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Abstract 

Staphylococcus aureus is a major pathogen that causes subclinical mastitis associated with huge economic losses to 

the dairy industry. A few vaccines for bovine mastitis are available, and they are expected to induce the production of 

S. aureus-specific antibodies that prevent bacterial adherence to host cells or promote opsonization by phagocytes. 

However, the efficacy of such vaccines are still under debate; therefore, further research focusing on improving the 

current vaccines by seeking additional mechanisms of action is required to reduce economic losses due to mastitis in 

the dairy industry. Here, we generated S. aureus-specific bovine IgG antibodies (anti-S. aureus) that directly inhibited 

bacterial growth in vitro. Inhibition depended on specificity for anti-S. aureus, not the interaction between Protein 

A and the fragment crystallizable region of the IgG antibodies or bacterial agglutination. An in vitro culture study 

using S. aureus strain JE2 and its deletion mutant JE2∆SrtA, which lacks the gene encoding sortase A, revealed that 

the effect of anti-S. aureus was sortase-A-independent. Sortase A is involved in the synthesis of cell-wall-associated 

proteins. Thus, other surface molecules, such as membrane proteins, cell surface polysaccharides, or both, may trigger 

the inhibition of bacterial growth by anti-S. aureus. Together, our findings contribute insights into developing new 

strategies to further improve the available mastitis vaccine by designing a novel antigen on the surface of S. aureus to 

induce inhibitory signals that prevent bacterial growth.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Mastitis is an inflammatory disease caused by infection 

in mammals, such as dairy cattle, by pathogenic micro-

organisms, such as Staphylococcus aureus [1]. Major 

economic losses incurred by the dairy industry are asso-

ciated with mastitis [2]. Once S. aureus infects the mam-

mary gland of dairy cattle, it can infiltrate deep into the 

tissue and survive elimination by phagocytic cells, such 

as macrophages [3]. �erefore, although antibiotics have 

been used to treat dairy cattle for mastitis caused by S. 

aureus, they do not effectively reach the lesion in most 

cases, making it difficult to achieve a complete cure [4, 

5]. S. aureus causes either subclinical or clinical mastitis 

characterized by abnormal milk containing a large num-

ber of somatic cells or by symptoms of per-acute or acute 

mastitis with pathogen-nonrelated common features, 

such as swelling, erythema, pain, and perception of heat, 

respectively [6].

Vaccination is an effective strategy to prevent 

inflammation, including mastitis. Vaccines, such as 

 STARTVAC® [7–9] and  Lysigin® [10], are used globally 

to protect dairy cattle from mastitis caused by S. aureus. 

�ese mastitis vaccines comprise killed S. aureus or S. 

aureus lysate and act primarily through the induction of 

antibodies: these may lead to antibody-mediated opsoni-

zation and removal of the pathogen through phagocyto-

sis [7–10]. In fact, a recent study addressing the efficacy 

of  STARTVAC® revealed that it evokes the �2 type of 
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immune response that results in inducing S. aureus-

specific IgG1 antibody production in not only serum but 

also milk [9]. Alternatively, it may be possible to inhibit 

attachment of S. aureus to mammary alveoli by binding 

of the vaccine-induced antibodies to one or more bacte-

rial surface molecules that are involved in adhesion [7–

10]. However, the economic loss of the last few decades 

due to mastitis has remained at approximately $2 billion 

per year in the US [11, 12]. �erefore, further research is 

required to enhance the efficiency of mastitis vaccines.

Antibodies possess numerous immunological activi-

ties, and their roles are versatile because the animals 

vaccinated with whole killed bacteria possess polyclonal 

antibodies with high reactivity for multiple antigens 

expressed by the immunized bacteria [13]. Further, the 

feasibility of using antibodies that bind to the bacte-

rial surface to inhibit growth remains to be evaluated. 

�erefore, inhibiting bacterial growth using antibodies 

has not been the focus of research compared with that 

aimed at inhibiting bacterial adhesion to their hosts [14, 

15]. However, a complete understanding of the antici-

pated effects of current vaccines may be important to 

decrease the morbidity and mortality caused by targeted 

diseases. �erefore, the purpose of the present study was 

to examine the role of S. aureus-specific antibodies in the 

inhibition of bacterial growth and define the underlying 

mechanisms.

Here we generated bovine polyclonal IgG antibodies 

specific for S. aureus (anti-S. aureus) by immunizing a 

Holstein calf with killed S. aureus. We demonstrate that 

the growth of S. aureus was inhibited in  vitro by anti-

S. aureus. �ese results may serve as a foundation for 

improving current mastitis vaccines to effectively control 

bacterial growth in vivo.

Materials and methods
Bacteria

S. aureus (BM1006 [16], SA003 [17] and JE2 [18]), S. 

epidermidis (ATCC14990) [19], Bacillus atrophaeus 

(ATCC9372) [20], and E. coli (JM109) [21] were used in 

the present study. BM1006 was isolated from the bulk 

milk of dairy cattle, and SA003 originated from the milk 

of dairy cattle suffering from mastitis. S. aureus JE2 is 

extensively used in the laboratory. A transposon mutant 

derived from JE2 (NE1787, termed JE2ΔSrtA) [22] was 

used to investigate sortase-A-dependent cell-wall-associ-

ated proteins. �e evolutionary relationships among the 

16S ribosomal RNA genes of 21 bacteria and the Archaea 

Pyrococcus horikoshii (listed in Additional file  1) were 

inferred using the UPGMA method, and evolutionary 

distances were calculated using the Maximum Compos-

ite Likelihood method of MEGA7 as previously described 

[23, 24].

Antibody production

A Holstein calf (5 months old, male) was subcutaneously 

immunized with formalin-killed S. aureus [BM1006, 

1.5  ×  1010 colony-forming units (CFU)] together with 

 TiterMax® Gold (TiterMax) on three occasions at 

2-week intervals. One week after the final immuniza-

tion, serum was collected, and polyclonal IgG antibodies 

were purified using Protein G Sepharose 4 Fast Flow (GE 

healthcare). �e concentration of IgG antibodies after 

purification was measured by BCA Protein Assay Kit 

(�ermo Fisher). �e use of the Holstein calf to produce 

antibodies was performed in accordance with protocols 

approved by the Institutional Animal Care and Use Com-

mittee of Tohoku University.

Enzyme-linked immunosorbent assay (ELISA)

ELISA were performed to determine the amount and 

specificity of purified polyclonal bovine IgG antibodies. 

Briefly, 96-well plates (Nunc) were coated with 2 μg/mL 

of purified sheep anti-bovine IgG-heavy chain antibodies 

(Bethyl) overnight at 4  °C. Alternatively, the plates were 

coated with 5  μg protein/mL of either S. aureus, S. epi-

dermidis, B. atrophaeus, or E. coli, each killed with 0.5% 

(w/v) formalin (Wako). After blocking with 0.05% (v/v) 

Tween-20 in Tris-buffered saline for 1  h at room tem-

perature (RT), twofold serial dilutions of polyclonal IgG 

antibodies obtained from the immunized Holstein calf 

or control bovine IgG antibodies (Sigma-Aldrich) were 

incubated for 2 h at RT. After washing, HRP-conjugated 

sheep anti-bovine IgG-heavy chain antibodies diluted 

1:10 000 (Bethyl) were treated for 1 h at RT, and the reac-

tions were developed with a TMB microwell peroxidase 

substrate system (KPL).

Flow cytometry

Bacteria killed with 0.5% (w/v) of formalin were incu-

bated for 30 min at 4 °C with 1000 μg/mL of either anti-

S. aureus or control IgG, both of which were conjugated 

with FITC (Sigma-Aldrich), as described previously [25]. 

Untreated bacteria were prepared as a control. After 

washing, the bacteria were analyzed using a BD Accuri 

C6 Flow Cytometer (BD Bioscience), and the data were 

analyzed using FlowJo (Digital Biology).

SDS-PAGE and western blotting

Bacteria were lysed with SDS sample buffer contain-

ing 62.5  μM of Tris–HCl (pH 6.8), 2% (w/v) SDS, 10% 

(v/v) glycerol, 5% (v/v) 2-mercaptoethanol, and 0.02% 

(w/v) bromophenol blue; the extracts were subjected to 

SDS-PAGE using a 5–20% e-PAGEL polyacrylamide gel 

(ATTO). After electrophoresis, the gel was stained with 

SimplyBlue SafeStain (Invitrogen), or the proteins were 

transferred to an Immobilon-P membrane (Millipore). 
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�e membrane was treated with 10 μg/mL of either the 

anti-S. aureus or control IgG antibody for 1 h at RT, after 

blocking the membrane with 0.05% (v/v) of Tween-20 

in Tris-buffered saline overnight at 4  °C. After washing, 

the membrane was treated with HRP-conjugated sheep 

anti-bovine IgG-heavy chain antibodies diluted 1:10 000 

(Bethyl) for 1  h at RT, and the reaction was developed 

using an EzWestLumi plus (ATTO).

Bacterial culture in vitro

Staphylococcus aureus (BM1006, SA003, JE2, and 

JE2ΔsrtA) and E. coli (JM109) were cultured overnight 

at 37  °C in Trypto-Soya (TS) broth (Nissui), and 40  μL 

was added to 4  mL of fresh TS broth containing anti-

S. aureus (10, 100, and 1000  μg/mL) or control IgG 

(1000 μg/mL) to address the effect of anti-S. aureus on 

the bacterial growth. In some experiments, IgG antibod-

ies in the used medium that originally included anti-S. 

aureus were re-used for the additional in vitro study to 

test the effect. Size and autofluorescence intensity of S. 

aureus cultured for 0.5, 2, 5, and 24 h in the presence of 

either anti-S. aureus or control IgG were analyzed using 

a microbial particle counter (Rion). In brief, the cul-

ture broth of S. aureus was diluted 1:100 000 with dis-

tilled water and subjected directly to microbial particle 

count analysis in which the scattered light and autofluo-

rescence intensity mediated by Riboflavin derived from 

violet laser-exposed bacteria were measured. �e mor-

phology of S. aureus cultured for 0.5, 2, 5, and 24 h was 

analyzed using a scanning electron microscope (SEM). 

Specifically, the culture medium of S. aureus (BM1006) 

was removed after quick centrifugation for 1  min, and 

the remaining bacterial pellet was fixed with 2.5% (v/v) 

glutaraldehyde (Nacalai tesque) in 0.1  M phosphate 

buffer for 1  h at 4  °C. After washing the bacterial pel-

let to remove excess fixative, bacteria were suspended 

using distilled water and affixed to glass slides (Matsu-

nami). �e bacteria were then coated with platinum 

and palladium. Images of S. aureus were obtained using 

an SEM (SU8000, Hitachi) operated at 3.0  kV. Survival 

of bacterial cells at 0.5, 2, 5, and 24  h after the culture 

was determined by obtaining CFU. Specifically, aliquots 

of bacterial broth were collected and seeded on TS agar 

plates (three replicates) after dilution with saline. To 

determine the quantitative effect of anti-S. aureus in TS 

broth during bacterial culture, samples were collected at 

0.5, 2, 5, and 24 h after the start of culture and filtered 

using 0.45-μm syringe filters (Advantec) to remove anti-

bodies bound to bacteria. �e pass-through solutions 

were subjected to ELISA analyses to determine both the 

total amount of IgG antibodies and the titer of S. aureus-

specific antibodies after the use of antibodies as additive 

in the S. aureus culture. To address those, ELISA analy-

ses were performed using 96-well plates coated with 

either purified sheep anti-bovine IgG-heavy chain anti-

bodies (Bethyl) or killed S. aureus as described above.

Statistics

Statistical analyses were performed using one-way 

ANOVA with the Kruskal–Wallis test and two-way 

ANOVA with Tukey’s multiple comparisons test using 

Prism 7 software (GraphPad).

Results
Generation of bovine IgG antibodies against S. aureus

Since mastitis vaccines were not commercialized in Japan 

when we started this study, we first performed an immu-

nization study with killed S. aureus prepared in our labo-

ratory to reproduce the current mastitis vaccine trials 

that have been tested outside Japan. Specifically, a Hol-

stein calf was subcutaneously immunized with killed S. 

aureus BM1006 that was isolated from bulk milk of dairy 

cattle and IgG antibodies were purified from the serum 

collected from the immunized calf. Antibody specific-

ity was confirmed using an ELISA and the test antigens 

as follows: S. aureus, S. epidermidis, B. atrophaeus, and 

E. coli. Figure  1A shows a phylogenetic tree displaying 

the genetic similarity among bacteria used in this study 

and other well-characterized bacteria. �e IgG antibod-

ies reacted with BM1006 in a concentration-dependent 

manner; however, the control bovine IgG antibodies were 

not detectably reactive (Figure 1B). We therefore defined 

the immunized and control IgG antibodies as anti-S. 

aureus and control IgG, respectively. Anti-S. aureus 

strongly reacted with S. aureus SA003 (Figure  1B). S. 

epidermidis, which is phylogenetically closely related to 

S. aureus, exhibited little reactivity with anti-S. aureus. 

Further, B. atrophaeus and E. coli (members of Firmi-

cutes and Proteobacteria, respectively) showed little or 

no reactivity (Figure  1B). To determine the specificity 

of anti-S. aureus, we performed flow cytometric analy-

ses. Consistent with the ELISA results, anti-S. aureus, 

reacted with BM1006 and SA003 but not with the control 

IgG (Figure  1C). Weak reactivity was detected when S. 

epidermidis was incubated with anti-S. aureus, but reac-

tivity with B. atrophaeus or E. coli was undetectable (Fig-

ure  1C). SDS-PAGE and western blot analyses revealed 

that molecules with a broad range of molecular masses 

that are specifically expressed by S. aureus but not by S. 

epidermidis, B. atrophaeus, or E. coli were recognized 

by anti-S. aureus (Figure  1D). Some bands detected by 

both anti-S. aureus and control IgG may be due to the 

reactivity of natural IgG antibodies or non-specificity 

(Figure 1D).
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Figure 1 Generation of anti-S. aureus-specific bovine IgG antibodies. S. aureus, S. epidermidis, B. atrophaeus, and E. coli were used to confirm 

the specificity of antibodies against S. aureus (anti-S. aureus) generated by immunization of a Holstein dairy cow with killed S. aureus. A Genetic simi-

larity of the four species of bacteria used in this study and other well-characterized bacteria is shown as a phylogenetic tree. B ELISA analyses show 

that anti-S. aureus was highly reactive with two strains of S. aureus (BM1006 and SA003) and less reactive S. epidermidis. In contrast, little reactivity 

was detected when anti-S. aureus was reacted with B. atrophaeus and E. coli. C Flow cytometric analyses detected similar reactivities, respectively. 

D SDS-PAGE and western blot analyses revealed that anti-S. aureus reacted with S. aureus-specific molecules with a broad range of molecular 

masses. M: molecular marker, 1: S. aureus (BM1006), 2: S. aureus (SA003), 3: S. epidermidis, 4: B. atrophaeus, 5: E. coli. Three separate experiments were 

performed, and the data represent the mean ± standard error of the mean. *p < 0.05.
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Growth in vitro of S. aureus is inhibited by anti-S. aureus

We found that the growth of S. aureus BM1006 and 

SA003 was delayed in the presence of anti-S. aureus but 

was undetectable when control IgG was added to the 

cultures (Figure 2A). Bacterial growth in vitro was inhib-

ited by a relatively high concentration of anti-S. aureus 

(1000 µg/mL), although the overall effect was concentra-

tion-dependent (Figure 2A). Moreover, anti-S. aureus did 

not detectably inhibit the growth of E. coli (Figure  2A). 

�ese results indicate that the antigen-specific binding 

of anti-S. aureus (not nonspecific binding, such as the 

interaction between Protein A on the surface of S. aureus 

and the Fc region of IgG antibodies) may be required for 

inhibiting bacterial growth in vitro. However, the growth 

of S. aureus plateaued when cultured overnight with or 

without the anti-S. aureus (Figure 2A), indicating that the 

inhibitory effect of anti-S. aureus was not sustained dur-

ing overnight culture. �erefore, we performed a study 

using an ELISA to determine the change of anti-S. aureus 

concentrations during an overnight incubation of the 

culture with 1000 μg/mL anti-S. aureus. �e concentra-

tion of total IgG antibodies remained constant, although 

the concentration of total IgG in PBS (Figure  2B) was 

721.5  ±  181.2  μg/mL (not 1000  μg/mL). �is may be 

explained by the use of different assays. For example, 

the nonspecific BCA protein assay was used basically to 

measure the purified IgG. Further, a lower concentration 

was calculated when anti-S. aureus was suspended in TS 

medium (395.1 ± 37.5 μg/mL 0 h after culture), suggest-

ing that the bovine IgG ELISA system was affected by 

the solvent. Nevertheless, there were no significant dif-

ferences in the concentrations of total IgG antibodies in 

the culture broth during the overnight culture. In con-

trast, the S. aureus-specific IgG titer of the culture broth 

gradually decreased during the 24  h culture when the 

assay used ELISA plates immobilized with killed or live 

S. aureus (Figure 2B). Inhibition was not detected when 

the anti-S. aureus used for overnight culture was reused 

for the in vitro bacterial culture study, consistent with the 

undetectable antibody titer specific for live S. aureus 24 h 

after the culture (Figure 2C). �e anti-S. aureus is a poly-

clonal antibody that likely recognized different epitopes. 

�erefore, these results indicate that a small amount of 

antibodies in the anti-S. aureus preparation reacted with 

S. aureus and inhibited bacterial growth in vitro.

Antibody-mediated growth inhibition of S. aureus is not 

due to bacterial agglutination

Considering that CFU do not indicate the bacterial num-

ber, the actual number of S. aureus may be different from 

the CFU number in cases where one colony does not nec-

essarily arise from one bacterium upon bacterial aggluti-

nation. To dispel this concern, we directly measured the 

diameter of S. aureus during the in vitro culture using a 

microbial particle counter, which allows us to investigate 

the size and autofluorescence intensity of particles in the 

sample. We found that the number of S. aureus whose 

size and autofluorescence intensity increased was gradu-

ally elevated when cultured in the presence of both anti-S. 

aureus and control IgG (Figure 3A and Additional file 2). 

In contrast, such altered S. aureus was rarely observed 

when cultured without any supplementation (Figure  3A 

and Additional file 2). We next performed an SEM analy-

sis to directly observe the morphological characteristics 

of S. aureus in the in  vitro culture. Consistent with the 

well-known feature of S. aureus, we observed the typical 

structure of S. aureus in the form of a grape-like cluster 

when cultured with neither anti-S. aureus nor control 

IgG (Figure  3B). Importantly, the morphological char-

acteristics (not the bacterial number) seemed to remain 

unchanged, although S. aureus was cultured in the pres-

ence of anti-S. aureus or control IgG (Figure 3B). Because 

the fragment crystallizable (Fc) region of IgG antibodies 

binds to protein A on the surface of S. aureus [26], these 

results suggest that, regardless of antibody specificities, 

the IgG antibodies that associate with Protein A may 

alter bacterial features (other than growth or agglutina-

tion) that can be detected as increased size and autofluo-

rescence intensity, even though the reactivity between 

Fc region of IgG antibodies and Protein A was almost 

undetectable in our previous analyses (Figures  1B–D). 

Nevertheless, it should be emphasized that these phe-

nomena observed were not due to bacterial agglutina-

tion; thus, the inhibition of bacterial growth caused by 

anti-S. aureus could be mediated in a specific manner of 

antigen–antibody reaction.

Reactivity of anti-S. aureus to molecules expressed 

specifically by S. aureus (not commonly expressed 

by closely related bacteria) are mainly involved in the 

inhibition of bacterial growth in vitro

Anti-S. aureus slightly reacted with S. epidermidis (Fig-

ures 1B and C). �erefore, we hypothesized that antibody 

recognition of common molecules expressed by Staphy-

lococcus species (e.g., S. aureus and S. epidermidis) was 

involved in the inhibition of bacterial growth in  vitro. 

We thus incubated anti-S. aureus with S. epidermidis 

and collected the unbound antibodies by centrifugation 

to remove reactivity to molecules that are expressed by S. 

epidermidis. ELISA analysis revealed that anti-S. aureus 

absorbed with S. epidermidis lost most of its reactivity 

with S. epidermidis (Figure 4A). In contrast, although the 

reactivity to S. aureus was slightly lower when compared 

with the original anti-S. aureus, it was detected after 

absorption with S. epidermidis (Figure  4A). Moreover, 

when anti-S. aureus was absorbed with S. epidermidis, 
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Figure 2 Inhibition of the growth in culture of S. aureus in the presence of anti-S. aureus. The neutralizing effects in vitro of anti-S. aureus 

on the growth of cultures of S. aureus and E. coli. A Growth of S. aureus (BM1006 and SA003 was inhibited in the presence of anti-S. aureus, whereas 

the growth of E. coli (JM109) was not detectably inhibited. B The amount of uncoupled total IgG remained constant in the culture broth during the 

overnight culture of S. aureus (BM1006). In contrast, residual killed and live S. aureus-specific IgG titers gradually decreased during the overnight 

culture. C The anti-S. aureus that was used in the overnight culture of S. aureus did not inhibit bacterial growth when reused. Three separate experi-

ments were performed, and the data represent mean ± standard error of the mean. The p values calculated using one-way or two-way factorial 
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Figure 3 Alteration of bacterial features other than growth or agglutination in S. aureus is caused by bovine IgG antibodies regard-
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little or no effect was observed on the ability of anti-S. 

aureus to inhibit bacterial growth (Figure  4B). �ese 

results suggest that among the numerous epitopes recog-

nized by anti-S. aureus, its reactivity with specific mol-

ecules on S. aureus (not common molecules on both S. 

aureus and S. epidermidis) are largely responsible for 

triggering the inhibition of bacterial growth.

Antibody recognition of sortase-A-dependent 

cell-wall-associated proteins is not associated with the 

capacity of anti-S. aureus to inhibit bacterial growth 

in vitro

Cell-wall-associated proteins that bind peptidoglycans 

produced by S. aureus are involved in pathogenicity 

and are therefore considered targets of an S. aureus vac-

cine [27]. Hence, we asked whether the recognition of 

anti-S. aureus to cell-wall-associated proteins inhibited 

bacterial growth in  vitro. We used JE2, which is a plas-

mid-cured derivative of strain LAC, originally isolated 

from a human, and its deletion mutant that lacks the 

gene (JE2ΔSrtA) encoding sortase A because sortase A 

acts on many cell-wall-associated proteins to link them 

to peptidoglycans [28]. We found that the reactivities 

of anti-S. aureus with JE2 and JE2ΔSrtA were compa-

rable (Figure  5A). Further, there was no significant dif-

ference between the reactivity with BM1006 or SA003 

(Figure 1B). However, we did not exclude the possibility 

that certain sortase-A-dependent cell-wall-associated 

proteins were recognized by anti-S. aureus. Moreover, 

the SDS-PAGE and western blot data suggest that anti-

S. aureus reacted with multiple surface molecules, such 

as membrane proteins that are not substrates of sortase, 

cell wall polysaccharides, or both (Figure 1D). �erefore, 

we addressed the possibility of sortase-A-independent 

growth inhibition induced by anti-S. aureus as indicated 

by the results of the in vitro bacterial culture study using 

JE2 and JE2ΔSrtA. We found that the growth of JE2 and 

JE2ΔSrtA was inhibited when they were cultured in the 

presence of anti-S. aureus (Figure  5B), indicating that 

the inhibition of bacterial growth by anti-S. aureus was 

sortase-A-independent. Together, our results provide 

new insights into devising strategies for developing an S. 

aureus vaccine that induces signals that inhibit bacterial 

growth or blocks absorption of nutrients that are essen-

tial for bacterial growth by vaccine-induced antibodies 

specific for surface molecules that have not been previ-

ously identified.

Discussion
Increasing the efficacy of mastitis vaccines is a global 

challenge in the field of dairy science [29]. We focused on 

investigating the inhibitory effect on bacterial growth by 

specific bovine IgG antibodies produced by vaccination 

of a Holstein calf with S. aureus killed with formalin. S. 

aureus is frequently found in the nose, respiratory tract, 

and skin of animals, including humans and livestock [30–

32]. S. aureus is not always pathogenic, but occasionally 

causes infectious diseases, such as pneumonia, infective 

endocarditis, sepsis, osteomyelitis, and mastitis [33]. �e 

molecular mechanisms of S. aureus infection is under 

investigation; however, several molecules expressed by 

S. aureus are involved in pathogenesis [34]. For example, 

exotoxin (staphylococcal enterotoxins and toxic shock 

syndrome toxin-1) [35, 36], binding molecules (clump-

ing factors and fibronectin binding proteins) [37], and 

receptors (iron acquisition factors and manganese uptake 

receptors) [38, 39] are virulence factors involved in the 

pathogenesis. �erefore, numerous studies of virulence 

molecules were performed to develop an effective vaccine 

to protect humans as well as dairy cattle from infectious 

diseases caused by S. aureus. However, despite numerous 

human clinical trials, most studies have failed to dem-

onstrate the efficacy of S. aureus vaccines [33]. Moreo-

ver, efforts to develop S. aureus vaccines for dairy cattle 

lag behind those of humans [33]. Antibiotics have been 

widely used in dairy cattle to treat subclinical mastitis 

caused by S. aureus; however, this may increase the risk 

of selecting for antibiotic-resistant bacteria, including 

MRSA [40]. �erefore, a vaccine strategy, which is inde-

pendent of antibiotic resistance, to control the growth 

of S. aureus is important to prevent the distribution of 

antibiotic-resistant S. aureus. Nevertheless, it is notewor-

thy that the bovine mastitis vaccine  STARTVAC® elicits 

the production of S. aureus-specific bovine IgG antibod-

ies that inhibit the formation of biofilms and facilitates 

opsonization [7–9].

We show here, for the first time to our knowledge, 

that S. aureus-specific bovine IgG antibodies directly 

inhibited the growth of S. aureus without supplemen-

tation (e.g., complement) in an in  vitro culture system. 

�e effects of anti-S. aureus were similar among strains, 

because the growth of JE2, which is a methicillin‐resist-

ant S. aureus (MRSA) [41], was equivalently inhibited by 

treatment with anti-S. aureus compared with BM1006 

and SA003, which are non-MRSA strains isolated from 

the milk of dairy cattle (Figures 2–4).

Gram-positive bacteria like S. aureus develop a thick 

peptidoglycan layer with cell-wall-associated proteins 

that are linked to peptidoglycans [42]. �e molecular 

mechanism of the synthesis of a dozen cell-wall-associ-

ated proteins in the peptidoglycan layer requires cleav-

age by sortase A of the peptide bond between �r and 

Gly residues in the LPXTG motif, which is a consensus 

motif present within the C-terminus of sortase substrate 

proteins [27]. Sortase A produces alternative bonds 

between the carboxyl group of �r and the amino groups 
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of peptidoglycans [28]. Sortase-A-dependent cell-wall-

associated proteins play important roles in infection by S. 

aureus and mediate adhesion to host cells and evasion of 

the pathogen of the host’s immune system [37]. In addi-

tion, such proteins are also involved in absorbing nutri-

ents, such as iron [38]. However, our results acquired 

using S. aureus JE2ΔSrtA show that the inhibition of bac-

terial growth by anti-S. aureus was sortase-A-independ-

ent (Figure 5). �ese findings suggest that potential target 

molecules, which may be involved in inhibiting bacterial 

growth through recognition of anti-S. aureus, may not 

include cell-wall-associated proteins that are substrates 

of sortase A. �e surfaces of gram-positive bacteria such 

as S. aureus include four major proteins (e.g., membrane 

proteins, lipoproteins, LPXTG-like proteins, and cell-

wall-associated proteins) [42–44]. Further, cell-wall-asso-

ciated proteins and extracellular polysaccharides play an 

important role in host-parasite interactions. �erefore, 

this information, coupled with our present results, led us 

to hypothesize that membrane proteins, which are not 

sortase substrates, polysaccharides, or both, may stimu-

late a signaling cascade that inhibits bacterial growth 

through the recognition of anti-S. aureus.

Using the microbial particle counter, we detected 

that the size and autofluorescence intensity of S. aureus 

increased gradually when the bacteria was cultured with 

IgG antibodies regardless of the specificity. Neverthe-

less, the morphological and microbiological character-

istics of S. aureus cultured with either anti-S. aureus or 

control IgG were identical to those of bacteria cultured 

without any supplementation. �us far, three possibilities 

(i.e., increase in bacterial size and alteration of bacterial 

morphology or refractive index) have been considered as 

factors that increase scattered light emitted by bacteria 

[45]. However, in SEM analysis no changes (except the 

reduction of bacterial number) were observed despite the 

addition of anti-S. aureus to the S. aureus culture. �ese 

results suggest that the refractive index of scattered light 

from S. aureus may be altered when the Fc region of IgG 

antibodies bind to Protein A on the surface of S. aureus. 

Another possible hypothesis that causes the increase of 

autofluorescence intensity may be because of the increase 

in the amount or quantum yield of Riboflavin, which is 

a bacteria-derived fluorescence molecule detected by the 

microbial particle counter used, by the binding of the Fc 

region of IgG antibodies to Protein A.

Determining the optimal concentration of antibodies 

required for inhibition of bacterial growth is difficult. For 

example, we used a concentration of anti-S. aureus that 

was extremely high (1000  μg/mL), although its effects 

were concentration-dependent (Figures 2–5). Our results 

were consistent with the past studies showing the efficacy 

of egg yolk IgY antibodies specific for S. aureus to inhibit 

bacterial growth [46, 47]. Also, others have shown that 

monoclonal antibody specific to glucosaminidase, which 

is an enzyme involved in cell wall digestion during binary 

fission, can induce the abnormality of bacterial survival 

[48, 49]. Although the optimal concentration of anti-glu-

cosaminidase monoclonal antibody that is sufficient for 

inhibiting bacterial growth has not yet been addressed, 

we assumed that it was not high because of high anti-

genic specificity of monoclonal antibody to single antigen 

compared with that of polyclonal antibodies to multiple 

antigens. �is may be explained by the use of polyclonal 

antibodies that include nonspecific antibodies. However, 

our goal is to identify molecules that can be used as novel 

antigens to develop a mastitis vaccine and not to utilize 
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the anti-S. aureus as passive prophylaxis. �erefore, our 

current efforts focus on identifying target molecules that 

stimulate inhibitory signals to suppress bacterial growth 

by binding vaccine-induced antibodies. Western blot 

analysis detected several candidate molecules recognized 

by anti-S. aureus (Figure 1D), which must be identified. 

Further, advances in microbiological research led to the 

creation of a transposon mutant library of S. aureus, 

which may facilitate efforts to identify target molecules, 

such as those not related to sortase substrates, cell wall 

polysaccharides, or both, in our anti-S. aureus in  vitro 

culture system. Taken together, our findings have sig-

nificant potential to further improve mastitis vaccines 

through antibody-mediated growth control of target 

bacteria.
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