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Low oxygen levels induce an adaptive response in cells through
the activation of HIFs (hypoxia-inducible factors). These tran-
scription factors are mainly regulated by a group of proline hydro-
xylases that, in the presence of oxygen, target HIF for degrad-
ation. The expression of two such enzymes, EGLN1 [EGL nine
homologous protein 1, where EGL stands for egg laying defective
(Caenorhabditis elegans gene)] and EGLN3, is induced by hy-
poxia through a negative feedback loop, and we have demon-
strated recently that hypoxic induction of EGLN expression is
HIF-dependent. In the present study, we have identified an HRE
(hypoxia response element) in the region of the EGLN3 gene
using a combination of bioinformatics and biological approaches.
Initially, we isolated a number of HRE consensus sequences in
a region of 40 kb around the human EGLN3 gene and studied
their evolutionary conservation. Subsequently, we examined the

functionality of the conserved HRE sequences in reporter and
chromatin precipitation assays. One of the HREs, located within
a conserved region of the first intron of the EGLN3 gene 12 kb
downstream of the transcription initiation site, bound HIF in vivo.
Furthermore, this sequence was able to drive reporter gene ex-
pression under conditions of hypoxia in an HRE-dependent
manner. Indeed, we were able to demonstrate that HIF was neces-
sary and sufficient to induce gene expression from this enhancer
sequence.

Key words: EGL nine homologous protein 3 (EGLN3), HIF
proline hydroxylase 3 (HPH3), hypoxia-inducible factor (HIF),
hypoxia response element (HRE), proline hydroxylase domain 3
(PHD3), prolyl hydroxylase.

INTRODUCTION

Oxygen is indispensable for the correct functioning of a cell, and
thus cells respond to hypoxia (1 % oxygen) by inducing evolu-
tionarily conserved programmes of gene expression aimed at
keeping the cell viable and restoring the oxygen supply. HIFs
(hypoxia-inducible factors) are a group of basic helix—loop—
helix Per-ARNT-Sim transcription factors that are central to this
adaptive response [1]. HIFs are heterodimers of an oxygen-regu-
lated « subunit (HIF«) and a constitutive 8 subunit (HIF8/ARNT)
that can also associate with other transcription factors not involved
in oxygen homoeostasis [1,2]. In vertebrates, three different HIF«
subunits (HIFle, 2o and 3) have been described [1]. Although
these are thought to be similarly regulated by oxygen, their
tissue distribution [3—-5] and target genes [6,7] may differ. The
importance of HIF factors, as well as the molecular machinery
responsible for their oxygen-dependent regulation, is reflected in
their high degree of conservation in multicellular animals from
nematodes to mammals [1].

The oxygen concentration regulates the levels of HIF« protein,
as well as their transactivation capacity [8]. Under normoxic
conditions, HIF« subunits undergo hydroxylation of two specific
proline residues [9-11], a modification that is mediated by the
activity of a family of 20G (2-oxoglutarate)-dependent hydroxyl-
ases termed PHDs (proline hydroxylase domains), HPHs (HIF
proline hydroxylases) or EGLNs [EGL nine homologous proteins,
where EGL stands for egg laying defective (Caenorhabditis
elegans gene)] [12,13]. As a result, the hydroxyprolines are

specifically recognized by the product of the VHL (von Hippel—
Lindau) tumour suppressor gene, which forms part of an E3 ubi-
quitin ligase complex, targeting HIFa for degradation by the
proteasome [9,10]. In addition to proline hydroxylation, HIF«
subunits can also be hydroxylated at a conserved asparagine
residue located in one of the two HIFw transactivation domains
[C-TAD (C-terminal transactivation domain)] [14]. The enzyme
responsible for asparagine hydroxylation, FIH (factor inhibiting
HIF-1) [15], is also a 20G-dependent hydroxylase, and this
hydroxylation in the C-TAD of HIF prevents its interaction with
the p300 transcriptional co-activator. Since molecular oxygen is
a co-substrate in the reaction catalysed by EGLNs and FIH, these
reactions are compromised in the absence of oxygen. Proline
hydroxylation is particularly affected by hypoxia because of the
elevated Michaelis—Menten constant, K,, for oxygen displayed
by EGLNs [16]. Hence, under normoxic conditions, the efficient
degradation of the « subunit promoted by the EGLNs impairs
HIF transcription and its transcriptional activity is weakened due
to FIH hydroxylation. On the other hand, a restricted oxygen
availability leads to accumulation of HIF« due to the reduction in
proline hydroxylation and an increase in its transcriptional activity
through its interaction with p300. The stabilization of HIF«
promotes its interaction with HIF8 subunits and p300, forming a
complex that binds to specific sequences (HREs, hypoxia response
elements) in target genes [17].

The hypoxic response includes the switch to anaerobic meta-
bolism and the induction of angiogenesis and erythropoiesis
among other events. Accordingly, functional HREs have been
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identified in the regulatory region of the glucose transporter Glut-1
and in most of the genes encoding glycolytic enzymes such as
aldolase A, phosphoglycerate kinase 1, enolase 1 and lactate de-
hydrogenase A [17]. Also regulatory regions of the genes
encoding VEGF (vascular endothelial growth factor), a potent pro-
angiogenic factor, and erythropoietin, a cytokine involved in the
differentiation of red blood cells, contain functional HREs [17].
However, the list of oxygen-induced genes is not restricted to those
involved in glycolysis or angiogenesis. The presence of functional
HREs has also been demonstrated in many other genes involved
in a wide range of biological activities such as those encoding
P4Ho, BNIP3, Noxa, Nur77, inducible NOS, endothelial NOS,
RORa4, c-Met, CXCR4, PAIl, DEC1/2, leptin, endothelinl,
ceruloplasmin, transferrin and haem oxygenase 1. The HREs of
all these genes contain the core sequence [A/G]JCGT, which in
most cases is ACGTG [17]. In addition, HIF transcription factors
show preference for specific bases in the proximity of the core
that has led to the description of the following consensus HRE
sequence: [T/G/C][A/G]CGTG[CGA][GTC][GTC][CTG] [17].
Importantly, EGLN1 and EGLN3 mRNAs, but not those for
EGLN?2 or FIH, are strongly induced by hypoxia in most cell
types [18]. This effect is probably important for cellular adap-
tation to hypoxic conditions and is responsible for the increased
oxygen-mediated HIFo degradation observed after long periods
of hypoxia [19]. Indeed, the induction of EGLN3 mRNA ex-
pression by hypoxia is particularly significant when compared
with other hypoxia-responsive genes [18,20,21]. Recently, it was
shown that HIF-deficient cells [20] or cells in which HIFe mRNA
was suppressed with small interfering RNA [22], did not up-
regulate EGLN3 in response to hypoxia. Moreover, we found
that VHL-deficient cells presented very high normoxic levels of
EGLN3 that reverted upon restoration of VHL function [20,22].
Thus the hypoxic induction of EGLN3 appears to be mediated
by HIF. The promoter of the rat EGLN3 gene (Sm-20) has
recently been defined, yet no regulatory regions responsible for
its hypoxic induction have been detected [23]. We describe here
the identification of a functional HRE, located in the first intron
of the EGLN3 gene, that is responsible for its hypoxic induction.

MATERIALS AND METHODS
Cell culture and reagents

Cells of the human HeLa cervix carcinoma cell line were main-
tained in Dulbecco’s modified Eagle’s medium (Life Technol-
ogies, Basel, Switzerland), while the Chinese-hamster ovary-
derived cell lines 4.5 and Kal3 [24] were grown in Ham’s nutrient
mixture, F-12 (Euroclone, Rehovot, Israel). In all cases, the
culture medium was supplemented with 100 units/ml penicillin,
100 pg/ml streptomycin and 10 % (v/v) fetal bovine serum. Cells
were grown at 37°C in a humidified atmosphere containing
5% CO,. Experiments under hypoxic conditions (1 % O,) were
performed in an /n vivo 400 Hypoxia Workstation (Ruskin
Technology, Leeds, U.K.).

Plasmid constructs

To clone the EGLN3 promoter region, human genomic sequences
from —3410 to + 170 and — 1465 to 4 170 relative to the tran-
scription initiation site of the EGLN3 gene were amplified by PCR
using primers 1+ 2 and 3 4 2 (Table 1) respectively. The PCR pro-
ducts were cloned into the pCR 2.1-TOPO TA plasmid
(Invitrogen, Leek, The Netherlands) and then subcloned into
the Xhol and Nhel sites of the pGL3 basic luciferase plasmid
(Promega, Mannheim, Germany) to generate pGL3-E3P3.5 and
pGL3-E3P1 respectively.
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Table 1

The primers listed were used to amplify the regions indicated from human EGLN3 genomic
fragment, except for primers 15 and 16, which were used to amplify the region indicated from
human collagen proline-4 hydroxylase «, and primers 10 and 11, which were used to introduce
mutations into the cloned enhancer A sequence.

Primers used in the present study

15 P4Hoprom —329
16 P4Ho prom +34

ATCAAGGAGGCAAACTGAACAG
ACTCGGAGCGGCTACTTCCTA

No.  Target Position ~ Dir.  Sequence
1 Promoter —-3410 F CTCGAGCTAGCGCAGATGCACACTGGAAGACAATG
2 Promoter +147 R CTCGAGGTTTCTCGCAACTCTCGGGAGAAG
3 Promoter —1465 F GTTCTTGTCCTGGATGTCATTCCC
4 EnhancerA +12411 F TCCCTGGGCTGGACTGACCTTT
5 EnhancerA +12836 R CCTCCCCCAAGAAGCCACTGAAA
6  EnhancerA +12472 F TTCTCTGGTGACTGGGGTAGAGAT
7 EnhancerA +12728 R GAGCCCATGCAATTAGGCACAGTA
8  EnhancerD  +739 F TCGGAGTCCGTTGTATGTCGACTT
9  EnhancerD +1099 R TGAAGGGCAGTATTAGGTGGCTTT
10 MutantA NA F TCACGCAGCGCTAGCAGCCCTGTCAC
11 MutantA NA R GTGACAGGGCTGCTAGCGCTGCGTGA
12 Promoter —1685 F CAAGGAGGGGTACCTCCTGCTCAA
13 Promoter —1418 R CCTCTCTGCCTCTGAGGGGAGAAA
14 Promoter —-2298 F CAGCCTCCCGAGTAGCTGGGATTA
F
R

The sequences containing putative hypoxia-inducible regulat-
ory sequences were amplified by PCR with the primers indicated
in Table 1. The resulting amplified fragments were cloned into the
pCR 2.1-TOPO TA plasmid (Invitrogen) and then subcloned into
the BamHI and Xhol sites upstream of a minimal rat prolactin
promoter (pProl-) to drive firefly luciferase expression [25].
In all cases, HeLa genomic DNA was used as a template for
the PCRs. The mutant HRE form of enhancer A was generated
by PCR with primers 10 and 11 (Table 1). The wild-type or
mutant HRE enhancer A sequences were cloned into the Xbal site
of pGL3-E3P3.5 to generate pGL3-E3P3.5A or pGL3-E3P3.5A*
respectively.

Reporter assays

Cells were plated in six-well plates 24 h before transfection. Each
plate was transfected with 9 g of a DNA mixture containing 3 g
(HeLa cells) or 5 ug (4.5/Kal3 cells) of the indicated reporter
plasmid and 0.1 ug of a plasmid encoding for Renilla firefly
luciferase under the control of a SV40 promoter. Some 12-13 h
after transfection, the cells were replated in 24-well plates and
then transferred to hypoxic conditions (1% oxygen) or left
under normoxic conditions for an additional 24 h as indicated.
Subsequently, the cells were harvested and the firefly luciferase
activity was determined using a dual luciferase system (Promega)
in which the firefly luciferase activity was normalized with respect
to the Renilla luciferase activity. Each experimental condition was
measured in duplicate.

ChIP (chromatin immunoprecipitation)

For the ChIP assays, HeLa cells were grown on 10 cm plates until
they reached 85 % confluence, at which point they were exposed
to hypoxia (1 % oxygen) or left under normoxic conditions for
a further 5 h. Subsequently, the cells were fixed with 1% (v/v)
formaldehyde (final concentration) for 12 min at 37 °C, which was
stopped by the addition of 0.125 M glycine (final concentration).
The cells were washed with cold PBS and then lysed by
scraping in 1 ml of lysis buffer (1% SDS, 10mM EDTA,
50 mM Tris/HCI, pH 8.1, and a protease inhibitor). Cell lysates
were incubated on ice for 10 min and then sonicated to shear
the DNA under conditions established to ensure that the DNA
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fragments were between 200 and 1500 bp. After the removal of
the insoluble material by centrifugation, 30 ul of each sample
was removed and stored (input), while the rest was diluted in
immunoprecipitation buffer (1 % Triton X-100, 2 mM EDTA,
150 mM NaCl and 20 mM Tris/HCl, pH 8.1). The lysates were
precleared with preimmune serum and 200 g of a Salmon Sperm
DNA/Protein A agarose 50 % slurry (Upstate Biotechnology,
Lake Placid, NY, U.S.A.) for 1 h at 4°C. The samples were then
immunoprecipitated twice, initially with whole rabbit serum for
6 h (IgG control) and then overnight at 4°C with a polyclonal
anti-HIF1 alpha antiserum (Abcam, ab2185). Immunocomplexes
were recovered by the addition of 400 ug of Salmon Sperm
DNA/Protein A agarose 50 % slurry to the samples that were then
sequentially washed for 15 min in TSE I (0.1 % SDS, 1 % Triton
X-100, 2mM EDTA, 20 mM Tris/HCI, pH 8.1, and 150 mM
NaCl), TSE II (0.1 % SDS, 1% Triton X-100, 2 mM EDTA,
20mM Tris/HCI, pH 8.1, and 500 mM NaCl) and buffer III
(0.25 M LiCl, 1 % Nonidet P40, 1 % deoxycholate, ] mM EDTA
and 10 mM Tris/HCI, pH 8.1). Finally, the complexes were
washed twice with TE buffer (10 mM Tris, pH 8.0, and 1 mM
EDTA) and extracted twice with a buffer containing 1 % SDS and
0.1 M NaHCO;. The eluates were pooled, and cross-linking was
reversed by the addition of 200 mM NacCl (final concentration)
and incubating overnight at 65°C. The proteins were removed
by the addition of proteinase K (30 png/sample) for 2 h at 42°C,
and the DNA was extracted using Qiagen PCR extraction kit
before eluting in 50 ul of water. Immunoprecipitated DNA was
amplified by PCR using the primers indicated, and the PCR
products were resolved by gel electrophoresis and visualized by
ethidium bromide staining.

Computer identification of HREs

To generate a position-specific frequency matrix for HIF recog-
nition, we aligned several sequences (100 bp) from known hy-
poxia-inducible genes: VEGF [26-28], aldolase A [29,30], phos-
phoglycerate kinase 1 [29,31], erythropoietin [32-35], haem
oxygenase 1 [36], RORa4 [37], Glut-1 [38], P4H« [39], BNIP3
[40] and c-Met [41]. In the case of VEGF, Epo, ROR4«,
Glut-1, PAHo and BNIP3, both human and rodent sequences
were included in the alignment. We then calculated the residue
frequencies at each position of the aligned sequences and com-
pared them with the frequency expected by chance (x? test). This
analysis (Table 2) showed that, in addition to those positions
corresponding to the [A/G]CGT core, several other positions pre-
sented a nucleotide composition significantly different from that
expected by chance (P < 0.05). From this alignment, we con-
structed a 33 bp position-specific matrix with the frequencies
observed at positions — 8 to +26 (4 1 corresponding to the first
base of the [A/G]CGT core).

To identify potential regulatory sequences containing an HRE
core, we first searched both DNA strands of the 40 kb human
EGLN3 locus (—9675 to + 30326 relative to transcription start)
for the presence of the [A/G]CGT motif. This produced a list of
124 sequences for the human locus and 129 for the mouse locus.
We then calculated a score for each one of the 33 bp genomic
sequences containing an [A/G]JCGT core using the position-
specific matrix of frequencies (Table 2). The score was calculated
as:

j=+25
(Z Freq,./.> —mi
j=—8

where i is the nucleotide (adenosine, cytosine, guanosine or
thymidine) at position j of the sequence analysed, and Freq; is

Table 2 Position-specific frequency matrix

Position indicates the position relative to the first base of the HRE core. A, C, G, T, frequencies
of these nucleotides at each position. P is the probability value obtained by comparison of the
nucleotide frequency distribution at a determined position with that expected by chance (x?
test). Frequencies of nucleotides at the HRE core are shown in bold face.

Position A C G T P
-8 0.000 0.630 0.250 0.130 0.003
-7 0.250 0.130 0.500 0.130 0.112
-6 0.060 0.500 0.310 0.130 0.058
-5 0.190 0.060 0.500 0.250 0.090
—4 0.130 0.560 0.310 0.000 0.009
-3 0.130 0.560 0.250 0.060 0.023
-2 0.190 0.190 0.560 0.060 0.029
-1 0.000 0.310 0.250 0.440 0.090
+1 0.810 0.000 0.190 0.000 <0.001
+2 0.000 1.000 0.000 0.000 <0.001
+3 0.000 0.000 1.000 0.000 <0.001
+4 0.000 0.000 0.000 1.000 <0.001
+5 0.000 0.060 0.940 0.000 <0.001
+6 0.250 0.500 0.130 0.130 0.112
+7 0.000 0.310 0.560 0.130 0.009
+8 0.250 0.250 0.380 0.130 0.572
+9 0.130 0.130 0.250 0.500 0.112
+10 0.380 0.500 0.060 0.060 0.023
+11 0.250 0.380 0.190 0.190 0.682
+12 0.060 0.130 0.750 0.060 <0.001
+13 0.310 0.130 0.500 0.060 0.058
+14 0.190 0.440 0.250 0.130 0.321
+15 0.560 0.250 0.190 0.000 0.015
+16 0.130 0.440 0.440 0.000 0.023
+17 0.130 0.310 0.500 0.060 0.058
+18 0.130 0.440 0.310 0.130 0.212
+19 0.310 0.310 0.310 0.060 0.392
+20 0.060 0.630 0.250 0.060 0.004
+21 0.190 0.190 0.440 0.190 0.392
+22 0.130 0.500 0.250 0.130 0.112
+23 0.190 0.310 0.250 0.250 0.919
+24 0.000 0.440 0.130 0.440 0.023
+25 0.190 0.690 0.000 0.130 0.001

the frequency of nucleotide i at position j of the position-specific
matrix of frequencies (read from Table 2, j corresponds to the
position column). The positions are relative to the [A/G]CGT
core, the first base of this core being (A or G) in position + 1.
Finally, mi is the minimum theoretical score value (5.27) for any
sequence containing an [A/G]CGT core.

Thus, while the identification of a potential HRE is based solely
on the presence of an [A/G]CGT core, the final score associated
with each HRE-containing sequence is based on the comparison
of the whole 33 bp sequence with the position-specific matrix
(Table 2). For example, the score attributed to the sequence AC-
AGGGCTACGTGCGCTGCGTGAGGGTGGCAGC (enhancer A,
see text for details) will be: (0.0040.13 +0.0640.540.31 +
0254+0.194+044 4+ 081 +14+1+1+0944+0.5+ 0.56 +
0.25 + 0.5 + 0.06 +0.384+0.7540.06 + 0.25 + 0.56 + 0.44 +
0.5 4+ 0.31 +0.06 +0.25+0.4440.5 + 0.19 +0.1340.69) —
5.25=8.758.

Statistical analysis of data

Experimental data were analysed with the Prism™ GraphPad
(version 4.01) software. Data from reporter assays were analysed
by the ANOVA test followed by the Tukey test. The P values
obtained in these analyses are indicated in the text and Figures.
Other statistical tests were applied to specific datasets as indicated
in the text (¢ test and x? test).
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Figure 1 The EGLN3 promoter region is not induced by hypoxia

() Diagram of the human EGLN3 promoter region, in which the numbers indicate the nucleo-
tide positions relative to the transcription initiation site. Black boxes represent the first EGLN3
exon comprising residues + 1 to +686. The small black box corresponds to the 5’-UTR (from
+1to +329) and the large one to the coding sequence (from + 329 to +686). CpG, location
of a CpG-rich region according to the UCSD Genome Browser (http://genome.ucsc.edu). Open
boxes indicate the localization of putative HRE core sequences. The regions indicated, — 3410
to +169 and — 1465 to + 169, in the EGLN3 genomic fragment were cloned into pGL3 basic
vectors upstream of the firefly luciferase gene to generate pGL3-E3P3.5 and pGL3-E3P1.5
respectively. (B) Hela cells were transfected with the fragments indicated from EGLN3 or from
the VEGF-A promoter cloned into the pGL3 basic reporter plasmid. Upper panel: diagram
of the pGL3-E3P3.5 and pGL3-E3P1.5 constructs. Lower panel: after transfection, the cells were
cultured under normoxic conditions (Nx) or in an atmosphere of 1% oxygen (Hx) for 24 h before
analysing the luciferase activity. The mean results from ‘n’ independent experiments, each per-
formed in duplicate (solid bar) are shown. Each type of symbol represents data from an individual
experiment. In order to compare between different experiments, the ratio of firefly and Renilla
luciferase activities for each sample was normalized to the ratio obtained for the control (empty
vector under normoxia). ***, statistically significant differences (P < 0.001) between the two
indicated samples. The fold induction of hypoxia versus normoxia for each sample is shown.

RESULTS

EGLN3 gene promoter activity is not induced by hypoxia

In order to study the regulation of EGLN3 transcription by
hypoxia, we cloned the putative promoter region of the human
EGLN3 gene. To this end, we PCR-amplified the region between
nt — 3410 and + 170 (E3P3.5) relative to the EGLN?3 transcription
initiation site and cloned this upstream to a firefly luciferase re-
porter gene (Figure 1A). This genomic region contains two pu-
tative HRE that match the [A/G]CGT consensus. We then also
generated a reporter construct containing the genomic region
— 1465 to + 170 (E3P1.5) that lacks these two putative HREs.
Both genomic regions E3P3.5 and E3P1.5 acted as promoters
capable of driving luciferase expression above control levels (Fig-
ure 1B). Interestingly, stronger promoter activity was observed
with the shortest fragment (E3P1.5), suggesting the presence of
a negative regulatory sequence in the longer fragment (E3P3.5).
However, in contrast with promoters induced by hypoxia (e.g. the
VEGF-A promoter), hypoxia did not induce promoter activity of
either E3P1.5 or E3P3.5 (Figure 1B). Thus it appears that the
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regulatory sequences responsible for the induction of EGLN3
expression under hypoxic conditions are not located in this
promoter region.

Identification of putative HREs in the EGLN3 genomic region

In view of the results presented above, we reasoned that an
enhancer region might be responsible for the induction of EGLN3
by hypoxia. Since enhancers can be located upstream or down-
stream of and even far from the transcriptional initiation site,
we employed a strategy based on bioinformatics — to search
for putative HREs in a large genomic region of the human
EGLN3 locus (Homo sapiens chromosome 14 genomic contig
NT_026437.11, gi 29736559:14310000-14350000). This region
extends from 9 kb upstream of the transcription initiation site
to 3.5 kb downstream of the last exon of the gene. Since the
probability of encountering a short motif such as the canonical
HRE [A/G]CGT over 40 kb is very large, we first generated an
extended HRE consensus motif to screen this genomic fragment.
For this, we selected a set of well-characterized hypoxia-induced
regulatory sequences from the alignment of the promoters of
several hypoxia-induced genes (see the Materials and methods
section). Analysis of the sequences revealed that, in addition to
the [A/G]CGT core, other positions extending over 33 bp showed
a significant degree of conservation (P <0.05, x? test). From
this alignment, we generated a 33 bp position-specific probability
matrix based on the frequencies observed for the nucleotides at
each position of the aligned sequences around and including the
HRE core motif (Table 2).

By comparing the nucleotide composition of putative HREs
with this position-specific frequency matrix, a score can be
assigned to any sequence that will reflect its similarity to
known functional hypoxia-responsive sequences. The scoring
method used assigned a value of zero to sequences lacking
the highly conserved [A/G]CGT core and increasing values to
sequences that were more similar to those observed in the known
hypoxia-responsive regulatory regions. In this way, the scores
obtained for several 33 bp-long sequences containing functional
HREs from known hypoxia-induced genes (9.871+1.222,
n=17) were significantly higher (P < 0.0001, ¢ test) than those
obtained for a group of random sequences containing the
[A/G]CGT core (5.809 £ 0.772, n=17; Figure 2A).

To identify potential functional HREs, we first identified 33 bp
stretches that contained an [A/G]CGT core in the EGLN3 geno-
mic fragment. This analysis resulted in a list of 124 putative
hypoxia-responsive sequences. We then calculated the score for
each sequence by comparison with the position-specific frequency
matrix (see the Materials and methods section for details) and
sorted each putative responsive sequence according to its value.
Since the hypoxic response of EGLN3 is conserved in rodent
cells, we reasoned that the hypoxia-responsive sequence in the
human EGLN3 locus should be conserved in the equivalent
mouse locus. Thus we also searched for sequences containing
HREs along 32kb of the mouse EGLN3 genomic region
(Mus musculus chromosome 12 genomic contig NT_039551.3,
g1 5176690: 13190000-13158000) in the same manner as for the
human sequence. We identified 129 putative murine HREs from
this genomic fragment. In order to determine whether any of the
putative HREs was conserved between human and mouse, we
compared them using the BLAST 2 SEQUENCES program [42].
Instead of comparing each one of the 124 putative human HREs
with all the 129 putative mouse HREs, we concatenated all human
HREs in a single artificial sequence and compared it with the
concatenated mouse HRE:s in a single step (Figure 2B). Only five
sequences were conserved between the two species (Figures 2B
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(A) The data represent the scores obtained by comparing the sequences from VEGF-A, BNIP3, P4Ha, ROR4er, c-Met, PGK1, Glut-1, promoters (functional HRES; @) or from random sequences
containing a core [A/G]ICGT motif (random HRES; A), to the position-specific frequency matrix. The horizontal line represents the mean value for each group of data and the number represents its
value. The difference between their means was statistically significant (P < 0.001, ¢ test). (B) BLAST comparison of the concatenated 124 putative HRE sequences found in the human 40 kb EGLN3
genomic region versus the concatenated 129 sequences found for the mouse locus. (G) Alignment of the five HRE sequences identified in (B) that are conserved between human (Hs) and mouse
(Mm). The score for each sequence, according to the position-specific frequency matrix, as well as their rank, is shown. (D) Genomic region of the EGLN3 locus (adapted from UCSD Genome
Browser, http://genome.ucsc.edu). Boxes are open reading frames. The size of the box indicates whether it is UTR or CDS, as indicated in Figure 1. The arrow indicates the direction of transcription.
The EGLN3 gene structure, including transcription start site, is based on RefSeq NM_022073. Conservation of sequences among different species is indicated by the black histogram, and the
individual homology between different species and human is indicated by grey histograms. The localization of enhancers A-D in the EGLN3 genomic region is indicated by arrows. The sequence
conservation of the five putative enhancers between different species is shown; the arrows above the HRES indicate their direction.

and 2C), and these were named enhancers A-E in decreasing
order of the scores obtained for each (Figure 2C).

Of these five putative hypoxia-responsive sequences conserved
between human and mouse, only enhancer A reached a score
similar to that found for other functional HREs (Figures 2C and
2A). In addition, enhancer A had the highest score of all the
putative HREs found in the EGLN3 genomic region (Figure 2C).
The other four sequences (enhancers B-E) had a score that was
significantly below that of the functional HREs (Figures 2A and
2C; P <0.01). We examined the genomic location of these se-
quences, as well as their conservation across a broad range of

species (Figure 2D). Three of the five putative HREs (enhancers
B, C and E) were located in the coding sequence of the first exon
of human EGLN3 (at positions + 563, +453 and + 528 respect-
ively), while the other two conserved regions were situated in
the first intron of human EGLN3 (enhancer D at + 870 bp and
enhancer A at 412588 bp), downstream of the transcription in-
itiation site (Figure 2D). Significantly, enhancers A and D
were located in a long 400 bp conserved region and such
regions, called CNS (conserved non-coding sequences), often
correspond to dispersed transcriptional regulatory elements
[43].
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Closer analysis of the evolutionary conservation of the putative
HREs (Figure 2D) revealed that the sequence located at + 12 kb
(enhancer A) was highly conserved throughout evolution from
birds to humans. In contrast, despite being located in a CNS, the
core of the HRE located at 4+ 870 (enhancer D) was not conserved
in dog or chicken (Figure 2D). Since the other three sequences
(enhancers B, C and E) were located in the coding sequence of
EGLN3, their conservation might reflect the need to maintain the
protein structure of EGLN3 rather than a conserved regulatory
function. Even so, the core HRE of enhancers B and E was not
conserved in chicken (Figure 2D).

In summary, through this bioinformatics approach, we iden-
tified an evolutionarily conserved region (enhancer A) contain-
ing a putative hypoxia-inducible sequence in the first intron of the
EGLN3 gene.

Enhancer A is up-regulated by hypoxia in an
HRE-dependent manner

In order to probe the functionality of enhancer A, we cloned the
sequence + 12411 to + 12836 (containing the CNS) from the hu-
man EGLN3 gene upstream of a minimal promoter to drive
luciferase expression in a reporter construct (Figure 3A). The
expression of luciferase from this construct was strongly induced
under hypoxic conditions, increasing by a mean of 11.9-fold
(Figure 3B, P < 0.001 when comparing normoxic versus hypoxic
values). In contrast, the other putative HRE-containing sequences
derived from the EGLN genomic region (Figure 3A), such as
enhancer D (4738 to + 1099; Enh.D), those located in the pro-
moter regions (— 1685 to — 1418 and —2298 to — 1418; Prom.1
and Prom.2 respectively), and those from the coding sequence
(enhancers B, C and E) were unable to induce luciferase ex-
pression in response to hypoxia (Figure 3B and results not shown).
To confirm that the induction in response to hypoxia observed
with the enhancer A construct was mediated by the putative HRE
in this sequence, we generated a mutant construct in which the
central ACGT core was mutated to TAGC (Enh. A*). This mutant
construct was no longer able to induce luciferase expression in
hypoxic conditions (Figure 3B). Thus these results indicate that
enhancer A contains a functional HRE.

We therefore examined whether enhancer A was able to drive
hypoxic gene expression in the context of its natural relative
location. Hence, we cloned the enhancer A sequence into the
pGL3-E3P3.5 construct (Figure 1A), downstream of the luciferase
gene (Figure 3C). Reporter assays with this construct revealed
that enhancer A was able to increase luciferase expression in
response to hypoxia (a mean of 2.4-fold, P < 0.001) regardless of
its position relative to the promoter (Figure 3C). Furthermore, in
these experiments, enhancer A increased transcription from the
natural EGLN3 promoter.

HIF1« binds to the enhancer A sequence in vivo

For the enhancer A sequence identified to be a true HRE, it must be
recognized by HIF in vivo. To test this possibility, we performed
ChIP experiments on HeLa cells grown under normoxic or
hypoxic (1% oxygen) conditions (Figure 4). After treatment,
chromatin was immunoprecipitated with anti-HIFl« antibodies
and the bound DNA was identified by PCR amplification with
primers specific for enhancer A (primers 6 and 7, Table 1),
enhancer D (primers 8 and 9, Table 1) or the hypoxia-induced
region of the PAHw (primers 15 and 16, Table 1) as a control.
Under hypoxic conditions, endogenous HIF1« bound to the HREs
in enhancer A and the PAHo promoter, but not to that in en-
hancer D (Figure 4). Moreover, both in the case of the control
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Figure 3 Enhancer A is induced by hypoxia

() Diagram of the H. sapiens EGLN3 genomic region in which the numbers indicate nucleotide
positions relative to the transcription initiation site, as shown in Figure 1. The indicated regions
(hatched boxes) containing putative hypoxia-responsive sequences were cloned into the pProl
plasmid upstream of the rat minimal prolactin promoter. (B) HeLa cells were transfected with the
fragments from the EGLN3 genomic region indicated, cloned upstream of a minimal promoter
(open pointed box). A diagram of the constructs is depicted in the Figure, in which the hatched
box represents any of the elements from Figure 3(A). After transfection, the cells were cultured
under normoxic (Nx) conditions or in an atmosphere of 1% oxygen (Hx) for 24 h before
analysing the luciferase activity. Enh. A* is a reporter construct derived from enhancer A (Enh. A)
in which the core ACGT was mutated to TAGC. The data are presented as indicated in Figure 1.
(C) The enhancer A sequence, or its mutated form, was cloned into pGL3-E3P3.5 (see Figure 1A)
downstream of the firefly luciferase gene as depicted in the Figure (hatched box). HeLa cells
were transfected with the indicated constructs and treated as in (B). The data are presented as
indicated in Figure 1.

P4Ho promoter and that of enhancer A, HIFle binding was
strongly diminished under normoxic conditions (Figure 4). These
results suggested that enhancer A is indeed a functional regulatory
sequence that responds to hypoxia in vivo.
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Figure 4 HIF1« binds to enhancer A in vivo

Hela cells were cultured under normoxic (N) or hypoxia (H) conditions for 12 h and then fixed
to cross-link proteins to DNA. Cells were lysed and their DNA fragmented by sonication. Cell
lysates were then immunoprecipitated with control IgGs (IgG) or a polyclonal antiserum raised
against HIF1a (1er). Co-immunoprecipitated DNA was then amplified by PCR with primers
specific for enhancer A (primers 6 and 7, Table 1), enhancer D (primers 8 and 9, Table 1) or
collagen proline-4 hydroxylase e promoter (P4He; primers 15 and 16, Table 1). Input, sample
of fragmented genomic DNA before immunoprecipitation. None, PCR without template. The
experiment was repeated three times yielding similar results.

HIF is necessary and sufficient to induce enhancer A

It is known that the induction of EGLN3 by hypoxia is mediated
by HIF [20,22]. The results we presented above suggest that
enhancer A located at + 12 kb inside the first intron of the EGLN3
gene was the regulatory region responsible for the induction of
EGLN3 in response to hypoxia. Therefore we studied whether
HIF« was necessary to induce enhancer A-mediated transcription
by analysing the response to hypoxia of constructs driven by
enhancer A in Kal3 Chinese-hamster ovary cells. These cells are
deficient in HIF activity due to their incapacity to express the
HIFlo and HIF2« genes [24]. For comparison, these constructs
were also transfected into a Kal3-derived cell line, 4.5 cells,
in which the HIF deficit is complemented by the expression
of HIF1w. [24]. Of these lines, the activity of enhancer A was
only induced by hypoxia in the 4.5 cells that expressed func-
tional HIF (Figure 5A). We then determined whether HIF was
sufficient to induce enhancer A by transfecting HeLa cells with
the enhancer A reporter constructs in combination with a plasmid
encoding an oxygen-independent HIFl« construct. This mutant
HIF is resistant to oxygen-mediated degradation due to the
mutation of Pro*” and Pro°* to Ala. [20]. HIF1« expression was
sufficient to induce wild-type enhancer A activity under con-

ditions of normoxia, but not the activity of the HRE-mutant
enhancer A construct (Figure 5B). Similar results were obtained
with constructs where enhancer A was situated downstream of
the firefly luciferase reporter gene (results not shown). Thus
HIF1« did appear to be necessary and sufficient to induce EGLN3
enhancer activity.

DISCUSSION

The adaptive response to hypoxia mediated by HIF involves the
induction of a large number of genes, including those required
for anaerobic glycolysis and angiogenesis. HIF also mediates the
induction of EGLN1 and EGLN3, both involved in its regulation,
which is indicative of the existence of a negative feedback loop
to maintain strict control over HIF activity.

Here, we describe the identification of an evolutionarily con-
served enhancer sequence responsible for the hypoxia-mediated
induction of EGLN3. Interestingly, this enhancer was located
in the first intron of the EGLN3 gene, more than 12 kb down-
stream the transcription initiation site. It is well known that en-
hancers are capable of influencing transcription at such a distance
from the promoter, regardless of their relative position with respect
to the transcription initiation site (upstream or downstream). How-
ever, this is unusual among hypoxia-regulated genes in which
most of the HREs described lie in the promoter region of the gene
regulated, usually within 1 kb of the transcription initiation site.
An important exception is the hypoxia-inducible sequence of the
erythropoietin gene that is located in its 3'-UTR (3'-untranslated
region) at 3 kb downstream of the transcription initiation site
[32]. Many models for ‘action at a distance’ have been proposed
[44]. In most of the cases, it is supposed that the DNA between
the enhancer and the promoter loops out to allow the activator
proteins bound to the enhancer to come into contact with proteins
(including the general transcription machinery) bound to the
promoter. In fact, this model has been described for the Epo
gene [45]. The binding of Sp1 and Smad3 transcription factors to
Epo promoter is required for efficient hypoxic induction through
the HRE located at the 3'-UTR gene region. This co-operation is
due to physical interaction between these transcription factors and
HIFla. The physical contact between the upstream promoter
and the 3’ downstream enhancer is mediated by Sp1 and Smad3
factors, and would occur upon bending of the DNA intervening
sequences [45]. Hence, a similar mechanism might explain the
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(A) HIF1-deficient Ka13 cells or HIF1a-competent 4.5 cells were transfected with the constructs indicated (see Figure 3A for details). After transfection, the cells were cultured under normoxic
conditions (Nx) or in an atmosphere of 1% oxygen (Hx) for 24 h before analysing the Iuciferase activity. Results are represented as indicated in Figure 1. (B) Hela cells were transfected with the
indicated constructs derived from enhancer A (see Figure 3A for details) together with a plasmid encoding a stable HIF construct (HIF PP). After transfection, the cells were cultured under normoxic
conditions for 48 h before analysing the luciferase activity. Results are represented as indicated in Figure 1.
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regulation of the EGLN3 gene by HIF acting through the enhancer
described herein.

Although we cannot rule out the possibility that other sequences
exist which control the induction of EGLN3 by hypoxia, the
one described here is likely to be functionally relevant because
endogenous HIFla binds to it in vivo in an oxygen-dependent
manner (Figure 4). In agreement with our data (Figure 1), aregion
upstream of the transcription initiation site of the Sm20 gene,
the rat orthologue of the EGLN3, was shown to have promoter
activity dependent on Sp1/Sp3 sites [23]. Moreover, a negative
regulatory region was observed between — 3800 and — 1100
of the rat promoter that seems to be conserved in the human
promoter (Figure 1). However, while Sm20 (EGLN3) is known
to be induced by hypoxia in rat cells [21], how this promoter is
regulated by hypoxia and whether functional hypoxia-inducible
sequences exist is still unclear [23]. Thus our results are the first to
explain the mechanism behind EGLN3 induction at low oxygen
tensions and constitutive HIF activity.

The atypical location of the HRE within the EGLN3 locus, and
its distance from the transcription initiation site, made its identifi-
cation difficult by conventional biological approaches. The suc-
cessful identification of a hypoxia-regulated sequence by adopting
a bioinformatics approach corroborates the power of these strate-
gies in the search for regulatory regions in genomic sequences.
We first generated a quantitative consensus sequence (position-
specific frequency matrix) through the alignment of several hy-
poxia-regulated sequences. This consensus allowed us, not only
to identify putative HREs, but also to sort them according to
their similarity to known functional HREs. We then investigated
the evolutionary conservation of these putative HREs since the
evolutionary conservation of regulatory sequences is of par-
amount importance to identify biologically relevant regulatory
sequences [43]. Here, the combination of both approaches resulted
in the identification of a functional HRE. Significantly, the posi-
tion-specific frequency matrix described in this work might aid
in the future identification of hypoxia-regulated regions in other
genes.

One further conclusion from our work is that the core HRE
([A/G]ICGT) is necessary, but not sufficient, to confer oxygen
sensitivity. This is supported by the fact that several sequences
containing this core were not able to drive luciferase expression
in response to hypoxia (Figure 3) or to bind HIFl« in vivo (Fig-
ure 4 and results not shown). These results are in agreement
with previous studies of other hypoxia-inducible promoters [30].
Therefore sequence requirements other than the core HRE are
probably required for the efficient recruitment of HIFla. This
might explain why the alignment of functional HREs showed
that, in addition to the [A/G]JCGTG core, the frequency of nu-
cleotides at other specific positions was significantly greater than
that expected by chance. Conserved sequences other than the
core HRE in hypoxia-inducible sequences have been identified
previously [37,46], although these often differed and do not match
with that described here. Nevertheless, it is probable that, in
addition to the HIF-binding site, these conserved sequences play a
major role in HIF-mediated transcription. In agreement with this,
mutation of these abolishes the hypoxic response of the isolated
regulatory sequences [37,46]. Finally, the conservation of residues
might also indicate that factors other than HIF are required for
hypoxic induction of these sequences. In fact, for some genes, it
has been shown that the binding of transcription factors such as
AP-1 [47] or Sp1 [37] is required for the HIF-mediated response
to hypoxia.

In summary, we have identified, by a combination of bio-
informatics and biological approaches, a CNS in the first intron of
the EGLN3 gene that binds HIF 1« in vivo and drives transcription

© 2005 Biochemical Society

in vitro in response to hypoxia. Thus we conclude that this en-
hancer region, located 12 kb downstream of the transcription
initiation site, is responsible for the HIF-mediated hypoxic induc-
tion of EGLN3.
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