes was associated with a lower risk of patient death.
In a training set, it was demonstrated that this four-gene signature was a better prognostic factor
than clinical factors such as age and stage of disease. Moreover, our results revealed that these
four genes were suppressor factors of LUAD and that their high expression was associated with a
lower risk of death. In summary, we demonstrated that this four-gene signature could be a potential
prognostic factor for LUAD patients. These findings provide a theoretical basis for exploring potential
biomarkers for LUAD prognosis prediction in the future.

Keywords: lung adenocarcinoma (LUAD); weighted gene co-expression network analysis (WGCNA);
least absolute shrinkage and selectionator operator (LASSO); gene signature; prognosis prediction

1. Introduction

Lung cancer is the third most common cancer worldwide and has the highest mortality
rate. Nearly 1.8 million new cases and 1.6 million lung cancer-related deaths are reported
every year [1]. As the most prevalent subtype of lung cancer, lung adenocarcinoma (LUAD)
occurs more frequently in smokers. However, in recent years, non-smoker morbidity from
LUAD has markedly increased [2]. Due to the lack of efficient diagnostic methods, LUAD
is often diagnosed at an advanced stage. Despite the rapid development of gene targeted
therapy and immunotherapy leading to a significant improvement in patient survival rates
and quality of life, the 5-year mortality rate of LUAD is still very high, ranging from 51%
to 99% depending on the disease stage [3]. Therefore, it is necessary to understand the
molecular mechanism of LUAD development and to identify novel potential biomarkers
for the early diagnosis and prognosis of LUAD.

Over the past two decades, the oncogenesis mechanisms of lung cancer have come to be
largely understood. It is now widely known that lung cancer is a molecularly heterogeneous
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disease that features alterations of oncogenes and tumor suppressor genes [4]. A growing
number of oncogenic alterations have been identified in non-small cell lung cancer (NSCLC),
such as EGFR, ALK, and ROS1. These oncogenic alterations promote the fast development
of small molecule-targeting inhibitors for lung cancer therapy [5–7]. Moreover, previous
studies have revealed that these alterations play essential roles in various pathological
processes of LUAD, including tumor progression and metastasis [8,9]. Recently, extensive
investigations of the tumor immune microenvironment have facilitated the application
of immunotherapy in clinical settings and have dramatically changed the landscape of
lung cancer treatment. Programmed death-ligand 1 (PD-1/PD-L1) inhibitors are two
main immune checkpoint inhibitors (ICIs) that are applied in the clinic. PD-1 signaling,
mainly driven by adaptive PD-L1 expression in tumors, inactivates T cells that identify
tumor-specific antigens and promotes tumor progression and metastasis [10,11]. PD-L1
and the tumor mutation burden (TMB) are two independent predictors of responses to
immunotherapy [12,13]. Nevertheless, the precise molecular mechanisms of lung cancer are
far from being elucidated and more potential prognostic biomarkers are required. In recent
years, several studies have identified candidate genes for potential therapeutic targets and
diagnostic/prognostic biomarkers of lung cancer through bioinformatics analysis. For
example, it was reported that seven genes were analyzed as potential diagnostic biomarkers
for NSCLC based on the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA) databases [14]. Moreover, the dysregulation of non-coding RNAs, including long
non-coding RNAs (lncRNAs) and miRNAs identified by bioinformatics analysis, was found
to be associated with carcinogenesis [15]. Though much progress has been made in the
treatment of LUAD, it is still necessary to identify putative biomarkers for the precise
diagnosis and prognosis valuation of LUAD patients.

In this study, gene datasets including information on sample sizes and prognostic
information for LUAD were downloaded from the GEO and TCGA databases. We aimed
to screen out key modules and genes correlated with LUAD prognosis through weighted
gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection
operator (LASSO) regression analysis. Four hub genes that significantly correlated with
overall survival were selected and a four-gene signature was created for LUAD prognosis.
The prognostic value of this four-gene signature was verified in various validation sets.
Additionally, this signature showed a desirable sensitivity and specificity for predicting the
overall survival (OS), as well as the disease-free survival (DFS), of LUAD patients.

2. Materials and Methods
2.1. Data-Collection and Pre-Processing

Series matrix files of GSE30219 [16], GSE37745 [17], and GSE50081 [18] were down-
loaded from GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 23 March
2021). These matrix files were all based on the platform of GPL570, so we merged these
matrix files after a series of normalization, and the batch effects among these datasets
were removed by using the “sva” package (versions 3.36.0) [19] of R 4.0.2. A training set
was finally obtained for the following analysis. The datasets of GSE30219, GSE33745, and
GSE50081 contained 85, 106, and 130 cancer tissues, respectively. A total of 321 LUAD
cases were used for the following WGCNA and prognosis model building. In addition, we
downloaded the series matrix files of GSE26939 [20], GSE31210 [21], and GSE72094 [22]
from the GEO database, aiming to validate the prognosis model. The datasets of GSE26939S
included 116 LUAD samples based on the platform of GPL9053, while the datasets of
GSE31210 comprised 226 LUAD samples based on the platform of GPL570. Additionally,
the datasets of GSE72904 included 442 LUAD samples based on the platform of GPL15048.
Then, the RNA sequencing datasets of 500 LUAD cases with clinicopathological informa-
tion were downloaded from the TCGA (https://cancergenome.nih.gov/, accessed on 25
April 2021) database. The FPKM (fragment per kilobase per million) level 3 data from the
TCGA database were used in this study. All the information concerning the datasets used
is listed in Table 1.

https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
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Table 1. Clinical characteristics of patients with lung adenocarcinoma in each dataset.

Characteristics Training
Dataset

Validation Dataset

GSE26939 p Value $ GSE31210 p Value $ GSE72094 p Value $ TCGA-LUAD p Value $

Number of
patients 321 116 226 442 500

Platforms GPL570 GPL9053 GPL570 GPL15048 GDC Data
Portal

Gender
Male 179 49

0.2518
105

0.0370 *
240

0.7128
230

0.0066 **Female 142 51 121 202 270
Unknown 0 16 0 0 0

Age (years) 64.90 ± 9.92 64.04 ± 10.88 0.4359 59.58 ± 7.40 <0.0001 **** 69.30 ± 9.33 <0.0001 **** 65.26 ± 10.05 0.6244
Clinical Stage

Unknown 0 29 0 28 8
Stage I 234 55

<0.0001 ****

168

0.0050 **

265

<0.0001 ****

268

<0.0001 ****
Stage II 70 14 58 69 119
Stage III 13 16 0 63 80
Stage IV 4 2 0 17 25

Relapse
No 174

Null
162

0.1728 Null
289

0.0360 *Yes 91 64 211
Unknown 56 20 0

Follow up
Alive 145 49

0.6629
191

<0.0001 ****
298

<0.0001 ****
318

<0.0001 ****Dead 176 66 35 122 182
Unknown 0 1 20 22 0

$ Comparison with training set; * p < 0.05; ** p < 0.01; **** p < 0.0001.

2.2. WGCNA to Screen Out a Key Module and Genes Related to Survival

The gene co-expression network was constructed using the “WGCNA” package (ver-
sions 1.70-3) [23]. According to the gene expression datasets of the training set, we utilized
the goodSampleGenes method to remove non-expressed genes and to select expressed
genes with a standard deviation of >1.2 for cluster analysis. Next, we started to build a
scale-free co-expression network. Firstly, the Pearson’s correlation matrices and average
linkage method were carried out for all pair-wise genes. Then, a weighted adjacency matrix
was constructed using the power function, as follows:

Amn = |Cmn|ˆβ

(Cmn = Pearson’s correlation between gene_m and gene_n; Amn = adjacency between gene_m and gene_n).

β is a soft-thresholding parameter that can emphasize strong correlations between
genes and penalize weak correlations. After choosing the power (β), the adjacency was
transformed into a topological overlap matrix (TOM). TOM is able to measure the network
connectivity of a certain gene, defined as the sum of its adjacency with all other genes, as a
network gene ratio. Moreover, the corresponding dissimilarity (1-TOM) can be calculated.
To classify genes with similar expression profiles into gene modules, average linkage
hierarchical clustering was conducted according to the TOM-based dissimilarity measure.
The minimum size (gene group) for the gene dendrogram was 30 and the minimum size
for deepSplit was 2. DeepSplit is a parameter that can adjust the sensitivity of partition
modules; the greater its value is, the more sensitive it is and the more modules are obtained.
After we calculated the eigengenes of gene modules using the dynamic shear method,
we used cluster analysis to merge close modules into new modules (height = 0.25). Then,
correlations between the modules or genes in the modules and the phenotypes of the
training sets were analyzed based on the eigenvectors of modules and gene expression of
samples. Thereby, hub genes were selected for further prognosis model building (R > 0.7).

2.3. GO Enrichment and KEGG Pathway Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway enrichment
analyses of the key modules were performed based on the Database for Annotation, Visual-
ization, and Integrated Discovery (https://david.ncifcrf.gov, DAVID, version 6.8, accessed
on 3 May 2021) [24]. We used the “ggplot2” package (versions 3.3.5) [25] to plot the figures

https://david.ncifcrf.gov
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based on the GO enrichment analysis results (p value < 0.01) and the KEGG pathway
analysis results (p value < 0.05).

2.4. Prognostic Genes Screening Associated with OS and DFS

After integrating the survival time, survival status, and gene expression data, a uni-
variate survival analysis was performed using the “survival” package (versions 3.2-7) [26]
for the OS and DFS of LUAD patients in the training sets. Then, we divided the LUAD
patients into a high expression group and low expression group according to the median
value of gene expression found. Selected genes were intersected with candidate genes in
the key module, and the genes that would be used in eventual model were obtained. The
results were plotted using online tool named Bioinformatics and Evolutionary Genomics
(http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 24 April 2021). p < 0.05
between the two groups was considered statistically significant.

2.5. Prognostic Gene Signature Construction and Validation

Gene expression matrix profiles and OS-related prognosis information were prepared
in order to build the LASSO-Cox regression model using the “glmnet” package (versions
4.1-2) [27]. We set nfold = 15 and took λ as lambda.min in order to acquire an optimized model.
The risk score for OS (RSO) was calculated based on the coefficients of genes, which affected
the prognosis of LUAD. The results were equalized according to the following formula:

RSO = Coefficient 1 × gene 1 RNA expression + Coefficient gene 2 RNA expression + . . . + Coefficient n × gene n RNA expression

Thus, the RSO values of each sample in the training set as well as in the validation sets
were calculated. The gene expression heatmaps of RSO in each dataset were generated using
the “ggplot2” package (versions 3.3.5) [25], and time-dependent (1-year, 3-year, and 5-year)
receiver operating characteristic (ROC) and K-M curves were generated with the “timeROC”
package (versions 0.4) [28]. To further verify the prognostic value of the built gene signature,
we analyzed the four genes individually and together via the Survival Analysis module in
the Gene Expression Profiling Interactive Analysis (http://gepia.cancer-pku.cn/, GEPIA,
accessed on 28 April 2021) database [29]. Moreover, we analyzed the expression of the four
genes in normal tissues and tumor tissues through the datasets.

2.6. Univariate and Multivariate Cox Regression Analysis

We used the “survival” package (versions 3.2-7) of R 4.0.2 [26] to integrate the survival
time, survival status, RSO, and other common clinical characteristics (age, sex, clinical
stages) of all datasets. A univariate analysis was performed using the Cox method. Vari-
ables with a p < 0.05 were included in a multivariate Cox regression analysis.

Forestplot, Nomogram, and calibrated curves were created using the “forestplot”
package (versions 1.10) [30] and “rms” package (versions 6.2-0) [31]. The forestplot was
obtained based on the clinical information of patients, HR, and 95%CI in univariate and
multivariate regression analyses. The nomogram was composed of previously screened
independent prognostic factors and internally validated by bootstraps with 1000 resam-
ples. Every factor was assigned a weight based on its effect on the prognosis. Thus, the
corresponding score was acquired, allowing us to predict the 1-, 3-, and 5-year survival
probability of LUAD patients according to the weight of each factor. Generally, a higher
score represented a worse prognosis. The calibration curve was obtained based on the real
survival of patients and was used to predict the probability of survival in a nomogram.
When the predicted probability is close to the real survival status, the calibration curve is
more likely to be diagonal. Therefore, if the broken line fluctuates near the diagonal, this
indicates that the fit of the prediction model is good.

2.7. Gene Set Enrichment Analysis (GSEA)

The basic idea of Gene Set Enrichment Analysis (https://www.gsea-msigdb.org/gsea,
GSEA, accessed on 19 May 2021) [32] is to use a predefined set of genes. The training

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://gepia.cancer-pku.cn/
https://www.gsea-msigdb.org/gsea
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set was divided into a high-risk group and low-risk group depending on the cutoff value
of the RSO. Then, we conducted hallmark and KEGG pathway analyses using GSEA to
further analyze the possible pathways involved between these two risk groups. Subsets
of c2.cp.kegg.v7.4.symbols.gmt and h.all.v7.4.symbols.gmt were downloaded to help us
evaluate the pathways and molecular mechanisms involved. Based on the gene expression
profile and risk grouping, the minimum gene set was determined to be 5 and the maximum
gene set was determined to be 5000. Additionally, 1000 instances of re-sampling were
performed. A normalized p value < 0.01 was considered to be statistically significant.

2.8. Cell Apoptosis Assay

The apoptosis of A549 cells was detected using Annexin V-FITC and a propidium
iodide (PI) double staining kit purchased from Solarbio following the manufacturer’s
instructions. In brief, A549 cells were seeded in a 6-well plate at 350,000 cells per well for
24 h and then treated with a vector or pcDNA3.1-CHRDL1 overexpression plasmid for
another 24 h. Cells were collected and washed once with cold PBS, resuspended in 100 µL
of binding buffer, and stained with Annexin V/FITC for 15 min and PI for 5 min in the
dark. Then, the cells were analyzed using flow cytometry.

3. Results
3.1. Key Module Identification and Functional Enrichment Analysis

A detailed flow chart of this study is shown in Figure 1. There were 321 samples,
54,675 genes, and 6 phenotypes in the gene expression and phenotype matrix profiles obtained
from the training sets. The average RNA expression in each sample was basically the same after
normalization (Figure 2A). Additionally, outlier samples were removed according to clustering
distance, and then new data expression profiles, including 315 samples and 1355 genes, were
acquired (Figure S1). A soft threshold of β = 4 was selected to ensure that the network was
scale-free (Figure S2). After calculating the co-expression modules, genes in the new data
expression profiles were allocated to five biologically significant modules. Meanwhile, the
grey module represented genes that could not be aggregated into other modules (Figure S3).
Furthermore, we analyzed the correlation between modules and phenotypes. It was shown that
the turquoise module had the most significant correlation with “Alive” (R = −0.23, p = 0.00002;
Figure 2B). The turquoise module was also suggested to be a key module based on the gene
significance (GS) and module membership analyses (Figure 2C,D).
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After this, GO and KEGG pathway enrichment analyses was performed for the
541 genes in the turquoise module to investigate the biological processes involved. The
results indicated that various biological processes were significantly correlated with the
turquoise module: mitotic nuclear division, cell adhesion, cell division, the G2/M tran-
sition of the mitotic cell cycle, mitotic cytokinesis, epithelial cell differentiation, posi-
tive regulation of the apoptotic process, and the G1/S transition of the mitotic cell cycle
(Figure 3A). Additionally, cellular components correlated with the turquoise module were
analyzed (Figure 3B). We found that the genes in the turquoise model might play important
molecular roles in chitinase activity, chitin binding, endopeptidase inhibitor activity, scav-
enger receptor activity, serine-type endopeptidase inhibitor activity, and iron ion binding
(Figure 3C). KEGG pathways correlated with the turquoise module, such as arachidonic
acid metabolism, were investigated at this stage (Figure 3D, Table S1).
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3.2. Modeling Gene Identification and Construction of a Four-Gene Signature for Predicting OS

In total, we found 12,201 genes affecting the DFS and 9488 genes associated with
OS through a univariate survival analysis of the training set. We intersected these genes
with the above-mentioned 541 genes identified in the turquoise module; thereby, 42 genes
were acquired for further model building (Figure S4A). The relative regression coefficients
of 42 genes were then calculated using LASSO regression analysis. Four genes were
finally screened out for establishment of the LASSO regression model; HLF, CHRDL1,
SELENBP1, and TMEM163 (Figure 4A). The detailed information of these four genes and
their correlation R and p values are listed in Table 2. The risk score for the OS (RSO) of
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each sample was calculated based on the relative expression level and relative regression
coefficients of these four genes.

Genes 2021, 12, x FOR PEER REVIEW 9 of 19 
 

 

Table 2. The detailed information of the four modeling genes and their correlation R and P values 
in the turquoise module. 

Affy ID Ensembl ID Gene Symbol Gene Description Regression Coefficient R p Value 
204753_s_at ENSG00000108924 HLF hepatic leukemia factor −0.03400109 0.756241276 3.33 × 10−62 
209763_at ENSG00000101938 CHRDL1 chordin-like 1 −0.06167218 0.702915849 2.58 × 10−50 

214433_s_at ENSG00000143416 SELENBP1 selenium binding protein 1 −0.16551196 0.771245541 4.04 × 10−66 
223503_at ENSG00000152128 TMEM163 transmembrane protein 163 −0.01203028 0.703663266 1.84 × 10−50 

 
Figure 4. Modeling gene identification. (A) The relative regression coefficients of 42 genes identified 
by the LASSO regression analysis; (B) RSO scores of samples: higher levels of expression of HLF, 
CHRDL1, SELENBP1, and TMEM163 represented a lower risk of patient death; (C) univariate sur-
vival analysis of the high RSO group and low RSO group (RSO = −2.71); (D) ROC curves for the 1-
year, 3-year, and 5-year OS. 

The regression equation is as follows: 

RSO = −0.03400109 × HLF expression value − 0.06167218 × CHRDL1 expression value − 0.16551196 × 
SELENBP1 expression value − 0.01203028 × TMEM163 expression value. 

Our results suggested that these four genes are suppressor factors in LUAD (Figure 
4B). A univariate survival analysis of the training sets was performed based on the RSO 
values (RSO = −2.71 as the cutoff); the prognosis of the higher RSO group was found to be 
worse than that of the lower RSO group (p < 0.0001, HR = 3.83, 95%CI:2.31–6.34, Figure 
4C). Moreover, the ROC curve showed that the AUC values of the 4-gene signature were 
0.64, 0.67, and 0.66 at 1, 3, and 5 years, respectively, indicating this 4-gene signature as a 
possible predictive factor of OS (Figure 4D). 

3.3. Prognostic Value of the Four-Gene Signature 
The expression profile data of four genes in the prognostic model from four valida-

tion sets (GSE26939, GSE31210, GSE72094, TCGA-LUAD) were extracted. The results 
shown in Table 1 indicate that the gender distribution of the GSE31210 (p = 0.0370) and 
TCGA-LUAD (p = 0.0066) datasets was different from that of the training dataset, and that 

Figure 4. Modeling gene identification. (A) The relative regression coefficients of 42 genes identified
by the LASSO regression analysis; (B) RSO scores of samples: higher levels of expression of HLF,
CHRDL1, SELENBP1, and TMEM163 represented a lower risk of patient death; (C) univariate survival
analysis of the high RSO group and low RSO group (RSO = −2.71); (D) ROC curves for the 1-year,
3-year, and 5-year OS.

Table 2. The detailed information of the four modeling genes and their correlation R and p values in
the turquoise module.

Affy ID Ensembl ID Gene Symbol Gene Description Regression Coefficient R p Value

204753_s_at ENSG00000108924 HLF hepatic leukemia factor −0.03400109 0.756241276 3.33 × 10−62

209763_at ENSG00000101938 CHRDL1 chordin-like 1 −0.06167218 0.702915849 2.58 × 10−50

214433_s_at ENSG00000143416 SELENBP1 selenium binding protein 1 −0.16551196 0.771245541 4.04 × 10−66

223503_at ENSG00000152128 TMEM163 transmembrane protein 163 −0.01203028 0.703663266 1.84 × 10−50

The regression equation is as follows:

RSO = −0.03400109 × HLF expression value − 0.06167218 × CHRDL1 expression value − 0.16551196 × SELENBP1 expression value
− 0.01203028 × TMEM163 expression value.

Our results suggested that these four genes are suppressor factors in LUAD (Figure 4B).
A univariate survival analysis of the training sets was performed based on the RSO values
(RSO = −2.71 as the cutoff); the prognosis of the higher RSO group was found to be worse
than that of the lower RSO group (p < 0.0001, HR = 3.83, 95%CI:2.31–6.34, Figure 4C).
Moreover, the ROC curve showed that the AUC values of the 4-gene signature were 0.64,
0.67, and 0.66 at 1, 3, and 5 years, respectively, indicating this 4-gene signature as a possible
predictive factor of OS (Figure 4D).

3.3. Prognostic Value of the Four-Gene Signature

The expression profile data of four genes in the prognostic model from four validation
sets (GSE26939, GSE31210, GSE72094, TCGA-LUAD) were extracted. The results shown



Genes 2022, 13, 238 9 of 18

in Table 1 indicate that the gender distribution of the GSE31210 (p = 0.0370) and TCGA-
LUAD (p = 0.0066) datasets was different from that of the training dataset, and that there
were more female patients. In terms of age distribution, the overall age of patients in the
GSE31210 set was lower than that in the training set, while the patients in the GSE72094
set were older than those in the training set. In terms of clinical staging, the clinical
staging of the four validation sets was significantly different from that of the training set.
GSE26939 (p < 0.0001), GSE72094 (p < 0.0001), and TCGA-LUAD (p < 0.0001) all contained
more advanced patients (stage III–IV). In GSE31210, there were more early stage I–II patients
(p = 0.0050). In terms of prognosis, the GSE26939 and GSE72094 datasets did not contain
the recurrence information of patients, which could not be statistically tested. However,
there was no significant difference between the GSE31210 data set and the training set in
terms of the number distribution of recurrent patients, while there were more recurrent
patients in the TCGA-LUAD data set (p = 0.0360). Except for GSE26939, the number of
patients who died in the other three validation sets was lower than the number who died
in the training set (p < 0.0001).

The RSO value of each sample was calculated and a univariate survival analysis
was performed for each validation set. It was suggested that patients with a higher RSO
had a worse prognosis, which was consistent with the training sets. Due to the different
platforms and normalization methods used for each validation set, GSE26939 was cut by
RSO = −0.39 (p = 0.024, HR = 2.33, 95%CI: 0.86–6.28, Figure 5A), GSE31210 was cut by
RSO = −1045.31 (p = 0.00034, HR = 3.43, 95%CI: 1.75–6.73, Figure 5B), GSE72094 was cut by
RSO = −2.61 (p < 0.0001, HR = 3.91, 95%CI: 2.2–6.97, Figure 5C), and TCGA-LUAD was cut
by RSO = −36.73 (p = 0.00034, HR = 1.76, 95%CI: 1.29–2.40, Figure 5D). Furthermore, the
AUC values of the four genes predicting the 1-year, 3-year, and 5-year OS of GSE26939 were
0.69, 0.58, and 0.53, respectively (Figure S4B), while the values for the GSE31210 were 0.64,
0.62, and 0.68 (Figure S4C). Due to the lack of follow-up time in the GSE72094 dataset, only
1-year and 3-year OS AUC values could be obtained, both of which were 0.66 (Figure S4D).
The AUC values for the 1-year, 3-year, and 5-year OS for TCGA-LUAD were 0.6, 0.56, and
0.59, respectively (Figure S4E). There were one or more differences in the clinicopathological
features between the four validation sets and the training set. Thus, the method used for
building a prognosis model was not only available for the training set, focusing on the
prediction of specific outcomes of patients with clinical pathological characteristics, but was
also applicable for the other datasets, which showed obvious differences in the prognosis
of patients with clinical characteristics included in predictions. To summarize, the results
of this model have a certain universal application value.

The prognostic value of these four genes and integrated signatures in LUAD was
further verified through the GEPIA database. We grouped the high and low expression
using 75% and 25% quantile values. The HLF high expression group showed a better
prognosis (p = 0.000037, HR = 0.39, Figure 5E). The CHRDL1 high expression group also had
a better prognosis (p = 0.0049, HR = 0.52, Figure 5F), while the SELENBP1 and TMEM163
higher expression groups had similar results to those of another two genes (p = 0.0035,
HR = 0.52, Figure 5G; p = 0.0049, HR = 0.56, Figure 5H). Significantly, the high expression
group for the four-gene signature showed a better prognosis (p = 0.00025, HR = 0.45,
Figure 5I). Furthermore, we analyzed the differences in the expression of these four genes
between cancer and normal tissues via the GEPIA database. The results suggested that
the expression levels of HLF, CHRDL1, and SELENBP1 in cancer tissues were significantly
lower than those in normal tissues (p < 0.05, Figure S5). Despite there being no significant
change in TMEM163 in the normal and cancer tissues, the overall expression levels of
TMEM163 were higher in normal tissues than in adjacent tissues. To summarize, these four
genes might act as tumor suppressor genes in lung adenocarcinoma.
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3.4. The Four-Gene Signature Could Be a Better Prognostic Factor Than Clinical Factors in the
Training Set

In the training set, the common clinical characteristics of the three data sets were age,
gender, and stage, as shown in Table 1. The RSO calculated from these four genes and the
three common essential clinical factors mentioned above were included in the cox regres-
sion analysis. The univariate cox regression analysis demonstrated that RSO (p < 0.0001),
age (p = 0.00428), and stage (p < 0.0001) were risk factors for LUAD (Figure S6A). The
multivariate results showed that RSO (p < 0.0001), age (p = 0.0017), and stage (p = 0.0005)
could be regarded as independent risk factors affecting OS (Figure 6A). RSO had a higher
HR value of 1.95 (95%CI: 1.51–2.53), which implied that the risk of death in the high RSO
group was 1.95 times that in the low RSO group. Additionally, the mortality of patients
with a high RSO was higher than that of patients at an older age or later stage of the disease.
In addition, a nomogram was built to establish a method for quantitatively predicting the
probability of 1, 3, and 5-year OS in LUAD patients (Figure 6B). The RSO had a wider
range of points than age or stage, indicating that RSO has a stronger ability for predicting
the 1-, 3-, and 5-year survival rates. Thus, it can be concluded that the predictive value of
RSO is higher than the two important clinical factors (age and stages, respectively) in the
training set.
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A calibration curve was then developed to analyze the optimal range of the prognostic
model. This prognostic model showed a good prediction effect for 2-year OS (Figure S6B)
and 3-year OS (Figure S6C). Nevertheless, the predicted OS at 2 years was lower than the
actual outcome, while the predicted OS at 3 years was higher than the actual outcome. The
best prediction time was at around 30 months, when the outcome of the model was closest
to the actual outcome and the results had the highest degree of fit (Figure S6D).

3.5. Identification of Four-Gene Signature Associated Hallmark and KEGG Pathway

We divided the patients into a high-risk group and low-risk group in the training sets
based on the cutoff for the RSO value in the training set (−2.71) and performed a GSEA
(Table S2). The results suggested that the four-gene signature might be involved in the
following biological processes: mitotic spindle, MYC targets, G2M checkpoint, E2F targets,
bile acid metabolism, heme metabolism, and adipogenesis (Figure 7A). Moreover, the four-
gene signature might regulate the following pathways: mismatch repair, cell cycle, DNA
replication, vasopressin-regulated water reabsorption, and aldosterone-regulated sodium
reabsorption (Figure 7B). These results were able to provide directions for further research.
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3.6. CHRDL1 Could Accelerate the Early Apoptosis of Lung Adenocarcinoma Cell Line A549

To ascertain whether CHRDL1 was a tumor suppressor gene in lung cancer, we
performed an apoptosis analysis (Figure 8). A549 cells were treated with CHRDL1 overex-
pression plasmids for 24 h and then examined using flow cytometry. As shown in Figure 8A,
it was clear that CHRDL1 overexpression could induce the early apoptosis of A549 cells.
Additionally, a significant change between the vector group and the pcDNA3.1-CHRDL1
group (p < 0.0001; Figure 8B) was found.
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4. Discussion

WGCNA is a type of algorithm that is used for obtaining module information from
chip data. The most variable genes in WGCNA are used for identifying interesting modules
and performing significant association analyses with phenotype. WGCNA has demon-
strated its superiority and specificality for screening out key modules. The most important
advantage of WGCNA is its ability to perform multiple hypothesis testing elimination by
converting thousands of genes and phenotypes into a smaller number of modules and phe-
notypes [33,34]. In our study, we established a four-gene signature for LUAD via WGCNA.
We firstly integrated and analyzed three microarray datasets from GEO. A key module that
significantly correlated with “Alive” was identified. The functional enrichment analysis
demonstrated that the key module was enriched in various biological processes such as the
cell cycle, cell differentiation, and cell apoptosis. These results were consistent with those
of a previous study, which showed that the gain or loss of these functions plays important
roles in LUAD tumorigenesis and progression [35].

In recent years, a number of prognostic gene signatures for lung cancer have been iden-
tified. For example, a linear prognostic model of eight genes (DLGAP5, KIF11, RAD51AP1,
CCNB1, AURKA, CDC6, OIP5, and NCAPG) was built and served as a potential prognostic
biomarker of LUAD [36]. Despite the fact that the authors validated the prognostic model
in their hospital, AUC values under ROC curves were not presented in this study. In our
study, the AUC values of GSE31210 were 0.64, 0.62, and 0.68, which were comparative
with the findings of previous reports. Moreover, the gene number of this model was
higher than the gene number in this study. Another nine-gene signature containing nine
glycolysis-related genes (HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1,
SOD1, and AGRN) was established in 2019 [37]. In that particular study, only the TCGA
dataset was utilized as a validation set, whereas we used four validation sets including the
GSE26939, GSE31210, GSE72094, and TCGA datasets, for validating the prognostic value of
the four-gene signature model in our study. A 22-gene signature and an 11-gene signature
were reported to dichotomize patients with different OS significantly. These two signatures
could serve as independent predictors of OS in lung adenocarcinoma and squamous cell
carcinoma, respectively [38]. However, there were more genes in this report compared with
in our study, so it might be more difficult for their signature to undergo clinical translation.
Similar to our study, a robust six-gene signature was constructed for predicting both the
DFS and OS of NSCLC patients via multivariate regression and stratification analyses [39].
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In our work, we identified four hub genes associated with OS—namely, HLF, CHRDL1,
SELENBP1, and TMEM163. The prognosis value of the four-gene signature was verified in
four validation sets as well as in the GEPIA database. Significantly, our prognostic model
for the four-gene signature can be applied in datasets with early LUAD patients (GSE31210)
as well as LUAD datasets with different sequencing platforms (GSE26939, GSE72094, and
TCGA-LUAD). Moreover, our four-gene signature was a better prognostic factor than
clinical factors including age and stages. Furthermore, in terms of the number of genes, the
number used was less than that used in the above reports, so our results may be easier to
use in subsequent clinical translational research or for the development of a detection kit to
promote clinical applications.

Hepatic leukemia factor (HLF) is a circadian gene that belongs to the family of the pro-
line and acidic amino acid-rich basic leucine zipper transcription factors (PAR bZIP) [40,41].
Previous studies have demonstrated that HLF plays an essential physiological role in
nervous system development [42], as well as in fibroblast apoptosis [43]. Moreover, the
aberrant expression of HLF was found to extensively participate in the various processes
of tumorigenesis; HLF was found to be downregulated in glioma and may promote the
proliferation, metastasis, and radiosensitivity of cancer cells [44]. HLF expression was also
decreased in hematological malignancy and was found to be a novel leukemic stem cell
regulator [45]. On the contrary, HLF overexpression was found to promote the evolution of
sorafenib resistance in patients with hepatocellular carcinomas via upregulation of OCT4
and SOX2 [46]. These findings indicated the paradoxical roles of HLF in tumors, which are
tumor type-dependent. In NSCLC, HLF expression was reported to be decreased in tumor
tissues. Additionally, HLF downregulation could promote multiple-organ distant metas-
tases in NSCLC through PPAR/NF-κB signaling; thus, HLF might serve as a prognostic
biomarker of NSCLC [47]. These results are consistent with those of our study and further
demonstrate HLF to be a tumor suppressor factor in LUAD.

As a secreted protein, chordin-like 1 (CHRDL1) acts as an antagonist of bone mor-
phogenetic protein (BMP)-mediated signaling via the Smad pathway [48]. Several studies
have revealed that CHRDL1 plays a vital role in adult brain and embryonic cell differen-
tiation [49,50]. CHRDL1 has also been suggested to mediate tumorigenesis; it has been
found to be significantly downregulated in gastric tissues, in a methylation-mediated
manner [51]. Gene silencing by methylation has been suggested to play an important role
in carcinogenesis [52]. Consistently, CHRDL1 was found to be a prognostic biomarker of
better outcomes in patients with breast cancer. It was found to be an inhibitor of migration
and invasion induced by BMP4 [53]. However, the prognostic value of CHRDL1 in NSCLC
has never been reported on before. In our study, we performed an apoptosis analysis to
investigate the role of CHRDL1 in lung cancer. Apparently, CHRDL1 is a tumor suppressor
gene that can induce early apoptosis in the lung cancer cell line. More experimental studies
should be performed to verify the negative prognostic value of CHRDL1 in LUAD.

Selenium-binding protein 1 (SELENBP1) is highly expressed in human tissues, includ-
ing lung tissue [54]. SELENBP1 expression is associated with poor prognosis in several
cancer types, including lung adenocarcinoma, hepatocellular carcinoma, and colorectal
carcinogenesis, as well as breast cancer [55–58]. SELENBP1 was demonstrated to be in-
volved in the tumor growth-suppressive effects of Nkx2-1, and it was reported to inhibit
tumor growth and the migration of lung adenocarcinoma [59]. A similar conclusion was
obtained in our work, where SELENBP1 was found to be a suppressor factor of LUAD.
These previous experimental studies further prove the reliability of our study.

Transmembrane 163 (TMEM163), also known as synaptic vesicle 31 (SV31) [60], was
recently characterized as a zinc efflux transporter [61]. It was reported that TMEM163 is
most highly expressed in the lungs, followed by the brain and testis [62]. There is still some
controversy regarding the zinc transport function of TMEM163 (influx or efflux transporter).
Initial studies conducted on this used PC12 cells for expressing rodent Tmem163 transiently
or stably. These cells showed intracellular zinc accumulation when they were exposed
to exogenous zinc, indicating that rodent Tmem163 is a zinc influx transporter [60]. By
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contrast, when transiently expressing TMEM163 in HEK-293 cells, intracellular zinc would
be increased. This result implied that TMEM163 might act as an influx transporter [63].
Nevertheless, the roles of TMEM163 in tumorigenesis have never been investigated. Our
study first put forward TMEM163 as a suppressor biomarker in LUAD, which requires
further verification.

There are some limitations in our study. First, our study was performed only through
bioinformatic analysis, meaning that further experiments are needed to validate the relia-
bility of our results using tumor samples and clinical information. Previous experiments
have already demonstrated the anti-tumor roles of HLF and SELENBP1 in LUAD [47,59].
However, the prognostic value of CHRDL1 and TMEM163 in LUAD had never before been
reported. Moreover, the roles of TMEM163 in tumorigenesis have never been investigated.
Thus, the molecular functions of CHRDL1 and TMEM163 in LUAD should be further
investigated in in vitro and in vivo experiments. Second, it is hard to determine an accurate
RSO cutoff value due to the different sequencing platforms and methods of normalization
used; therefore, further large-scale prospective clinical trials need to be performed.

5. Conclusions

In conclusion, four genes were identified by our integrated bioinformatics analysis.
Our results revealed that they were suppressor factors of LUAD and that their high expres-
sion predicted a lower risk of death. Moreover, we identified a four-gene signature as a
potential prognostic factor for LUAD patients. These findings provide a theoretical basis
for exploring potential biomarkers for LUAD prognosis prediction in the future.
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DFS; (B) ROC curves of 1-year, 3-year, 5-year OS in GSE26939; (C) ROC curves of 1-year, 3-year, 5-year
OS in GSE31210; (D) ROC curves of 1-year, 3-year, 5-year OS in GSE72094; (E) ROC curves of 1-year,
3-year, 5-year OS in TCGA-LUAD, Figure S5. The analysis of the differences in the expression of HLF,
CHRDL1, SELENBP1 and TMEM163 between cancer and normal tissues via GEPIA database. Red
indicates the expression of tumor tissue (num T = 438), gray indicates the expression of normal tissue
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pathway enrichment analysis base on the cutoff of ROS (-2.71) in training dataset.
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