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We have reported 15 agarose gel band patterns of double-stranded RNA (dsRNA) from

Trichoderma spp. We describe herein that band pattern IX in Trichoderma harzianum

NFCF319, which appeared to be a single band but consisted of two dsRNAs of similar

size, was identified as a novel mycovirus, designated Trichoderma harzianum partitivirus

1 (ThPV1). The larger segment (dsRNA1) of the ThPV1 genome comprised 2,289 bp

and contained a single open reading frame (ORF) encoding an RNA-dependent RNA

polymerase (RdRp). The smaller segment (dsRNA2) consisted of 2,245 bp with a

single ORF encoding a capsid protein (CP). Evaluation of the deduced amino acid

sequence and phylogenetic analysis indicated that ThPV1 is a new member of the genus

Betapartitivirus in the family Partitiviridae. Curing of virus infection by single-sporing

generated 31 virus-free single-spore clones. No significant differences in growth rate,

conidia production, or pigmentation were observed between ThPV1-infected and -cured

isogenic strains. In addition, comparison of the newly ThPV1-transmitted isolates with

their ThPV1-cured parental strain showed no significant difference in colony morphology

or pigmentation. However, inhibition of growth in co-cultured Pleurotus ostreatus and

Rhizoctonia solani by T. harzianum was increased in ThPV1-containing strains compared

with ThPV1-cured isogenic strains. Moreover, β-1,3-glucanase activity was significantly

increased in the ThPV1-containing strains. However, no difference in chitinase activity

was observed, suggesting that ThPV1 regulates the activity of a specific fungal enzyme.

Keywords: Trichoderma harzianum, mycovirus, partitivirus, mycoparasitism, antifungal activity

INTRODUCTION

Mycoviruses, i.e., fungal viruses, are widespread and have been found in all major taxa of
filamentous fungi and yeasts (Van Alfen, 1986; Nuss and Koltin, 1990;Wickner, 1992). Themajority
of characterized mycoviruses have a double-stranded RNA (dsRNA) genome, although others have
single-stranded RNA (ssRNA) and DNA genomes. Mycoviruses of seven families, Chrysoviridae,
Endornaviridae, Megabirnaviridae, Quadriviridae, Partitiviridae, Reoviridae, and Totiviridae have
dsRNA genomes, while those of six families, Alphaflexiviridae, Barnaviridae, Gammaflexiviridae,
Hypoviridae, Narnaviridae, and Mymonaviridae have ssRNA genomes according to a report by
the International Committee on the Taxonomy of Viruses (ICTV) in 2016 (Ghabrial et al., 2015).
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Using multi-omics techniques, a large number of novel
mycoviruses are expected to be discovered and characterized
from various fungi. Recently, we reported the presence of a
variety of dsRNA elements in many strains of Trichoderma spp.
causing a green mold disease in shiitake mushroom (Lentinula
edodes) and confirmed the presence of novel mycoviruses in
these Trichoderma spp. (Yun et al., 2016). Although infection of
fungi by manymycoviruses is asymptomatic or cryptic (Ghabrial,
1998), there are many cases of mycoviruses inducing viral-
specific symptoms in the host and reduced fungal virulence,
known as hypovirulence, is one of representative examples in
phytopathogenic fungi (Nuss, 2005).

Members of the genus Trichoderma are fast-growing
ubiquitous soil fungi. The evident success of Trichoderma species
is due to the characteristic mechanisms of Trichoderma to
survive and proliferate, which include an aggressive ability to
inhibit other fungi and production of various enzymes for the
degradation of complex carbohydrates (Samuels and Hebbar,
2015). These activities have been exploited for human benefit;
indeed, some Trichoderma species are used as biocontrol agents,
and in the production of commercial enzymes and secondary
metabolites, and are endosymbionts for their host plant (Kubicek
and Penttila, 1998; Sivasithamparam and Ghisalberti, 1998;
Hatvani et al., 2002; Howell, 2003). T. harzianum is probably
the most commonly cited species and is widely recognized
as a potential biocontrol component in controlling common
soil-borne plant pathogens (i.e., Fusarium, Pythium, and
Rhizoctonia), but is also reported as the causal agent of green
mold disease in cultivated mushrooms (Papavizas, 1985;
Tokimoto, 1985; Ulhoa and Peberdy, 1992; Seaby, 1998; Kredics
et al., 2010). Thus, changes in the beneficial or pathological
characteristics of T. harzianum impact the industrial application
or prevention of this fungus. We have reported the presence
of dsRNA in T. harzianum; however, the nature and biological
function of the dsRNA are unclear.

In this study, we characterized the dsRNA of a novel
mycovirus and assessed its biological effects on T. harzianum.

MATERIALS AND METHODS

Fungal Strains and Growth Condition
Fungal strains were maintained at 25◦C in the dark on
PDA. Virus-containing and -cured T. harzianum strains were
maintained by the hyphal-tipping technique.

Nucleic Acid Extraction and Viral
Genome Sequencing
dsRNA extraction and Northern hybridization analysis
were performed as described by Park et al. (2008). Purified
dsRNA was subjected to cDNA library construction and
genome sequencing on the Illumina Hiseq 2000 platform
(Macrogen Inc., Seoul, South Korea). The Illumina adapter
sequence reads were quality checked by FastQC and
trimmed by Trimmomatic (ver. 0.32). Qualified reads were
assembled to generate contigs by Trinity and abundance

was estimated using RSEM software to calculate the
FPKM-values.

Rapid Amplification of cDNA Ends
(RACE) Analysis
RNA ligase-mediated rapid amplification of cDNA ends
(RLM-RACE) was performed to determine the 5′- and
3′-terminal sequences of dsRNA using an RLM-RACE
kit (Ambion, Austin, TX, United States). Purified dsRNA
was denatured in dimethylsulfoxide and treated with calf
intestine alkaline phosphatase (CIP) and tobacco acid
pyrophosphatase (TAP) to remove free 5′ phosphates and
cap structures. The 5′ RNA adapter oligonucleotide (5′-
GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGCUU
UGAUGAAA-3′) was ligated to the decapped RNA using
T4 RNA ligase. The ligates were subjected to random-
primed reverse transcription and the 5′ end of a specific
sequence was amplified. The 3′ terminus of dsRNA
was ligated to a 3′ RACE adapter oligonucleotide (5′-
GCGAGCACAGAATTAATACGACTCACTATAGGT12VN-3′)
and subjected to RT-PCR. The resulting cDNA was amplified by
PCR to determine the 3′ end sequence.

Sequence Analysis
Phylogenetic trees were constructed by the maximum-likelihood
methods (Fitch, 1971) with the software packageMEGA7 (Kumar
et al., 2016) after performing multiple sequence alignments using
CLUSTAL X (ver. 2.1) (Thompson et al., 1997).

Purification of Virus Particles and
Transmission Electron Microscopy
Trichoderma harzianum betapartitivirus 1 (ThPV1) particles
were purified by the method of Wang et al. (2014) and
subjected to sucrose gradient ultracentrifugation. The structure
of the virus-like particles was visualized by TEM on an H-7650
instrument installed in the Center for University-Wide Research
Facilities (CURF) at Chonbuk National University (Hitachi,
Tokyo, Japan) after negative staining with 2% uranyl acetate.

Antifungal Activity Assay
Conidial suspensions (1 × 105 spores/ml) of T. harzianum
NFCF319 were inoculated in 150 ml of potato dextrose
broth (PDB) and incubated in shaking flasks for 2 days
at 25◦C and 180 rpm. The culture medium was passed
through a 0.2 µm membrane filter and tested for each
filtrate diluted with PDB containing 10−1, 10−2, and 10−3

of the original filtrate. Pleurotus ostreatus (ASI No. 2792)
and Rhizoctonia solani AG-1 (KACC40101) were cultured by
placing mycelial plugs in the center of PDA containing each
filtrate, and colonial growth was assessed as the mean radial
area.

Chitinase and β-1,3-Glucanse Assay
Culture supernatants were harvested and subjected to chitinase
assays according to the manufacturer’s instructions (Sigma,
St. Louis, MO, United States). β-1,3-glucanase assays were
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FIGURE 1 | Structure of the T. harzianum partitivirus 1 (ThPV1) genomic double-stranded RNAs (dsRNAs). (A) Agarose gel electrophoresis of ThPV1 dsRNA.

Genomic dsRNA was extracted from virus-infected T. harzianum NFCF319. Lane M, DNA size standard. (B) Northern blot analysis of ThPV1 dsRNA1 and dsRNA2.

RNAs were hybridized with probes for dsRNA1 and dsRNA2. NC: negative control (ThPV1-free). (C) Schematic representation of ThPV1 dsRNA segments. Shaded

boxes, open reading frames (ORFs) encoding RNA-dependent RNA polymerase (RdRp) and capsid protein (CP). Numbers indicate the total lengths of the ThPV1

genome segments and the positions of the start and stop codons.

performed in 0.05 M sodium citrate buffer (pH 4.5) with β-1,3-
glucan for 2 h. The reaction was stopped by heating at 100◦C for
5 min, and the amount of reducing sugar liberated was measured
using neocuproine. One unit (U) of β-1,3-glucanase activity was

FIGURE 2 | Morphology of ThPV1 particles. Purified virus particles were

negative-stained with 2% uranyl acetate and examined by transmission

electron microscopy (TEM). Scale bar, 50 nm.

defined as the amount of an enzyme that produced 1 µmol of
reducing sugar per minute under the assay conditions.

Transformation
Protoplasts were prepared as described previously (Penttilä
et al., 1987). Transformation using protoplasts was performed as
described previously, with slight modification (Churchill et al.,
1990; Kim et al., 2002). Briefly, polyethylene glycol (PEG) 6,000
(Sigma) was used instead of PEG 4,000 when transforming DNA
was mixed with protoplasts. The protoplasts were transformed
with pDH25, which carried the hygromycin phosphotransferase
gene cassette (hph) (Cullen et al., 1987). Transformants were
selected from agar plates that were supplemented with 150 µg/ml
hygromycin B (Calbiochem; Merck, Darmstadt, Germany),
passaged three or four times on selective medium, and single-
spore isolated as described previously (Kim et al., 2002). PCR and
Southern blot analysis were conducted with genomic DNA from
the transformants to confirm the hygromycin B resistance gene.

Transmission of dsRNA Virus
Virus transmission was performed as described previously (Kim
et al., 2013). Briefly, mycelial plugs of the virus-containing strain
were placed on PDA medium adjacent to mycelial plugs of the
virus-free hygromycin-B-resistant recipient. After 3 days of co-
culture, putatively fused mycelia at the recipient border between
each pair of strains were transferred to hygromycin-containing
PDA, successively transferred to fresh hygromycin-containing
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FIGURE 3 | Phylogenetic analysis of ThPV1. Maximum-likelihood (ML) tree

based on the RdRp amino acid sequences of Partitiviridae. α, Alphapartitivirus;

β, Betapartitivirus; γ, Gammapartitivirus; δ, Deltapartitivirus; Cr, Cryspovirus.

See Supplementary Table S2 for the partitivirus names and their GenBank

numbers. Scale bar, number of substitutions per nucleotide site.

medium at least three times, and examined for the presence of
virus. Then, the virus-containing mycelial progenies were single-
spored to select for the virus-infected recipient transformants.
The presence of mycovirus was confirmed by purification of
dsRNA from the single-spored isolates.

RESULTS

Sequence Determination and Genome
Organization
The dsRNA extracted from the mycelia of T. harzianum
NFCF319 was resolved by 1% agarose gel electrophoresis,
and distinctive bands of approximately 2.3 kb were excised
(Figure 1A). The gel-purified dsRNAs were subjected to
construct an RNA-Seq library followed by sequencing using
Illumina HiSeq 2000. A total of 109 assembled reads with
significant fragments per kilobase of transcript per million
mapped reads (FPKM) values were obtained. A homology search
of the assembled reads suggested the presence of contigs with
high similarity to the known viral sequences of RNA-dependent
RNA polymerase (RdRp) and capsid protein (CP). Based on
the sequence analysis, RT-PCR using the corresponding primer
pairs (see Supplementary Table S1) based on two representative
contigs (i.e., one for RdRp and the other for CP) resulted in
PCR amplicons of the expected sizes, which were subjected to
sequence for verification. Northern blot analysis using the dsRNA
extracts and probes (see Supplementary Table S1) constructed
from PCR amplicons of portions of RdRp and CP revealed a
specific hybridization band indicating that the excised dsRNA
bands were double bands with similar sizes corresponding each
of RdRp and CP. Thus, the analysis of the dsRNA sequences
and Northern hybridization indicated that the mycoviral genome
is divided into two dsRNA segments (dsRNA1 and dsRNA2)
of similar size (Figure 1B). Rapid amplification of cDNA ends
(RACE) was conducted to determine the full-length of the
dsRNAs.

The complete genome sequences indicated that the dsRNA1
segment was of 2,289 bpwith a GC content of 45.1%, and dsRNA2
was of 2,245 bp with a GC content of 49.5%. These sequences
were deposited in GenBank (accession number MG973751 and
MG973752, respectively). Each segment contains a long open
reading frame (ORF) and ORF1 and 2 were on the coding strand
of dsRNA1 and dsRNA2, respectively. RACE analysis indicated
that the 5′ untranslated region (UTR) of the coding strand of
dsRNA1 was 68 nt long and the 3′ UTR was 52 nt long. In
addition, the coding strand of dsRNA2 contained a 107-nt-
long 5′ UTR and 158-nt-long 3′ UTR. The structure of genome
organization of dsRNA1 and dsRNA2 are displayed in Figure 1C.

The sequence of the 5′-termini of both dsRNA1 and 2
(GAACAAGG) were similar to the known consensus sequence of
the betapartitivirus GAWWUWNU (N, any nt; W, A or U) and
well-matched those of Heterobasidion partitivirus 2 (HetPV2)
(Vainio et al., 2011). In addition, characteristic A-rich regions in
the 3′-termini were preserved in both dsRNA1 [31 (A) residue
in the 3′-terminal 50 nt] and dsRNA2 [48 (A) residue in the
3′-terminal 50 nt]. Like other fungal partitiviruses showing the
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FIGURE 4 | Colony morphology of the original ThPV1-infected (T. harzianum NFCF319), three single-spored ThPV1-containing (T. harzianum NFCF319-V1, -V2, and

-V3), isogenic ThPV1-cured (T. harzianum NFCF319-Vf1, -Vf2, and -Vf3), ThPV1-free hygromycin B resistant transformant (T. harzianum NFCF319-Vf1-TNF1), and

isogenic ThPV1-transmitted (T. harzianum NFCF319-Vf1-TNF1-V1 and -V2) isolates.

characteristics of lengths of 5′- and 3′-non-translated region
(NTR), longer 3′-NTR than 5′-NTR was found in dsRNA2 and
longer 3′-NTR in dsRNA2 than dsRNA1 was found. Therefore,
these results indicated that the obtained sequences were of the
full-length of dsRNA1 and 2.

Viral particles were visualized by transmission electron
microscopy (TEM). The particles were spherical and of diameter
28–30 nm (Figure 2).

Phylogenic Analysis of ORF1 and ORF2
The deduced amino acid sequence of ORF1 consisted of
722 amino acids with a predicted molecular mass of 79.4
kDa. Homology search of the deduced amino acid sequence
revealed high similarity to the known sequences of RdRp of
Heterobasidion partitivirus 2 (HetPV2) [GenBank accession
number, HM565953; E-value, 0; AA identity, 589/722 (81%)].
Phylogenetic analysis using the top ranked similar sequences
indicated that our RdRp clustered with the genus Betapartitivirus,
and this was supported by significant bootstrap values. We
next used the above sequence information for taxonomic
reorganization of the family Partitiviridae (Vainio et al.,
2015). The extensive analysis showed that our RdRp clustered
with HetPV2 and Heterobasidion partitivirus 7 (HetPV7)
(Figure 3).

ORF2 was deduced to encode a 659-amino acid protein of
predicted molecular mass 72.5 kDa. Homology search showed
high similarity to the CP of HetPV2 [GenBank accession number,

HM565954; E-value 2e − 65; AA identity, 444/655 (68%)].
Phylogenetic analysis of CP indicated that our sequence clustered
strongly to those of HetPV2 and HetPV7. Sequence similarity,
genome organization, and phylogenetic analysis indicated that
the dsRNAs are genome segments of a new member of the genus
Betapartitivirus in the family Partitiviridae. Thus, we named our
dsRNA as Trichoderma harzianum betapartitivirus 1 (ThPV1).
Based on the ICTV species demarcation criteria for the genus
Betapartitivirus in the family Partitiviridae (≤90% and ≤80%
amino acid identities in the RdRp and CP, respectively), we
conclude that ThPV1 represents a novel species.

Characteristics of Mycovirus-Cured
and -Containing Strains
Virus-cured isogenic strains were obtained by producing single-
spored progenies followed by dsRNA purification. Spores were
harvested from 7-day-old culture plates containing actively
growing T. harzianum NFCF319, and 50 expected colony-
forming units (CFUs) were spread on fresh potato dextrose
agar (PDA) plate. Of 39 single-spored progenies, ThPV1
dsRNA bands were missing in 31. RT-PCR using gene specific
primer pairs did not amplify any band and no hybridization
band was observed either, which indicated that ThPV1 was
cured in those selected strains. Virus-cured strains were
successively sub-cultured weekly and subjected to dsRNA
extraction every 4 weeks for 6 months. None of the cured-
strains harbored ThPV1 dsRNA, suggesting that they were stable.
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FIGURE 5 | Colony morphology of P. ostreatus supplemented with culture

filtrates of ThPV1-containing and -free strains. Inhibition of the growth of

colonies of P. ostreatus with culture filtrate supplementation was compared to

without supplementation (control). Numbers at top indicate the dilution factors

of the culture filtrates.

To increase the biological replicates, 3 out of 31 cured strains
(T. harzianum NFCF319-Vf1, -Vf2, and -Vf3), and 3 from 7
vertically transmitted virus-containing clones (T. harzianum
NFCF319-V1, -V2, and -V3) were randomly selected for further
analysis.

No difference in growth rate was observed among the
four ThPV1-infected T. harzianum isolates, i.e., between the
original ThPV1-infected T. harzianum NFCF319 strain and its
three single-spored virus-containing progenies T. harzianum
NFCF319-V1, -V2, and -V3. In addition, no significant
differences in growth rate or colony morphology were detected
between the ThPV1-infected and -cured strains. Although the
time of appearance and intensity of the pigmentation varied
among individual cultures, a characteristic diffusing yellow
pigment developed in all strains during cultivation. In addition,
all strains produced similar numbers of gray–green conidia per
plate, dispersed in concentric rings (Figure 4).

FIGURE 6 | Colony morphology of R. solani supplemented with culture

filtrates of ThPV1-containing and -free strains. Inhibition of the growth of

colonies of R. solani with culture filtrate supplementation was compared to

without supplementation (control). Numbers at top indicate the dilution factors

of the culture filtrates.

Biological Comparison of
Mycovirus-Cured and -Containing
Strains
The antagonistic activities of the virus-cured strains against the
oyster mushroom, P. ostreatus, were measured using culture
filtrates of the ThPV1-containg strains (T. harzianum NFCF319
and T. harzianum NFCF319-V1, -V2, and -V3) and ThPV1-
cured strains (T. harzianum NFCF319-Vf1, -Vf2, and -Vf3).
Significant differences in the growth rate of P. ostreatus were
observed between medium without and with supplementation
with the culture filtrates of T. harzianum, regardless of ThPV1
infection. Moreover, significant differences in growth rate were
observed between medium supplemented with the culture
filtrates of virus-cured and -containing strains. The growth
rate was significantly reduced in medium supplemented with
culture filtrate of the virus-containing strain (Figure 5 and
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FIGURE 7 | Enzyme activities in culture filtrates of ThPV1-containing and -free strains. The β-1,3-glucanase (A) and chitinase (B) activities of the original

ThPV1-infected (T. harzianum NFCF319), mean of three single-spored ThPV1-containing (T. harzianum NFCF319-V1, -V2, and -V3), mean of isogenic ThPV1-cured

(T. harzianum NFCF319-Vf1, -Vf2, and -Vf3) and ThPV1-free hygromycin B resistant transformant (T. harzianum NFCF319-Vf1-TNF1), and mean of two isogenic

ThPV1-transmitted (T. harzianum NFCF319-Vf1-TNF1-V1 and -V2) isolates. The error bars indicate the standard deviations for three repeats per isolate. Student’s

t-test (∗P < 0.05) was used to analyze the data between the T. harzianum NFCF319 and other strains.

Table 1). Colonial growth inhibition was also examined using
the plant pathogenic fungus R. solani AG-1 (Figure 6 and
Table 1). Significant differences in colony growth were observed
in supplemented compared with non-supplemented medium.
Furthermore, the culture filtrates of the virus-containing strains
(T. harzianum NFCF319 and T. harzianum NFCF319-V1, -V2,
and -V3) inhibited the growth of the oyster mushroom and a
phytopathogenic fungus more strongly. To examine the effect of
the heat-inactivated culture filtrate on fungal growth inhibition,
colonial growth inhibition of R. solani AG-1 was tested using
medium supplemented with the heat-inactivated culture filtrate.
Colonial growth was inhibited by supplementation with the heat-
inactivated culture filtrate, but the effect was not as intense
as it was with the original culture filtrate. Interestingly, heat
inactivation altered growth inhibition by the culture filtrates of
the virus-containing strains to the level of the virus-cured strains.

The activities of two representative antifungal enzymes, β-1,3-
glucanase and chitinase, were analyzed. The enzyme activity of
the culture filtrate was monitored at 24 h intervals for 4 days. As
shown in Figure 7, the time course of the β-1,3-glucanase activity
was significantly reduced in the culture filtrate of the virus-cured
strains of T. harzianum NFCF319 (T. harzianum NFCF319-Vf
denotes the mean of three replicates of each of the NFCF319-Vf1,
-Vf2, and -Vf3 isolates). Interestingly, there was no difference in
chitinase activity between the virus-infected and -cured strains.

To validate the viral effect on the antifungal activity, we
performed a “plus” experiment, i.e., we artificially transmitted
ThPV1 into a virus-cured strain via anastomosis between
virus-infected and -cured strains and analyzed the antifungal
activity of the resulting virus-infected recipient strains. First,
we transformed the cured strain of T. harzianum NFCF319-Vf1
using the hygromycin B resistance cassette to differentiate the
ThPV1-transmitted progeny from the parental virus-containing
T. harzianum NFCF319, because all cured strains were isogenic

to their parental strain, i.e., the genetic background of all
strains was identical, except for the presence or absence of
mycovirus. Among 11 transformants showing stable resistance
to hygromycin B after successive transfer to selective medium,
the transformant T. harzianumNFCF319-Vf1-TNF1 was selected
randomly and we observed no phenotypic changes from the
parental T. harzianum NFCF319-Vf1 strain (Figure 4). After
prolonged paired growth of the viral donor (T. harzianum
NFCF319) and viral recipient (T. harzianum NFCF319-Vf1-
TNF1) strains, several hyphae at the recipient border were
collected and cultured independently on the selective medium,
and the presence of ThPV1 was analyzed. Two independent
single-spored virus-transmitted hyphal progenies were obtained.
One of each single-spored progeny (T. harzianum NFCF319-
Vf1-TNF1-V1 and -V2) containing ThPV1 was selected for
further analysis (Figure 4). As shown in Figures 5, 6, medium
supplemented with the culture filtrates of virus-transmitted
T. harzianum NFCF319-Vf1-TNF1-V resulted in significant
differences in the growth inhibition of P. ostreatus and R. solani.
The level of inhibition was similar to that of the original
virus-infected T. harzianum NFCF319 and significantly greater
than those of virus-cured T. harzianum NFCF319-Vf and its
transformant T. harzianum NFCF319-Vf1-TNF. In addition,
significant increases in β-1,3-glucanase activity were observed
in T. harzianum NFCF319-Vf1-TNF1-V compared with the
parental virus-cured transformant T. harzianum NFCF319-Vf1-
TNF (Figure 7). The β-1,3-glucanase activity in T. harzianum
NFCF319-Vf1-TNF1-V was comparable to that of the original
virus-infected T. harzianum NFCF319 (Figure 7). The enzyme
activity profiles of β-1,3-glucanase were similar among the virus-
containing strains. The enzyme activity of the virus-containing
strains reached a peak at 48 or 72 h and then decreased gradually
to 96 h. The enzyme activity profiles of β-1,3-glucanase were
similar across the virus-cured strains. However, the levels of the
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enzyme activity of the virus-cured strains were significantly lower
at 48 and 72 h of incubation and remained constant until 96 h.
No difference in chitinase activity was observed among all strains
tested.

DISCUSSION

The two-segmented dsRNA genome (each with one ORF)
and isometric particles of 28–30 nm diameter suggest that
ThPV1 belongs to the family Partitiviridae. According to
the ICTV in 2016, the family Partitiviridae comprises the
genera Alphapartitivirus, Betapartitivirus, Gammapartitivirus,
Deltapartitivirus, and Cryspovirus (Nibert et al., 2014; Lefkowitz
et al., 2017). The sizes of the segments and the molecular masses

TABLE 1 | Growth inhibition due to the supplementation of culture filtrates.

Dilution rate Strains Growth inhibition

of P. ostreatus

(%)

Growth inhibition

of R. solani (%)

1:10 ThPV1-infected 90.29c 94.78c

ThPV1-containing 91.33c 95.49c

Isogenic

ThPV1-cured

78.82b 86.87b

ThPV1-free

hygromycin B

resistant

transformant

81.06b 86.85b

Isogenic

ThPV1-transmitted

91.04c 95.89c

1:100 ThPV1-infected 82.03c 87.01c

ThPV1-containing 81.64c 87.55c

Isogenic

ThPV1-cured

66.92b 80.98b

ThPV1-free

hygromycin B

resistant

transformant

66.66b 80.53b

Isogenic

ThPV1-transmitted

81.56c 87.51c

1:1000 ThPV1-infected 66.39b 78.73c

ThPV1-containing 67.06b 77.08c

Isogenic

ThPV1-cured

66.58b 5.23b

ThPV1-free

hygromycin B

resistant

transformant

65.58b 5.36b

Isogenic

ThPV1-transmitted

67.05b 76.61c

ThPV1, Trichoderma harzianum partitivirus 1. Growth inhibition by metabolites from

the original ThPV1-infected (T. harzianum NFCF319), three single-spored ThPV1-

containing (T. harzianum NFCF319-V1, -V2, and -V3), isogenic ThPV1-cured

(T. harzianum NFCF319-Vf1, -Vf2, and -Vf3), ThPV1-free hygromycin B resistant

transformant (T. harzianum NFCF319-Vf1-TNF1), and isogenic ThPV1-transmitted

(T. harzianum NFCF319-Vf1-TNF1-V1 and -V2) isolates. Numbers are the relative

inhibition rates (%) compared to without fungal metabolite supplementation. Data

were analyzed by ANOVA followed by post hoc Tukey’s with the level of significance

at p < 0.05. The same letters at the top of the relative inhibition rate indicate no

significant difference between isolates.

of the encoded proteins of ThPV1 are within the normal range
of the genus Betapartitivirus, which are characteristically larger
than those of other genera (Nibert et al., 2014). In addition,
the high pairwise-identity scores of the amino acid sequences of
encoded RdRp (81% to RdRp of HetPV2) and CP (68% to CP
of HetPV2) to other known Partitiviridae (Nibert et al., 2014),
and the clustering of ThPV1 with other members of the genus
Betapartitivirus, indicates that ThPV1 is a new member of the
genus Betapartitivirus.

Virus curing by single-spore isolation was successful; i.e.,
79.5% of the resulting single-spore colonies were ThPV1-
free. In addition, the ThPV1-free proportion was similar (20–
84%) among three independent experiments. Therefore, the
rate of vertical transmission of ThPV1 to mitotic progenies,
conidia, of host fungus was low, although a considerable
proportion of conidia showed vertical transmission of ThPV1.
Like other mycoviruses, partitiviruses are generally considered
to be transmitted vertically during cell division and horizontally
during intimate cell-cell contact. Heterobasidion partitiviruses,
which are closely related to ThPV1, could be transmitted
vertically to basidiospores and conidiospores and horizontally
via hyphal contact (Ihrmark et al., 2002, 2004). The mitotic
stability measured by inheritance of mycoviruses during asexual
conidiation differed depending on the virus–fungus interaction.
The mitotic inheritance of ThPV1 during asexual conidiation
was less stable than that of Cryphonectria hypovirus 1 (CHV1)
in C. parasitica (Suzuki et al., 2003; Prospero et al., 2006), and
of mycoreovirus 1 (MyRV1) in C. parasitica (Sun et al., 2006),
but comparable to dsRNAs in the basidiomycetes H. annosum
(Ihrmark et al., 2002). The low transmission rate of ThPV1 into
conidia is exceptional considering that most vertical transmission
of dsRNA into asexual spores of ascomycetes occurs at amarkedly
higher rate. Indeed, the recently characterized Trichoderma
atroviridemycovirus 1 (TaMV1) has a very high transmission rate
(33/38) (Lee et al., 2017). Therefore, the low transmission rate of
ThPV1 into conidia is attributable to the intrinsic characteristics
of the virus–fungus (ThPV1–T. harzianum) interaction.

Considering their persistent lifestyles and direct cell-to-
cell transmission, partitiviruses has few, if any, deleterious
effects on host cells (Nibert et al., 2014). However, others
have reported negative or positive effects of partitiviruses
on their host (Suzuki et al., 2001; Márquez et al., 2007;
Jenkins et al., 2008; Kanematsu et al., 2010; Vainio et al.,
2010, 2017; Hyder et al., 2013; Xiao et al., 2014; Zheng
et al., 2014). ThPV1 did not influence the mycelial growth,
colony morphology, pigmentation, or conidiation of its host
fungus. However, ThPV1 significantly altered the activities of
antifungal enzymes potentiating the biocontrol function of
its host fungus T. harzianum. It is interesting to see that,
regardless of virus-containing or -cured, supplementation of
culture filtrates resulted in significantly increased antifungal
activities compared to the non-supplementation; furthermore,
the heat-treated culture filtrate of the ThPV1-infected strain
showed significantly reduced antifungal activities similar to the
level of ThPV1-free strain. These results clearly suggested that
the antifungal activities were attributable to both heat-stable
and -sensitive metabolites. Considering the facts that antifungal
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activity was significantly increased by ThPV1, significant increase
in the activity of antifungal enzyme of β-1,3-glucanase was
observed in the ThPV1-infected strain, and heat treatment
reversed the increased antifungal activity of ThPV1-infected
strain, the antifungal activity was likely mediated by a hydrolytic
enzyme, such as β-1,3-glucanase. ThPV1 modulates the activity
of β-1,3-glucanase but not that of chitinase. These results
suggest that ThPV1 influences the activity of a specific fungal
enzyme, which enhances the mycoparasitism of ThPV1-infected
T. harzianum. Mycoviruses can exert complex effects on their
fungal host, which mediated osmotic stress tolerance (Nerva
et al., 2017) and mycotoxin accumulation (Nerva et al., 2018).
Thus, whether ThPV1 exerts antagonistic effects on other fungal
strains or species should be the subject of further studies.

In addition to the curing experiment including multiple virus-
cured and -retained progenies, horizontal viral transmission
via hyphal fusion allowed us to verify that the changes in
antifungal activities were due to ThPV1. The fact that, compared
with the original T. harzianum NFCF319 strain, all the viral-
transmitted isolates showed similar levels of antifungal activity,
such as the growth inhibition of other fungi, indicates that
ThPV1 is responsible for the enhanced antifungal activity of the
host fungus. Although further work is required, it is important
to note the increased β-1,3-glucanase activity is implicated
in the hydrolysis of pathogenic fungi during mycoparasitic
attack by T. harzianum (Qualhato et al., 2013). The antifungal
activity was higher in the culture filtrate of ThPV1-infected
strains, suggesting that the enhanced β-1,3-glucanase activity
influences the potential antifungal activity of ThPV1-infected
strains.

To our knowledge, this is the first report of a betapartitivirus
in T. harzianum. In addition, the mycovirus enhanced the
antifungal activity of the host fungus by regulating the activity
of a specific antifungal enzyme.
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