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Abstract 

Background: Lung cancer (LC) is one of the most lethal and most prevalent malignant tumors, and its incidence and 

mortality are increasing annually. Lung adenocarcinoma (LUAD) is the most common pathological type of lung can-

cer. Several biomarkers have been confirmed by data excavation to be related to metastasis, prognosis and survival. 

However, the moderate predictive effect of a single gene biomarker is not sufficient. Thus, we aimed to identify new 

gene signatures to better predict the possibility of LUAD.

Methods: Using an mRNA-mining approach, we performed mRNA expression profiling in large LUAD cohorts 

(n = 522) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and 

connections between genes and glycolysis were found in the Cox proportional regression model.

Results: We confirmed a set of nine genes (HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and 

AGRN) that were significantly associated with metastasis and overall survival (OS) in the test series. Based on this 

nine-gene signature, the patients in the test series could be divided into high-risk and low-risk groups. Additionally, 

multivariate Cox regression analysis revealed that the prognostic power of the nine-gene signature is independent of 

clinical factors.

Conclusion: Our study reveals a connection between the nine-gene signature and glycolysis. This research also 

provides novel insights into the mechanisms underlying glycolysis and offers a novel biomarker of a poor prognosis 

and metastasis for LUAD patients.
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Background
Lung cancer (LC) is the leading cause of cancer 

death worldwide [1, 2]. Cancer metastasis and recur-

rence remain challenging clinical problems. Although 

advancements in treatment have been achieved, 

including improvements in surgery, targeted therapy, 

chemotherapy and radiotherapy, the 5-year survival rate 

is only 15% [3, 4]. Lung adenocarcinoma (LUAD) is a 

pathological subtype of lung cancer with a survival rate of 

4–17% [5]. Despite progress in molecular targeted ther-

apy, which has been further developed for years, more 

targets need to be identified. Some evidence has shown 

that the discovery and application of molecular biomark-

ers can provide prognostic value. Thus, for this study, we 

selected high-risk LUAD patients. Some relevant glyco-

lytic enzymes promote the growth of LUAD cells, and the 
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“Warburg effect” has since been demonstrated in differ-

ent types of cancer. Therefore, the development of a new 

glycolysis-related gene signature could predict LUAD.

In recent years, many studies have confirmed that 

several biomarkers are prognostic factors of lung ade-

nocarcinoma. For example, PKM2 (The M2 isoform 

of pyruvate kinase) is essential in the metabolism and 

growth of tumor cells, and increased PKM2 during 

TGF-β1 (beta-type transforming growth factor mRNA) 

signaling induces  epithelial–mesenchymal transition 

(EMT) in LUAD cells, which is a biomarker for treatment 

response [6, 7]. CAV1 (caveolin 1) and DCN (decorin) 

inhibit LUAD cell proliferation and play an important 

role in regulating LUAD progression [8]. SPINK1 (ser-

ine protease inhibitor Kazal type 1) can promote LUAD 

cell growth, migration, and invasion [9]. Additionally, 

miRNAs have been considered new biomarkers of can-

cer with infinite clinical value because of their remark-

able stability in tissues, serum and other body fluids [10]. 

With the development of high-throughput sequencing, 

numerous databases have facilitated a detailed under-

standing of genomic alterations in disease, including the 

identification of changes in patient genomes by some 

researchers, and many biomarker changes associated 

with prognosis and survival have been revealed by min-

ing databases [11]. However, a single gene biomarker 

cannot produce good predictive effects, and some stud-

ies have found that gene signatures are a better alterna-

tive for predicting prognosis and survival [12]. Multigene 

prognostic signatures based on original cancer biopsies 

can be used in clinical treatment. However, not all path-

ways have been explored to identify new LUAD biomark-

ers. Thus, more efforts are needed to find more efficient 

and sensitive biomarkers for LUAD.

A large amount of data have been generated using spe-

cial tools. For example, regarding the major public pro-

ject The Cancer Genome Atlas (TCGA) [13], we used 

Gene Set Enrichment Analysis (GSEA) to search for some 

genes and perform further analysis. Generally, some 

studies have focused on comparing the gene expression 

of two groups and performed research on some genes 

that were highly up- or downregulated. Unfortunately, 

some genes that did not show significant differences but 

that had important biological significance, information, 

and connections among gene regulatory networks, gene 

functions and characteristics were omitted. The benefit 

of GSEA is that it does not require a distinct differential 

gene threshold. The algorithm is unique in that genes 

whose expression is based on the entire trend of effec-

tive data and overall level can be identified even with-

out any prior experience. To build a better relationship 

between the mathematical significance of these data and 

the biological significance of gene expression, we need to 

identify additional methods relative to the biomarkers of 

LUAD.

We aimed to identify gene and pathway signatures with 

suitable performance to be used in clinical applications, 

with the goals of providing more insight into tumor cell 

growth, death and metastasis and opening a new avenue 

for targeted treatment. From our study, we have drawn 

hallmark gene sets from 522 LUAD cases with complete 

mRNA expression datasets from the TCGA database. We 

have confirmed the key mRNAs related to glycolysis and 

have built a nine-gene risk signature that can accurately 

predict patient prognosis. Surprisingly, in several path-

ways, this glycolysis-related risk signature can success-

fully predict patients who are in the high-risk group and 

who have a poor prognosis.

Methods
Patient clinical data and mRNA expression dataset

The mRNA expression profiles and clinical data of 522 

LUAD patients were extracted from the TCGA database 

(https ://cance rgeno me.nih.gov/) and divided into two 

groups: a lymph node metastasis group and a non-lymph 

node metastasis group. Additionally, the following clini-

cal information was recorded: sex, age, tumor size, num-

ber of lymph node metastases, status of distant organ 

metastasis, neoplasm cancer status, and residual tumor. 

Finally, 511 patients were classified. The general clinical 

features are detailed in Table 1.

Gene Set Enrichment Analysis

GSEA (http://www.broad insti tute.org/gsea/index .jsp) 

was performed to explore whether the identified gene 

sets showed significant differences between the groups 

[14]. The expression levels of 24,991 mRNAs were ana-

lyzed between the lymph node metastasis and non-lymph 

node metastasis groups. Normalized P values (P < 0.05) 

were used to determine which functions could be used 

for further investigation.

Statistical analysis

The expression profiles of 24,991 mRNAs are shown as 

raw data, and each mRNA was log2 normalized for fur-

ther analysis. Cox regression was used to analyze and 

identify genes with obvious relationships to metastasis 

and OS with P values < 0.05. Next, we used multivari-

ate Cox proportional hazards regression to analyze and 

further confirm the prognostic genes from the pre-

vious steps. The filtered mRNAs were classified into 

risk (hazard ratio (HR) > 1) and protective (0 < HR < 1) 

types. Thereafter, a prognostic risk score formula was 

established based on a linear combination of expres-

sion levels weighted with the regression coefficients 

derived from the multivariate Cox regression analysis. 

https://cancergenome.nih.gov/
http://www.broadinstitute.org/gsea/index.jsp
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Risk score = expression of gene 1 × β1 + expression of 

gene 2 × β2 +⋯+ expression of gene n × βn. We sepa-

rated 522 patients into high-risk and low-risk sub-

groups by the median value using the median risk score 

as the cutoff. Next, we used Kaplan–Meier curves and 

log-rank methods to validate the prognostic impor-

tance of the risk score. Subsequently, we examined the 

differential expression of optimal genes between the 

lymph node metastasis and non-lymph node metasta-

sis groups. We classified them into high-risk and low-

risk groups by the median risk score and used the KM 

method (multiplication of the positive limit) to pre-

dict the accuracy of the survival status and survival 

time. The survival function was constructed by the KM 

method, and the ROC curve was drawn. Additionally, 

we conducted univariate Cox regression and multivari-

able Cox regression analyses to check whether the risk 

score was a prognostic factor within the available data. 

Select gene alterations are shown online for specific 

cancer types (http://www.cbiop ortal .org/). All statisti-

cal analyses were performed using SPSS 16.0 and Graph 

Pad Prism 7 software.

Results
Initial screening of genes using GSEA

We obtained clinical features from 522 patients with 

LUAD, along with an expression data set for 24,991 

mRNAs, from the TCGA database. The expression sig-

natures of the hallmark gene sets, each containing 50 

specific gene sets, were derived by concentrating mul-

tiple gene sets from the Molecular Signatures Database 

(MSigDB) to represent well-defined biological statuses or 

courses. GSEA was performed using the above detailed 

data to detect whether the identified gene sets showed 

statistically notable differences between the lymph node 

metastasis and non-lymph node metastasis groups. Fifty 

gene sets were upregulated in lung adenocarcinoma, 

and 10 gene sets, namely, oxidative phosphorylation, 

the MYC target V2, unfolded protein response, estrogen 

early response, adiposeness, glycolysis, the MYC target 

V1, mtorc1 signaling, wnt beta catenin signaling, and E2F 

targets, were greatly enriched, with normalized P values 

< 5% among the 50 gene sets (Figs. 1 and 2). Additionally, 

we selected the top-ranking function, namely, glycolysis 

(P = 0), which contained 198 genes and was the largest in 

size. 

Identification of glycolysis‑related mRNAs associated 

with metastasis and patient survival

First, we employed univariate Cox regression analysis of 

the 86 genes for preliminary screening and obtained 30 

genes with p values < 0.1. Additionally, multivariate Cox 

regression analysis was used to further examine the rela-

tionship between the expression profiles of 30 mRNAs 

and the patient survival rate. Subsequently, 9 mRNAs 

(HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, 

RBCK1, SOD1, and AGRN) were verified as independ-

ent indicators of poor prognosis and metastasis. The fil-

tered mRNAs were classified into a risk type (HMMR, 

B4GALT1, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and 

AGRN), whose HR was > 1 with metastasis, and a pro-

tective type (SLC16A3), whose HR was < 1 with nonme-

tastasis (Table 2). We calculated the Pearson correlation 

coefficient among the 9 mRNAs on the basis of Table 2, 

and we found correlations between B4GALT1 and 

SLC16A3, between B4GALT1 and ANGPTL4, between 

SLC16A3 and ANGPTL4, between SLC16A3 and AGRN, 

and between GPC1A and GRN, with an  R2 value greater 

than 0.3 (Fig. 3).

Specific alterations in the selected genes were also 

clear in specific cancer types. Among the 522 patients 

with lung adenocarcinoma, 0.18% had mutations, 0.4% 

had amplifications, and 0.35% had deep deletions in 

HMMR; 0.68% had mutations and 0.52% had deep dele-

tions in B4GALT1; 0.68% had mutations and 0.52% had 

Table 1 Clinical pathological parameters of  patients 

with lung adenocarcinoma in this research

Clinical characteristic N %

Age (years)

 > 66 241 46.2

 < 66 262 50.2

 = 66 19 3.6

Gender

 Male 242 46.4

 Female 280 53.6

T classification

 T1−T2 453 86.8

 T3–T4 69 13.2

N classification

 N0 325 62.3

 N1–3 186 35.6

M classification

 M0 353 67.6

 M1–Mx 165 31.6

UICC stage

 I stage 279 53.4

 II–IV stage 234 44.8

Neoplasm cancer status

 With tumor 314 60.2

 Tumor free 111 21.3

Residual tumor

 R0 348 66.7

 R1 44 8.4

http://www.cbioportal.org/
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deep deletions in SLC16A3; 0.5% had mutations and 6% 

had amplifications in ANGPTL4; 6.4% had deep dele-

tions in EXT1; 0.2% had mutations, 2.9% had amplifica-

tions, and 0.2% had deep deletions in GPC1; 0.88% had 

amplifications and 0.16% had deep deletions in RBCK1; 

0.25% had mutations, 0.85% had amplifications, and 0.7% 

had deep deletions in SOD1; and 1.51% had amplifica-

tions in AGRN (Fig. 4).

Fig. 1 Enrichment plots of nine gene sets which were importantly differentiated between in lymphonode metastasis and non-lymph node 

metastasis tissues

Fig. 2 Selected genes’ sets in nine genes

Table 2 The information of  nine prognostic mRNAs importantly associated with  metastasis and  overall survival 

in patients with lung adenocarcinoma

mRNA Ensemble ID Location B (cox) HR (95% CIs) P

HMMR ENSG00000072571 Chr5: 163,460,203–163,491,945 0.2551 1.3060 0.00025

B4GALT1 ENSG00000086062 Chr9: 33,104,082–33,167,356 0.2160 1.2411 0.07121

SLC16A3 ENSG00000141526 Chr17: 82,228,397–82,261,129 − 0.1570 0.8547 0.13969

ANGPTL4 ENSG00000167772 Chr19: 8,363,289–8,374,373 0.1238 1.1318 0.01137

EXT1 ENSG00000182197 Chr8: 117,794,490–118,111,853 0.2381 1.2688 0.04074

GPC1 ENSG00000063660 Chr2: 240,435,671–240,468,078 0.1027 1.1082 0.15791

RBCK1 ENSG00000125826 Chr20: 407,498–430,966 0.1820 1.1996 0.12534

SOD1 ENSG00000142168 Chr21: 31,659,622–31,668,931 0.1874 1.2061 0.11555

AGRN ENSG00000188157 Chr1: 1,020,123–1,056,118 0.2226 1.2494 0.02277



Page 5 of 13Zhang et al. J Transl Med          (2019) 17:423 

Construction of the nine‑mRNA signature to predict 

patient outcomes

A prognostic risk score formula was established 

based on a linear combination of the expression lev-

els weighted with the regression coefficients derived 

from multivariate Cox regression analysis: Risk 

score = 0.2551 × expression of HMMR + 0.2160 × expres-

sion of B4GALT1-0.1570 × expres-

sion of SLC16A3 + 0.1238 × expression 

of ANGPTL4 + 0.2381 × expression of 

EXT1 + 0.1027 × expression of GPC1 + 0.1820 × expres-

sion of RBCK1 + 0.1874 × expression of 

SOD1 + 0.2226 × expression of AGRN. Each patient with 

LUAD lymph node metastasis had only one risk score. 

We calculated the scores, ranked them and then classified 

the patients into high- and low-risk groups by the median 

value (Fig. 5a). The survival time (in days) of each patient 

is shown in Fig. 5b, and the patients with high-risk scores 

showed higher mortality rates than those with low-risk 

scores. Additionally, a heatmap (Fig.  6) was revealed to 

display the expression profiles of the nine mRNAs, and 

the 9-mRNA expression-based survival risk score was 

used to assign patients into a low-risk or high-risk group 

using the median risk score as the cut-off. The ROC 

curve analysis score was 0.712 (Fig.  7), indicating the 

good sensitivity and specificity of the 9-mRNA signature 

in predicting metastasis and survival in LUAD patients. 

With the increasing risk score of patients with lymph 

node metastasis of lung adenocarcinoma, the expression 

of high-risk mRNAs (HMMR, B4GALT1, ANGPTL4, 

EXT1, GPC1, RBCK1, SOD1, AGRN) was obviously 

upregulated. In contrast, the expression of the protective 

type of mRNAs (SLC16A3) was downregulated.

Generation of the risk score from the nine‑mRNA signature 

as an indicator of metastasis and prognosis

The prognostic values of the risk scores were compared 

with the clinicopathological information by univariate 

and multivariate analyses. Samples with completed clini-

cal data were used for analysis. The 522 patients with 

lung adenocarcinoma had a median age 66  years and 

comprised 242 male patients and 280 female patients. 

Among 425 patients, 314 (60.2%) had a positive tumor 

finding during the follow-up visit. Among 392 patients, 

Fig. 3 Correlations between the expression levels of nine genes in lung adenocarcinoma were evaluated with the Pearson correlation coefficient
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Fig. 4 Selected genes’ specific alteration frequency with the study of clinical samples
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44 (8%) had residual tumors. Among 511 patients, 186 

(35.6%) had lymph node metastasis, and 165 (31.6%) 

had distant metastases. Additionally, we found that the 

risk score, T classification, N classification, UICC stage, 

neoplasm cancer status, and residual tumor were inde-

pendent prognostic indicators because they showed 

important differences in the univariate analysis, with P 

values < 0.05 (Table  3). In the subsequent multivariate 

analysis (Table 3), we found that the risk score and neo-

plasm cancer status showed statistical significance in 

univariate and multivariate analyses (P < 0.05). Regardless 

of the analysis type (univariate or multivariate), the risk 

score had prominent prognostic values. The result of uni-

variate Cox regression indicated that the risk score was 

significantly associated with metastasis and prognosis 

[high-risk group vs low-risk group, HR = 2.017, 95% CI 

(confidence interval) 1.973–3.698, P < 0.001]. Addition-

ally, in multivariable Cox regression, the risk score also 

has a significant relationship with metastasis and prog-

nosis (HR = 2.381, 95% CI 1.563–3.628, P < 0.001). And 

with the increase of risk scores, the expression level of 

SLC16A3 decreased, whereas the expression levels of 

HMMR, B4GALT1, ANGPTL4, EXT1, GPC1, RBCK1, 

SOD1, and AGRN were upregulated. Meanwhile, the 

number of patient deaths increased. Additionally, the 

most obvious clinical parameter to predict patient sur-

vival was “neoplasm cancer status”, and patients with 

tumors had a 4.983 times higher chance of death than 

those who were tumor-free. In order to testify the result 

of our research, we divided 522 LUAD patients into two 

groups (group 1 and group 2) randomly, and proved the 

result of the nine-gene signature combination in each 

group. The result was the value of risk score is mean-

ingfully in each group (Fig.  8). And we also testify the 

result of our research in the trial, then we selected the 

carcinoma tissue of 9 lung adenocarcinoma patients 

with lymph node metastasis and 9 lung adenocarcinoma 

patients with not lymph node metastasis, then compared 

Fig. 5 The nine-mRNA signature related to risk score predicts overall 

survival in the patients with lung adenocarnicoma. a mRNA risk score 

distribution. b Survival days of patients

Fig. 6 Heatmap of nine genes’ expression profile. The figure shows that the expression of each gene is significantly different between high and 

low-risk groups
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the expression of 9-mRNA gene in these tissues. And the 

9-mRNA gene was verified in 18 cases by the qRT-PCR 

(Additional file 1: Fig. S1).We can draw that the result of 

our research is reasonable between the carcinoma tissue 

with lymph node metastasis and with not lymph node 

metastasis.

Validation of nine mRNA markers for survival prediction 

by Kaplan–Meier curve analysis

The results of Kaplan–Meier survival curves and the 

log-rank method showed a poor prognosis in patients 

with high-risk scores (P < 0.0010) (Fig.  9a). A univari-

ate Cox regression analysis of OS showed that several 

clinicopathological data were effective at predicting the 

survival rate of lung adenocarcinoma patients, includ-

ing their T classification, N classification, UICC stage, 

neoplasm cancer status, and residual tumor status. The 

K–M method was then adopted to confirm the above 

results. According to the survival curves, patients with 

lymph node metastasis, a residual tumor, a tumor diam-

eter greater than 3 cm, a UICC stage greater than stage 

I, or a positive tumor finding during the follow-up visit 

were correlated with a poor prognosis (Fig.  9b). These 

results provided further confirmation of the accuracy of 

our analysis. Hence, further stratified analysis was per-

formed for data mining. As shown from the K–M curve, 

regardless of neoplasm status, tumor status (Fig. 10a), or 

UICC stage (for example, stage I or stage II; Fig. 10b), the 

nine-mRNA signature was a stable prognostic marker for 

lung adenocarcinoma patients who were in the high-risk 

group and had a poor prognosis. However, when consid-

ering the different subtypes, based on the residual tumor, 

the risk score of the nine-mRNA signature was still an 

independent prognostic indicator for the subgroups with 

no residual tumor findings (Fig. 10c). 

Discussion
In recent years, some researchers have verified that the 

clinicopathological features of age, sex, smoking history, 

tumor size, pathological stage, lymph node metastasis 

and distant organ metastasis have significant implica-

tions for accurately predicting patient prognosis. There-

fore, increasingly more mRNAs have the potential to be 

molecular biomarkers for evaluating and predicting the 

prognosis of LUAD [15],indicating their considerable 

clinical significance in research [16]. For example, Zhang 

et al. reported that the expression of SBP1 is significantly 

downregulated in intrahepatic cholangiocarcinoma 

(ICC) and can be considered a prognostic predictor or 

potential target for ICC treatment [17]. Li et  al. con-

firmed that micro-RNA 145 shows higher expression in 

hepatocellular carcinoma (HCC) and is an independ-

ent prognostic factor for OS using the Cox proportional 

hazards model  [18]. However, patient survival could 

not be predicted by these genes because various factors 

can modulate a single gene, resulting in an inaccurate 

Fig. 7 Receiver operating characteristic (ROC) analysis of the 

sensitivity and specificity of the risk score model

Table 3 Univariable and multivariable analyses for each clinical feature

Clinical feature Univariate analysis P Multivariate analysis P

HR 95% CI HR 95% CI

Risk score 2.701 1.973–3.698 0.000 2.381 1.563–3.628 0.000

Age 1.076 0.798–1.450 0.632 – – –

Gender 1.069 0.797–1.434 0.656 – – –

Smoking status 1.207 0.883–1.649 0.238 – – –

T classification 1.610 1.142–2.269 0.007 0.985 0.616–1.575 0.985

N classification 2.597 1.932–3.490 0.000 1.209 0.669–2.187 0.530

UICC stage 2.889 2.118–3.940 0.000 1.646 0.850–3.190 0.140

Neoplasm cancer status 4.983 3.528–7.039 0.000 3.557 2.381–5.315 0.000

Residual tumor 2.159 1.318–3.536 0.002 1.203 0.676–2.144 0.530
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predictive effect. Thus, a gene signature comprising vari-

ous genes has been built from the statistical model to 

predict cancer outcomes. The results highlight that the 

predictive effects of each gene involved can offer a more 

accurate prediction than a single biomarker [19].

With the development of gene signatures, the progno-

sis of some types of cancer has been predicted by statis-

tical models. DCTN1, DCTN2, and DCTN4 could serve 

as biomarkers to predict the prognosis and diagnosis of 

colon adenocarcinoma (COAD) [20]. A novel prognostic 

biomarker of ovarian cancer was searched and involved 

a five-DNA methylation marker signature through Cox 

regression and ROC analyses [21]. We also performed 

GSEA analysis using the mRNA expression data of the 

522 LUAD patients and found that 9 exhibit significant 

differences, with a P value < 0.05, and the minimum P 

value could be used for further analysis. We explored 

specific functions to identify genes by GSEA that could 

predict the survival of LUAD patients. Furthermore, we 

identified a combination of 9 genes with prognostic value 

for LUAD patients instead of a single gene by univariate 

Cox regression and multivariate Cox regression analyses. 

Subsequently, through comparison with some known 

prognostic biomarkers, we found that our z identified 

risk signature may strongly support clinical results. We 

analyzed glycolysis-related genes using the LUAD dataset 

in TCGA and then compared the lymph node data with 

the non-lymph node data of LUAD patients. Kaplan–

Meier analysis showed that a high-risk score was associ-

ated with metastasis and a poor prognosis. Among our 

9 genes, HMMR has been found to be involved in many 

human solid carcinomas, including breast, non-small-cell 

lung, prostate, bladder, ovarian, and colorectal cancers, 

contributing to disease progression, aggressive pheno-

types, and a poor prognosis in these patients. Zhang et al. 

showed that high expression of HMMR is significantly 

correlated with tumor relapse, predicts a poorer prog-

nosis and induces EMT in gastric cancer patients [22]. 

B4GALT1 is a β-1,4-galactosyltransferase that catalyzes 

the transfer of galactose from the sugar nucleotide donor 

Fig. 8 Group 1: a The risk score of nine-mRNA signature c mRNA risk score distribution and survival days of patients. Group 2: b The risk score of 

nine-mRNA signature (d)
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uridine diphosphate galactose to glycoside residues with 

a terminal N-acetylglucosamine (GlcNAc) moiety. Poeta 

et  al. demonstrated  that the glycogene B4GALT1 is a 

valuable candidate biomarker of the invasive phenotype 

of colorectal cancer [23]. ANGPTL4 was found to pro-

mote gastric cancer proliferation and metastasis [24]. 

Exostoxin 1 (EXT1) is an endoplasmic reticulum (ER)-

residing type II transmembrane glycoprotein involved 

in the biosynthesis of cell surface heparin sulfate (HS). 

EXT1 promotes epithelial–mesenchymal transition 

(EMT) and migratory behavior in breast cancer cells [25]. 

Whipple et  al. reported that GPC1 plays an important 

role in tumor development and metastasis in pancreatic 

ductal adenocarcinoma [26]. SOD1 is a soluble Cu/Zn 

enzyme that is mainly located in the cytosol, although a 

small percentage of SOD1 proteins (~ 3%) is found in the 

intermembrane space of the mitochondria; SOD1 was 

found to decrease pso-mediated ROS in prostate cancer, 

inducing tumor cell growth and  metastasis [27]. Agrin 

(AGRN) is a multifunctional heparan sulfate proteo-

glycan of the extracellular matrix that is localized in the 

basement membrane of the vessels and ducts. Wu et al. 

demonstrated that high levels of AGRN are related to the 

metastasis and poor prognosis of papillary thyroid car-

cinoma (PTC) [28]. However, we found no relationship 

with metastasis for SLC16A3 and RBCK1. Conventional 

prognostic systems generally make inaccurate predictions 

for risk stratification and estimations of clinical outcomes 

because of the heterogeneity between patients. To the 

best of our knowledge, compared with a single common 

biomarker, the 9-mRNA signature can better predict the 

metastasis and prognosis of lung adenocarcinoma.

Increased glycolysis, which is also called the “War-

burg effect” [29, 30], has been found in several types 

of cancer and facilitates metastatic dissemination 

[31]. MiRNAs play an important role in the process of 

Fig. 9 Kaplan–Meier survival analysis for the patients with lung adenocarcinoma in TCGA dataset. a The Kaplan–Meier curve for patients divided 

into high-risk and low-risk. b Different clinical features predict patients’ survival
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regulating glycolysis in cancer cells; for example, miR-

143 can increase glucose metabolism and promote cell 

proliferation by targeting HK II directly in lung tumors 

[32]. Sinthupibulyakit et al. revealed that 2-deoxy-d-glu-

cose (2DG) has a cytotoxic effect on NSCLC that is p53 

dependent [33]. Farah et  al. showed that inhibitors of 

glycolysis could regulate the cell survival of LUAD and 

function as an indicator for lung cancer treatment [34]. 

Kayser et al. showed that TKTL1, a regulator of glycoly-

sis, is expressed in NSCLC and serves as a new biomarker 

of pathology [35]. Altenberg and Greulich demonstrated 

that various enzymes of glycolysis are upregulated in lung 

carcinoma [36]. Hexokinase (HK) [37] is an important 

enzyme in glycolysis that accelerates the rate of glycoly-

sis and regulates tumor survival. In 1999, HK was iden-

tified by Katabi, who revealed that HIF-1α can facilitate 

the activity of the glycolysis pathway by regulating HK I 

in a LUAD cell line [38]. Phosphofructokinase (PFK) is 

also a key enzyme in glycolysis [39]. High levels of PFK 

mRNA in human lung cancer tissues and A549 cells were 

found compared with normal tissue. Additionally, PFK 

isozymes are highly induced in lung adenocarcinoma 

cells under hypoxic conditions [40]. Pyruvate kinase (PK) 

[39] is the last enzyme in glycolysis. Parnell et  al. used 

small-molecule PKM2 activators to affect the growth of 

LUAD cells in vitro and in vivo by raising the affinity of 

Fig. 10 Kaplan–Meier curves for prognostic value of risk-score signature for the patients divided by each clinical features. a Neoplasm cancer status 

b UICC stage c Residual tumor
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PKM2 and PEP [41]. Overall, these important enzymes 

of glycolysis play significant roles in the proliferation 

and growth of LUAD cells; therefore, glycolysis may be 

involved in the development and progression of LUAD. 

A single gene related to glycolysis has been reported to 

predict the prognosis of LUAD, but no glycolysis-related 

gene signatures have been established. In this work, we 

first reported a gene signature (HMMR, B4GALT1, 

SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and 

AGRN) related to glycolysis and then demonstrated the 

prognostic value of this gene signature for LUAD.

In conclusion, this work is the first to report a nine-

gene risk signature related to glycolysis that can help pre-

dict survival and metastasis in LUAD patients. A higher 

risk score indicates a poorer prognosis. This finding will 

help future researchers in their efforts to identify new 

treatments for LUAD and to provide more gene targets to 

cure LUAD in patients.

Conclusion
We used a nine-gene signature (HMMR, B4GALT1, 

SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, 

AGRN) to predict and evaluate LUAD via tissue or blood 

samples and examined whether mutations in these genes 

can promote the development of LUAD. Furthermore, we 

identified treatments related to glycolysis to successfully 

target these genes; this signature could also be used to 

develop new targeted treatments to cure LUAD patients. 

Finally, we confirmed the relationship between the nine-

gene risk signature related to glycolysis and LUAD.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
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