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Abstract

Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the
M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein
plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not
essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV
might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the
mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and
virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4
encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally
replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment.
We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most
notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In
identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome
and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle.
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Introduction

Influenza A virus (IAV) is a genetically diverse pathogen of

global significance, responsible for seasonal epidemics and

sporadic pandemics in humans, as well as outbreaks in domestic

animals. Its primary reservoir is wild birds, but it can infect a wide

range of vertebrate species. For these reasons, there is the need to

develop better therapeutics and vaccines [1]. Current vaccines

target the surface glycoproteins haemagglutinin (HA) and neur-

aminidase (NA), but these proteins are subject to antigenic change,

necessitating regular updating of the vaccine to ensure a good

antigenic match to the circulating strains. Next generation

influenza vaccines seek to induce broader or ‘universal’ protection

against conserved epitopes; for example, the ‘stalk’ region of HA

or the ectodomain of the matrix 2 ion channel protein (M2) [2,3].

The IAV genome consists of eight segments of negative sense,

single stranded RNA (vRNA), each encapsidated into ribonucleo-

proteins (RNPs) by the viral RNA dependent RNA polymerase

and multiple copies of the viral nucleoprotein (NP). Upon

infection, incoming RNPs are imported into the nucleus, where

the vRNA is transcribed to give positive sense mRNA, and also

cRNA, which acts as a replication intermediate. The approxi-

mately 13 kb genome has so far been demonstrated to encode up

to 13 proteins [4,5]. Segments 1, 4, 5 and 6 each encode a single

protein: PB2, HA, NP and NA respectively. However, segments 2,

3, 7 and 8 have additional protein coding capacity. Segments 2

and 3, whose primary protein products are the polymerase

proteins PB1 and PA respectively, additionally produce PB1-F2,

PB1-N40 and PA-X proteins from single mRNA species by leaky

ribosomal scanning and translation termination-reinitiation in the

case of segment 2 and +1 ribosomal frameshifting for segment 3

[4–7].

In segments 7 and 8, protein coding capacity is expanded by

differential mRNA splicing. For segment 8, a single spliced species
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has been described, producing NS2/NEP, while NS1 is produced

from the unspliced transcript [8,9]. Segment 7 mRNA splicing is

more complex, as three spliced transcripts have been described

(designated mRNAs 2–4) in addition to the unspliced mRNA1

[10–12]. Unspliced mRNA1 gives rise to M1 protein. The spliced

mRNAs use a common 39-splice acceptor (SA) site, but use

different 59-splice donor (SD) sites (Fig. 1A). To date, only

mRNA2 has been demonstrated to encode a protein: the M2 ion

channel [13]. mRNA3 is produced from the most 59-proximal SD,

and is proposed to negatively regulate segment 7 protein

expression during early infection [14], a non-essential function

for virus growth in tissue culture [15,16]. More recently, mRNA4

has been shown to be produced by the A/WSN/33 (WSN) strain

of virus [12,15,17]. It hypothetically encodes an internally deleted

form of the M1 protein (‘‘M4’’; Fig. 1A) but this protein has not

been detected [12].

M2 is a 97 aa integral membrane protein, functional as a

homotetramer, with multiple important roles during the virus

lifecycle [18,19]. Each monomer consists of a 24 aa N-terminal

ectodomain, a transmembrane a-helix and a ,50 aa cytoplasmic

domain that contains a membrane proximal amphipathic alpha

helix [20,21]. M2 has proton channel activity, which is important

for acidification of the interior of the virion upon entry [22–24]. In

some strains of virus, proton conductance plays an additional role

in modulating the pH of the Golgi compartment to prevent

premature activation of the HA fusion apparatus [22,25]. The

cytoplasmic tail of M2 also has roles in virus assembly, budding

and morphogenesis [26–32]. The function of the ectodomain is

less well described, although along with the transmembrane

domain, it likely plays a role in directing the membrane topology

of M2 [33,34]. It may also be important for incorporation of the

protein into virions [35]. Nevertheless, the ectodomain is highly

conserved amongst virus strains and this has made it an attractive

candidate for a universal influenza vaccine [2,3].

Surprisingly, it has been possible to generate M2 null viruses,

either by introduction of stop codons or by mutating the splice

donor site, although these viruses are highly attenuated [15,36–

39]. Here, we describe a pseudoreversion mechanism of a virus

with a mutated mRNA2 SD site, which reveals a new aspect of

IAV biology. After serial passage, we identified a single mutation

that upregulated mRNA4 expression without restoring M2

synthesis. Instead, mRNA4 encodes an M2 variant with an

alternative ectodomain, designated here M42, which nevertheless

functionally complements M2, in vitro and in vivo. Furthermore, we

present evidence that certain strains of IAV, most notably those

responsible for the 1983 Pennsylvania outbreak of highly

pathogenic avian influenza (HPAI), normally express M42. Our

data extend the known IAV proteome and have implications for

virus evolution and vaccine design.

Results

Pseudoreversion of an M2-null virus
Previously, we used reverse genetics to create an A/PR/8/34

(PR8) virus with synonymous mutations to the mRNA 2 SD

sequence. This virus, (M1 V7-T9, hereafter named V7-T9), did

not produce detectable levels of M2 and was highly attenuated in

tissue culture [37]. To better understand the role of M2 in the

virus life cycle, we studied the mechanism by which V7-T9 could

regain fitness upon serial passage.

WT and V7-T9 viruses were subjected to six rounds of serial

passage via low multiplicity infections of MDCK cells. At each

round, outputs were titred by plaque and HA assay. Before serial

passage (‘‘P0’’), the input V7-T9 virus replicated to a plaque titre

400-fold lower than the WT and had an HA titre 100-fold lower

(Fig. 2A). However, on serial passage it regained fitness rapidly,

producing similar plaque and HA titres to WT virus within two

passages. As a further test of fitness recovery, the plaque areas of

the WT and V7-T9 viruses were measured before and after serial

passage. Prior to serial passage, V7-T9 displayed a small plaque

phenotype ([37]; Fig. 2B). However, after passage six (P6), its

average plaque area had increased over four-fold and was no

longer significantly different from that of the WT virus (Fig. 2B).

To test if the regained fitness resulted from restoration of M2

expression, we examined infected cell lysates from the original and

serially passaged versions of the WT and V7-T9 viruses by western

blotting for M1 and M2. All infected cells showed abundant M1

expression, confirming infection (Figs. 2C). Cells infected with the

WT virus isolates also contained a polypeptide recognised by the

M2 ectodomain-specific 14C2 monoclonal antibody, but as before

[37], cells infected with the original V7-T9 virus did not; a

phenotype that remained unchanged in the serially passaged

isolate (Fig. 2C, lanes 2–5). However, 14C2 antibody recognition

is restricted to an epitope encompassing residues 4 to 16 of M2

[40–42]. When a polyclonal antibody raised against the entire M2

protein, G74 [43], was used, the original V7-T9 virus still did not

show any reactivity (Fig. 2C). However, the P6 V7-T9 virus

produced detectable amounts of a G74-reactive polypeptide of

similar electrophoretic mobility to that of M2 (Fig. 2C, compare

lanes 4 and 5), suggesting that it now expressed some M2

polypeptide, albeit with different antigenicity to the WT protein.

To further investigate M2 expression by the P6 V7-T9 virus, we

examined cells infected with passaged or unpassaged WT and

mutant viruses by indirect immunofluorescence for NP (to identify

infected cells) and M2, using the two M2-specific sera. All infected

cells stained strongly for NP, confirming similar levels of infection

(Fig. 3; in red). Consistent with the western blot data, WT virus

infected cells also stained strongly with both 14C2 and G74 anti-

M2 antibodies, showing the expected predominant staining of

apical and lateral membranes [44], while neither isolate of the V7-

T9 virus reacted with the 14C2 monoclonal (Fig. 3; in green or

Author Summary

Influenza A virus is a pathogen capable of infecting a wide
range of avian and mammalian hosts, causing seasonal
epidemics and pandemics in humans. In recent years, the
unexpected coding capacity of the virus has begun to be
unravelled, with the identification of three more protein
products (PB1-F2, PB1-N40 and PA-X) on top of the 10 viral
proteins originally identified 30 years ago. Here, we
identify a 14th primary translation product, made from
segment 7. Previously established protein products from
segment 7 include the matrix (M1) and ion channel (M2)
proteins. M2, made from a spliced transcript, has multiple
roles in the virus lifecycle including in entry and budding.
In a laboratory setting, it is possible to generate M2
deficient viruses, but these are highly attenuated. Howev-
er, upon serial passage a virus lacking the M2 splice donor
site quickly recovered wild type growth properties,
without reverting the original mutation. Instead we found
a compensatory single nucleotide mutation had upregu-
lated another segment 7 mRNA. This mRNA encoded a
novel M2-like protein with a variant extracellular domain,
which we called M42. M42 compensated for loss of M2 in
tissue culture cells and animals, although it displayed some
differences in subcellular localisation. Our study therefore
identifies a further novel influenza protein and gives
insights into the evolution of the virus.

A Novel Form of the Influenza A Virus M2 Protein
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separate channel in grey). Also consistent with the western blot

data, the unpassaged V7-T9 virus did not stain above background

levels with the G74 antiserum, but the P6 isolate showed clear

reactivity. However, the staining pattern was markedly different to

that shown by WT virus, with prominent perinuclear staining and

some staining of lateral membranes (Fig. 3B). Overall, these data

suggested that the serially passaged M2 null virus had regained

fitness by expressing a variant form of M2 that no longer reacted

with the ectodomain-specific antibody.

Following serial passage, segment 7 of both the P6 WT and V7-

T9 viruses was sequenced. No changes were detected in the WT

virus compared to the reference sequence (GenBank accession

Figure 1. Segment 7 transcript and ORF structure. (A). Diagrammatic summary of mRNA splice variants. The nucleotide coordinates of SD and
SA sites are shown. Potential ORFs are colour coded (yellow, M1; blue, M2; red, unique sequence of M42) and total sizes (codons/aa) are given on the
right. The arrowhead at top right indicates the binding site of the oligonucleotide used to detect the various mRNA species by radioactive primer
extension reactions. (B) Nucleotide sequence (shown as cDNA) and predicted ORFs (colour coded as in (A)) of the 59-end of PR8 mRNA4. Unused SD
sequences and the splice junction (SJ) sequence are underlined. Nucleotides mutated to remove the M42 AUG codon (U115C) or abolish mRNA4
synthesis (G145A) are shown in red. (C) Alignment of the predicted N-terminal sequences of M2 and M42. The range of residues implicated in
recognition of M2 by the 14C2 antibody are indicated in red [40–42,61]. The transmembrane domain of M2 is shaded in green.
doi:10.1371/journal.ppat.1002998.g001

A Novel Form of the Influenza A Virus M2 Protein
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EF467824). The P6 V7-T9 virus retained the original mutations

that destroyed the mRNA2 SD site, indicating pseudoreversion to

recover WT growth properties rather than true reversion. It also

contained a single additional change, not seen in the original V7-

T9 virus, of a U to A substitution at nucleotide 148 (U148A;

mRNA sense, Fig. S1). This change is in the M2 intron and is

silent in M1. However, the change would be predicted to improve

the mRNA4 SD consensus (Fig. S1), from AG/GUU to AG/GUA

[45]. As previously noted, mRNA4 is predicted to encode a 54 aa

internally deleted version of M1 [12], from the first AUG on the

transcript (Fig. 1B). Notably, the Kozak consensus [46] of AUG1 is

not optimal, lacking a G at position 4 (Figs. 1B, S1) and in the

context of segment 2, an intermediate strength initiation context

AUG1 is known to permit translation initiation at downstream

codons by a leaky ribosomal scanning mechanism [4,6,7].

Inspection of the segment 7 sequence showed another AUG

starting at position 114 in frame 2 (Fig. 1B). The predicted protein

product from this AUG would have a variant ectodomain

compared to M2, but would be identical from amino acid 10

onwards. The predicted size of the protein product would be 99

amino acids, compared to 97 for M2 (Fig. 1C).

Accordingly, we hypothesized that the U148A change induced

pseudoreversion of the V7-T9 virus via upregulation of mRNA4,

to produce a variant M2 protein (designated here ‘‘M42’’) from

AUG2 via leaky ribosomal scanning. To test this, we used reverse

genetics to first ask whether the U148A change was sufficient to

restore WT growth properties to the V7-T9 virus. Initially, a PR8

V7-T9+U148A virus was generated, along with WT, V7-T9 and a

virus with only the U148A change. Viruses were rescued by

transfecting bidirectional plasmids [47] into 293T cells, amplified

by one passage in MDCK cells and plaque titred. WT PR8 grew

to approximately 76108 PFU/ml and formed large plaques,

whereas V7-T9 had a small plaque phenotype and was attenuated

by approximately 3 log10 (Fig. 4A), consistent with previous

observations [37]. Introduction of the single U148A mutation into

the background of an otherwise WT virus did not alter virus

growth properties. However, when the change was added to the

V7-T9 background, the double mutant grew to an average of

56108 PFU/ml and produced normal-sized plaques (Fig. 4A),

confirming that the U148A mutation was necessary and sufficient

to restore WT growth properties.

To further test the M42 hypothesis, we introduced two

mutations that would be expected to block production of the

predicted novel polypeptide: either by removing its AUG codon

(U115C), or by destroying the mRNA4 SD site (G145A). Each of

these mutations was made on the background of WT segment 7, as

well as with the V7-T9, U148A or V7-T9+U148A mutations. On

a WT background, a virus with only the U115C mutation grew

normally and produced plaques indistinguishable from the WT

virus (Fig. 4A). When the U115C mutation was combined with the

U148A change, the resulting virus grew slightly less well than WT

(an average relative titre of 0.44 [n= 4]) and displayed a small

plaque phenotype. Addition of U115C to the V7-T9 mutant also

had only a minor effect on growth relative to the parent virus. In

contrast, its addition to the V7-T9+U148A background reversed

the positive effect of the U148A mutation, resulting in a virus that

grew poorly (to less than104 PFU/ml) and produced small plaques.

Similarly, the G145A mutation had no effect on virus growth as a

single mutation or when combined with the U148A change.

However, in 3 independent attempts, it was not possible to rescue

a virus with V7-T9, U148A and G145A mutations, suggestive of a

lethal phenotype.

These data indicated that pseudoreversion of the M2-null virus

required mRNA4 and also AUG2. As an additional genetic test of

the M42 hypothesis, we introduced a premature stop codon

(K70*) into the distal region of the M2 ORF that would be

common to both M2 and M42 polypeptides, but outside the M1

(or hypothetical M4) coding region. As a control K70 was also

substituted for tryptophan (K70W), a similar sequence change but

known to be compatible with M2 function [29]. It was not possible

to rescue a virus with V7-T9+U148A+K70stop, although the V7-

T9+U148A+K70W mutant grew comparably to WT and

V7+U148A viruses. Together, the genetic data are consistent

with the hypothesis that the U148A change restores growth of an

M2-deficient virus by upregulating expression of mRNA4,

allowing expression of an M2 variant from AUG2 of the

transcript.

Identification of M42, a novel M2-related polypeptide
To provide biochemical evidence for the M42 hypothesis, we

next examined segment 7 mRNA splicing by the panel of viruses in

293T cells. The V7-T9+U115C+U148A virus grew to insufficient

Figure 2. Pseudoreversion of an M2-null virus. (A). Plaque and HA titre plotted before (passage 0) and after each step of 6 serial passage
experiments as a fraction of the corresponding mean values obtained from two independent stocks of WT virus passaged in parallel. (B) Average
plaque size in MDCK cells of the indicated viruses before and after (P6) serial passage. Values are the mean + SEM of 15–92 plaques normalized to the
average WT value from each experiment. *** = p,0.001 compared to WT. (C). Segment 7 polypeptide expression. Lysates from cells infected with the
indicated viruses were analysed by SDS-PAGE and western blotting as labeled.
doi:10.1371/journal.ppat.1002998.g002

A Novel Form of the Influenza A Virus M2 Protein
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titres to allow high multiplicity synchronous infections and the V7-

T9+G145A+U148A virus could not be rescued, so the U115C+

U148A and G145A+U148A viruses were used as proxies to analyse

the effects of the U115C and G145A mutations on mRNA

expression. Following infection, total RNA was extracted and

reverse transcriptase-primer extension reactions were performed

using a single primer capable of distinguishing segment 7 mRNAs

1–4 [17]. Separate primers specific for segment 7 vRNA and

cellular 5S rRNA were also included as controls for virus infection

and RNA recovery respectively. The levels of 5S rRNA were

equivalent between samples (Fig. 4B), demonstrating equal loading.

vRNA levels were also comparable between infected samples,

suggesting that all infections had proceeded successfully. The levels

of unspliced mRNA1 were also similar between the viruses.

However, large differences in the levels of spliced mRNAs 2 and

4 were apparent. In cells infected with the WT virus, the unspliced

transcript predominated, but abundant levels of mRNA2 (for M2)

were also present (Fig. 4B, lane 1; quantification in Fig. 4C). In

contrast, mRNAs 3 and 4 formed minor species that were only

visible on long exposure (primary data not shown, but see Fig. 4C

for quantification). As expected, mRNA2 was not detected in viruses

containing the V7-T9 mutation (Fig. 4B, lanes 5 and 6).

Importantly, and as predicted, the U148A mutation, either alone

or on a V7-T9 background, strongly upregulated production of

mRNA4 (compare lanes 1, 3 and 6). This effect was blocked when

the mRNA4 SD was destroyed with a G145A change (lane 7).

Interestingly, the changes in levels of mRNAs 2 and 4 were partly

reciprocal. Loss of the mRNA2 SD site in the V7-T9 virus was

associated with weak upregulation of mRNA4 (compare lanes 1 and

5), while improvement of the mRNA4 SD by the U148A change in

an otherwise WT background led to around a three-fold drop in

mRNA2 levels (compare lanes 1 and 3). Addition of the U115C

change to the U148A virus caused a further decrease in mRNA2

levels, but left mRNA4 levels unaltered (compare lanes 3 and 4).

Overall, these data supported the proposed mechanism of

pseudoreversion involving increased production of mRNA4.

Next, we analysed segment 7 protein expression from the

mutant viruses by western blotting for M1, and for M2 using 14C2

Figure 3. Immunofluorescent analysis of M2 expression. MDCK cells were infected with the indicated viruses at an MOI of 10, fixed at 8h p.i.,
permeabilised and stained with (A) anti M2 14C2 or (B) G74 (in green, as labeled) and (as counterstains) with anti-NP (red) and DAPI (blue) before
imaging by confocal microscopy. Extended focus projections of a series of optical sections through the depth of the cells are shown, either as merged
3-colour images or (in grey scale), the green channel alone.
doi:10.1371/journal.ppat.1002998.g003

A Novel Form of the Influenza A Virus M2 Protein
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and G74 antisera. Lysates from the primary reverse genetics

transfections in 293T cells were used, because V7-T9+G145A or

V7-T9+G145A+U148A viruses could not be obtained. Virus

polypeptides in these lysates will therefore come from several

sources: from RNA Pol II transcription of the bidirectional

plasmid, from viral transcription in cells where active RNPs have

been reconstituted by transfection, and from spread of viable virus

through the cell culture. To control for purely plasmid-mediated

expression, lysates from a transfection where PB2 was omitted

were probed. In this sample, levels of M1 and M2 were below the

limit of detection, although they were readily visualised when all

eight plasmids were transfected (Fig. 4D, compare lanes 1 and 2).

This suggested that under these conditions, the major signal came

from viral gene expression. When mutant and WT transfections

were compared, M1 levels were broadly similar between samples,

but there was more variation in M2 levels. As expected, 14C2

reactivity was only detected from viruses with an intact mRNA2

SD (lanes 2–6) and was absent from all of the V7-T9 family of

viruses (lanes 7–12). G74 reactivity was also readily detectable in

all samples from viruses able to make mRNA2. However, in the

absence of mRNA2, it was only detectable in the V7-T9+U148A

transfected lysates (lane 10). Significantly, this was dependent on

the presence of both elevated mRNA4 levels and segment 7

AUG2, as addition of either or the G145A or U115C mutations

ablated its expression (compare lanes 10, 11 and 12).

Next, to prove the existence of the M42 polypeptide, we raised a

specific antibody against a peptide corresponding to the predicted

novel ectodomain of PR8 M42. To validate the serum, we tested it

against transfected M42 and M2, both fused to GFP. M42-GFP,

M2-GFP or GFP alone were transfected into 293T cells and the

resulting cell lysates were probed with anti-M42 and anti-M2

14C2 or G74. Samples were also probed with anti-GFP and

tubulin antisera, to confirm expression of the GFP polypeptides

and equal sample loading respectively (Fig. 5A). The anti-M42

serum detected M42-GFP with a high degree of specificity over

M2-GFP (compare lanes 1 and 2). Conversely, the 14C2 antibody

Figure 4. Genetic and biochemical evidence for pseudoreversion through upregulation of mRNA4. (A) Endpoint titres after multicycle
replication in MDCK cells of viruses with the indicated mutations to segment 7. Values are plotted are the mean + SEM of between 2 and 18
independent rescues. NR; not rescuable in 2 or more attempts. Viruses were also visually classified into normal (black bar) and small (white bar)
plaque phenotypes. (B, C) Segment 7 mRNA accumulation. Total RNA isolated from cells infected with the indicated viruses at 6 h p.i. was analysed by
RT-primer extension and urea-PAGE using primers specific for segment 7 mRNAs, vRNA or (as a loading control), cellular 5S rRNA. (C) The amounts of
mRNAs 1–4 were quantified by phosphorimager and plotted as the mean 6 SD of 3 experiments (D) Segment 7 polypeptide accumulation was
monitored by western blot analysis of lysates from 293T cells transfected with reverse genetics plasmids for the indicated viruses at 72 h post
transfection with the indicated antisera.
doi:10.1371/journal.ppat.1002998.g004
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was specific for M2-GFP, while as expected, anti-G74 detected

both M42 and M2-GFP. A preimmune bleed from the rabbits

immunized with the M42 peptide did not react with either M42-or

M2 GFP. To further probe the immunological cross-reactivity

between M2 and M42, we tested a polyclonal antiserum raised

against the entire M2 ectodomain, anti-M2e [48]. This reacted

strongly with M2-GFP and only weakly with M42-GFP, confirm-

ing the novel antigenicity of the M42 ectodomain.

Having generated a specific M42 antibody, we investigated

expression of the protein in cells infected with the panel of WT

and mutant viruses. Western blot analysis of MDCK cell lysates

using anti-tubulin sera demonstrated equivalent loading of all

samples while anti-M1 and anti-NP sera showed equal levels of

infection except in mock infected cells (Fig. 5B). WT, U115C,

G145A and G145A+U148A viruses expressed abundant quantities

of a polypeptide that reacted with 14C2 and G74 anti-M2 sera

(Fig. 5B, lanes 2–5 and 7). In contrast, the V7-T9 virus did not

produce detectable levels of any M2-related polypeptide (lane 8).

However, concomitant upregulation of mRNA4 on this back-

ground by the addition of the U148A mutation led to abundant

synthesis of an anti-M42 reactive polypeptide (lane 9), confirming

our hypothesis of a novel M2-related polypeptide. The U148A

mutation also led to synthesis of readily detectable amounts of the

M42 polypeptide when introduced into an otherwise WT

background (lane 5). M42 reactivity was however lost on this

background by mutation of AUG2 with the U115C change, or by

mutation of the mRNA4 SD using G145A (lanes 6 and 7).

Consistent with the mRNA abundance data, overall amounts of

M2 were reduced by the U148A mutation, as judged by 14C2 and

G74 staining (compare lanes 1 and 5). In addition, double staining

the same blot with the mouse 14C2 antibody in red and the rabbit

M42 antibody in green allowed the creation of a merged image

(Fig. 5B, top panel) that illustrates the similar molecular weights of

the M2 and M42 polypeptides, as well as their changing relative

abundance in response to mutations to SD sites of mRNAs 2 and 4.

Immunofluorescent staining of P6 V7-T9-infected cells suggest-

ed that the two forms of M2 localised differently within infected

cells (Fig. 3B). To test if this truly reflected a difference in

behaviour of M42 compared to M2, we infected cells with the

relevant recombinant viruses and examined M2 and M42

localisation by immunofluorescence. In WT virus infected cells,

M2 protein localized to the plasma membrane (visible as staining

of lateral membranes in single optical slices through the midline of

the cells) as well as internally, often in a perinuclear position

(Fig. 6A). Double staining for M42 however, only produced

background levels of fluorescent signal, similar to mock infected or

V7-T9 infected cells. In contrast, cells infected with the V7-

T9+U148A virus did not stain for M2 but stained strongly with

anti-M42, with the M42 signal largely present in a perinuclear

structure. Confirming that the two proteins did indeed localize

differently in infected cells, when cells infected with the U148A

virus (which expresses both proteins; Fig. 5B) were examined, the

Figure 5. Direct detection of the M42 polypeptide. (A) Validation of anti-M42 serum. Lysates from cells transfected with the indicated GFP
polypeptides were analysed by SDS-PAGE and western blotting as labeled. (B) Detection of M42 from virus-infected cells. Lysates from cells infected
with the indicated viruses at 10 h p.i. were analysed by SDS-PAGE and western blotting as labeled. The same membrane was probed with mouse anti-
M2 14C2 and rabbit anti-M42 using different colour secondary antisera; individual grey scale and colour merged images are shown.
doi:10.1371/journal.ppat.1002998.g005
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two polypeptides displayed limited colocalisation in the perinu-

clear region, but were largely in separate regions of the cell

(Fig. 6A). Double staining of cells infected with the V7-T9+U184A

virus with anti-M42 sera and a variety of markers for the cellular

exocytic pathway showed good co-localisation with GM130

(Fig. 6B and data not shown), indicating that M42 was largely

resident in the cis-Golgi apparatus. To examine intracellular

trafficking of M42 further, we created a plasmid encoding an

M42-red fluorescent protein fusion (M42-mCherry) and examined

the localization of the chimaeric protein in living cells, in

comparison to a simultaneously transfected M2-GFP fusion. Both

polypeptides co-localised in discrete cytoplasmic puncta and at the

plasma membrane, but while the intensity of GFP and mCherry

fluorescence was similar in the cytoplasmic dots, there was clearly

less of the M42-mCherry protein on the plasma membrane at

steady state (Fig. 6C). Examination of time lapse films showed that

the cytoplasmic puncta showed the expected pattern of movement

for intracellular vesicles (Videos S1, S2, S3). Overall therefore, we

conclude that like M2, M42 enters the exocytic pathway, but its

altered ectodomain affects intracellular trafficking of the protein,

resulting in a lower proportion resident at the plasma membrane.

The marked difference in intracellular localization between M2

and M42 was surprising, given that the two proteins were

apparently interchangeable with respect to virus replication in

MDCK cells (Fig. 4A). We therefore tested the effect of

modulating M42 expression on virus pathogenicity, using the

murine infection model. When either BALB/c or C57BL/6 strain

mice were infected with 100 PFU of WT PR8 virus, they lost

weight rapidly (Figs. 7A, B), showing average peak weight losses of

around 20% and substantial amounts of mortality (Fig. 7C). High

titres of virus were also recoverable from the lungs of infected

C57BL/6 mice at days 2 and 4 p.i., dropping somewhat at day 7

(Fig. 7D). In contrast, mice infected with the same titer of the M2-

null V7-T9 virus showed minimal weight loss, few signs of illness

or virus replication and no mortality. However, upregulation of

mRNA4 synthesis via U148A on the V7-T9 background

substantially increased virus replication and pathogenicity in terms

of virus titres andweight loss, although the overall mortality was

less than observed with WT virus. Conversely, increasing M42

expression by adding the U148A change on the background of a

WT virus still able to express M2 had the opposite effect,

decreasing the severity of weight loss and overall mortality,

although lung titres were not affected. Removal of the M42 AUG

codon with the U115C mutation had little effect in BALB/c mice

but led to slightly delayed weight loss and decreased mortality in

C57BL/6 mice. Overall therefore, altering the balance between

M2 and M42 expression modulated virus pathogenicity, but a

virus that only expressed M42 still caused significant disease.

Production of mRNA4 and M42 in other strains of
influenza A
The work described above demonstrated that mRNA4 encodes

a biologically significant polypeptide that can compensate for loss

of M2 expression. The question therefore arose as to whether this

might apply to other strains of IAV. The two requisites for M42

expression are production of mRNA4 and the possession of an

AUG codon in the appropriate reading frame. mRNA4 was

originally discovered in the WSN strain of virus but was not

detected in the A/Udorn/72 (Udorn) strain, a difference proposed

to result from a single nucleotide difference in the sequences

immediately surrounding the splice site: AG/GUU in WSN versus

AG/GCU in Udorn ([12]; see Fig. S1, which shows an alignment

of the viruses used or discussed in this work, in addition to the

consensus sequences of the major virus subtypes that have infected

humans this century). To test this prediction, we compared

mRNA4 synthesis in a panel of viruses with either GUA, GUU or

GCU at the 59-end of the mRNA4 intron. In agreement with the

quality of match with the consensus SD sequence, mRNA4 was

not detectable in the two viruses with a GCU sequence: human

H3N2 Udorn and H1N1 A/USSR/77 (Fig. 8A, lanes 6 and 7),

while it was most abundant in the PR8 U148A mutant (GUA; lane

2). The prediction was also partially supported when mRNA4

synthesis was examined in viruses with a GUU sequence

immediately downstream of the SD site. Intermediate quantities

Figure 6. Intracellular localization of M42. (A,B) MDCK cells were infected with the indicated viruses at an MOI of 3, fixed and permeabilised at
10 h p.i. and stained with DAPI (blue), anti-M42 and (A) anti-M2 14C2 or (B) anti-GM130. Single optical sections are shown, either as single channels or
merged overlays as labeled. (C) A549 cells were transfected with M42-mCherry and M2-GFP plasmids and imaged at 37uC without fixation 16 h later.
Single optical slices are shown. See also corresponding videos S1, S2, S3.
doi:10.1371/journal.ppat.1002998.g006
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of mRNA 4 were detected in RNA from WSN and Cambridge

PR8 virus infected cells (lanes 4 and 5; note lower overall amounts

of segment 7 mRNAs with the latter virus). Curiously however,

mRNA4 was not seen from reverse genetics PR8 (compare lanes

3–5). This was despite segment 7 of this virus only differing from

Cambridge PR8 and WSN at two nucleotide positions in the 59-

240 nucleotides, with neither change located near the mRNA4 SD

sequence (Fig. S1 and data not shown). There were also notable

differences in the amount of mRNA3 produced by the viruses,

with WSN and Udorn making abundant quantities, A/USSR/77

rather less and all three PR8 viruses making very little (Fig. 8A).

Thus mRNA4 production is predictable by examination of the SD

consensus sequence, with GUA.GUU..GCU, although other

unidentified sequence polymorphisms also play a role.

Figure 7. Pathogenicity of segment 7 mutant viruses in mice. Mice were inoculated with 100 PFU of the indicated viruses and (A, B) weight
loss measured on a daily basis. Mice were euthanised if their body weights fell below 25% of the starting value. (A) BALB/c mice were used. Data
plotted are the mean and SEM values from two independent experiments each using 5 mice/group. (B, D) C57BL/6 mice were used. Data plotted are
the mean and SEM values from a single experiment with 5 mice/group. (C) Mean and SEM nadir weights from (A, B) are plotted. Numbers over the
bars indicate the number of mice that survived/total group size. (D) Lung titres (mean and SEM) from mice sacrificed at the indicated days. Three mice
on days 2 and 7 and four mice on day 4 postinfection were used. Dashed line indicates the lower limit of detection.
doi:10.1371/journal.ppat.1002998.g007

A Novel Form of the Influenza A Virus M2 Protein

PLOS Pathogens | www.plospathogens.org 9 November 2012 | Volume 8 | Issue 11 | e1002998



We therefore used this information to interrogate Genbank for

IAV segment 7 sequences likely to express M42. As of October

2011, over three-quarters of the 20,236 viruses for which useful

segment 7 sequence was available contain the M42 AUG (data not

shown). An imperfect initiation context of the M1/M2 AUG

codon (which is likely to be necessary to allow leaky ribosomal

scanning) is a very highly conserved feature of IAV (only 3 of

17256 sequences covering the M1 AUG have an optimal G at

position +4). However, the majority (,80%) of viruses are unlikely

to produce substantial amounts of mRNA4, as they possess an

unfavourable AG/GCU or otherwise non-canonical SD sequence.

In 1998, Shih and colleagues identified 8 viruses likely to make

appreciable amounts of mRNA4 [12]. Now, with an increased

number of sequences available as well as a better understanding of

the sequence elements necessary for expression of a third

biologically active protein from segment 7, we identified around

two dozen viruses likely to express M42 (Table 1), by virtue of

containing an AUG codon at positions 114–116 and an mRNA4

SD sequence of AG/GU(U/A/G). These mostly fell into three

partially overlapping groups: isolates from the early 20th Century

(human isolates from the 1930s and two classic fowl plague highly

pathogenic avian influenza (HPAI) viruses), viruses that had been

adapted to replicate in mice (the WS family, two H3N2 isolates

and PR8) and a set of HPAI isolates, mostly from the USA 1983

outbreak [49]. The latter H5N2 grouping seemed the most likely

to express large amounts of M42 because of their AG/GUA

mRNA4 SD sequence. In addition, the H5N2 outbreak spread

widely, persisted for several years and resulted in the culling of

17,000,000 poultry [50], making it an important group of non

laboratory-derived viruses, even if represented on Genbank by

relatively few sequenced isolates.

We therefore tested whether the AG/GUA mRNA4 SD

consensus of the H5N2 viruses was biologically significant. For

biosafety reasons, we used reverse genetics to create a PR8

reassortant (MPenn) with segment 7 from A/chicken/Pennsylva-

nia/10210/1986 (Penn) as well as various mutant derivatives with

alterations to the mRNA2 or 4 SD sequences or the M42 AUG

codon (Fig. S1), and then analysed their segment 7 mRNA

expression profiles. Analysis of viral RNA synthesis showed that, as

predicted by the MPenn mRNA4 SD sequence, mRNA4 was the

predominant species made from segment 7, accumulating to

markedly higher levels than either the unspliced transcript or

spliced mRNAs 2 and 3; a reversal of the ratios seen with the

‘prototype’ mRNA 4-expressing virus, WSN, where mRNA4 was

the least abundant species (Fig. 8B, compare lanes 2 and 10).

Mutations to the mRNA2 and mRNA4 SD sequences had the

expected effects. Destruction of the mRNA2 SD sequence by a

G52C change reduced mRNA2 accumulation to below detectable

levels (lane 3). Removal of the mRNA4 splice site with the G145A

change blocked detectable synthesis of mRNA4 with, as before,

the side effect of upregulating mRNA2 and mRNA3 production

(lane 5). Mutations that weakened the mRNA4 SD consensus

(A148G/U or C) dramatically reduced mRNA4 accumulation

whilst simultaneously improving synthesis of mRNAs 2 and 3

(lanes 6–9). Also as expected, these changes were specific to

segment mRNA, as the levels of segment 7 vRNA and segment 5

mRNA and cRNA were much more consistent between viruses

(Fig. 8B).

Next the impact of these changes on virus growth were assessed.

The WT MPenn reassortant virus grew well, reaching titres of

around 107 PFU/ml (Fig. 8C). Abolition of mRNA2 expression

(G52C) had no effect on virus replication; in contrast to the

attenuation seen when M2 synthesis was blocked in other virus

strains [15,36–39]. Similarly, mutations predicted to block M42

expression by destroying its AUG codon (U115C) or mRNA4

production (G145A) had no effect on virus growth. A similar lack

of effect on virus titres were seen from the mutations that

attenuated mRNA4 production: A148G, A148U and A148C.

However, double mutations targeting both M2 and M42

production were deleterious to virus growth. Viruses lacking the

M42 AUG codon or mRNA4 SD sequence could not be rescued

(in 3 attempts) in combination with the G52C mRNA 2 SD

Figure 8. Expression and functional significance of mRNA4 in other strains of IAV. (A, B) Total RNA from cells infected with the indicated
viruses at (A) an MOI of 5 and harvested at 6 h p.i. or (B) an MOI of ,1 and harvested at 9 h p.i. was analysed by RT-primer extension for cellular 5S
rRNA and virus-derived RNA species as labeled. (C) Endpoint titres after multicycle replication in MDCK cells of 7+1 reassortant PR8 viruses (PR8
MPenn) with the indicated mutations to Penn segment 7. Values are plotted are the mean + SEM of 3–14 independent rescues. NR; not rescued in 3
attempts. Viruses were also visually classified into normal (black bar) and small (open bar) plaque phenotypes.
doi:10.1371/journal.ppat.1002998.g008
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knockout (Fig. 8C). Moderate downregulation of mRNA4

production by an A148G change in the absence of mRNA 2

synthesis led to a virus that grew to high titres but with a small

plaque phenotype, while a more severe downregulation of

mRNA4 synthesis with an A148U change resulted in an additional

phenotype of very poor growth. Overall, these data indicate that

the A/chicken/Pennsylvania/10210/1986 segment 7 expresses

two functionally redundant versions of the viral ion channel, either

one of which is sufficient to support replication in cultured cells.

Thus M42 expression is not peculiar to laboratory adapted viruses

but is likely to have been a feature of a major group of HPAI

viruses that circulated for four years in North America.

Discussion

Here, we demonstrate expression of a 14th IAV polypeptide; a

variant form of the M2 protein with an alternative ectodomain,

encoded by a distinct segment 7 mRNA. This novel protein, M42,

can functionally replace M2 and support efficient replication in

tissue culture cells and pathogenicity in an animal host, despite

showing clear phenotypic differences with respect to its intracel-

lular localization. We have not directly tested M42 for proton

conductance but the PR8 MUd virus engineered to express M42

rather than M2 retained amantadine sensitivity (data not shown),

providing indirect evidence that the protein retains this function,

as expected from its identical transmembrane domain sequence to

M2. The ability of M42 to support efficient virus replication

despite its inefficient transport to the plasma membrane is

interesting in light of current theories regarding the role of M2

in membrane scission [32].

Like the three other IAV ‘‘accessory’’ genes that were

discovered long after the virus genome was sequenced (PB1-F2,

PB1-N40 and PA-X; [4–6]), M42 is clearly non-essential for virus

replication, as long as sufficient M2 is expressed. Unlike the

additional proteins expressed from the P protein genes, M42

expression is likely to be restricted to a minority of IAV strains

under normal conditions, as a result of the suboptimal SD

sequence of mRNA4. Examination of the consensus sequences for

the major subtypes of IAV that have infected humans in the last

century showed that (in consensus, with occasional exceptions) all

possess(ed) a weak mRNA4 SD sequence (GCU at the intron

boundary) of the type found in Udorn (Fig. S1). However, all these

viruses except the current 2009 swine-origin pandemic virus also

contain the M42 AUG codon as well as an imperfect Kozak

Table 1. Viruses known or likely to express M42.

Accession SD Virus name Year Notes

L37797 AG/GUU A/chicken/Weybridge (H7N7) 1927? (a)

L25814 AG/GUU A/NWS/1933 (H1N1) 1933 (b)

M19374 AG/GUU A/WSN/1933 (H1N1) 1933 (b)

EF467824 AG/GUU A/Puerto Rico/8/34 (H1N1) 1934 (c)

M55474 AG/GUU A/chicken/Rostock/1934 (H7N1) 1934 (a)

CY019956 AG/GUU A/Alaska/1935 (H1N1) 1935

X08090 AG/GUU A/Port Chalmers/1/1973-mouse adapted (H3N2) 1973 (b)

CY114430 AG/GUU A/Bangkok/1/1979 (H3N2) 1979

CY065977 AG/GUU A/Philippines/2-MA/1982 (H3N2) 1982 (b)

CY043729 AG/GUU A/Siena/3/1991 (H3N2) 1991

FJ784879 AG/GUU A/chicken/Hunan/1793/2007 (H5N1) 2007 (a)

GU052788 AG/GUA A/chicken/Pennsylvania/21525/1983 (H5N2) 1983 (a)

FJ610128 AG/GUA A/chicken/MA/11801/1986 (H5N2) 1986 (a)

CY015074 AG/GUA A/chicken/Pennsylvania/1/1983 (H5N2) 1983 (a)

GU052756 AG/GUA A/turkey/Virginia/6962/1983 (H5N2) 1983 (a)

GU052780 AG/GUA A/chicken/Florida/27716-2/1986 (H5N2) 1986 (a)

FJ610122 AG/GUA A/chicken/NJ/12508/1986 (H5N2) 1986 (a)

EU980474 AG/GUA A/chicken/OH/22911-10/1986 (H5N2) 1986 (a)

GU052748 AG/GUA A/chicken/Pennsylvania/10210/1986 (H5N2) 1986 (a)

FJ357092 AG/GUA A/guinea fowl/OH/22911-20/1986 (H5N2) 1986 (a)

EU743053 AG/GUA A/chicken/NY/12004-3/1987 (H5N2) 1987 (a)

EU743234 AG/GUA A/goose/OH/22911-2/1986 (H5N2) 1986 (a)

GU052772 AG/GUG A/chicken/Pennsylvania/1370/1983 (H5N2) 1983 (a)

EU743059 AG/GUG A/chicken/FL/22780-2/1988 (H5N2) 1988 (a)

GU052740 AG/GUG A/chicken/Pennsylvania/4104/1983 (H5N2) 1983 (a)

20,245 sequences available on the NCBI database were analysed on Oct 10th, 2011, with a repeat search for new sequences of the form AG/GU on July 2nd 2012. The
table excludes duplicate sequences, PR8 vaccine reassortants and over 50 cases where supposedly unique sequences showed phylogenetically implausible levels of
similarity to PR8 or WSN, suggestive of mistakes in data curation or laboratory contamination of virus stocks.
aHighly pathogenic avian influenza virus, by the molecular definition of possessing a polybasic HA cleavage site.
bChange from AG/GCU SD sequence seen after virus adapted to replicate in mice.
cMouse adapted virus but original virus sequence not available.
doi:10.1371/journal.ppat.1002998.t001
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consensus around the M1/M2 AUG codon (Fig. S1), suggesting

the potential for M42 expression should mRNA4 expression be

present. This perhaps argues that there are environments in which

it is advantageous for IAV to shift the balance of segment 7

splicing away from the normal mRNA2/M2 route to increased

mRNA4/M42. In this respect it is noteworthy that increased

mRNA4 synthesis has been selected for on at least three, probably

four, occasions on different virus backgrounds during adaptation

to growth in mice (Table 1). Also, given the Golgi-biased

localisation of M42, it is tempting to draw a link between the

requirement for pH-modulation of the Golgi during intracellular

transport of HA molecules with polybasic cleavage sites [25,51]

and the overrerpresentation of HPAI viruses in the list of those

likely to express M42. We also speculate that the altered

antigenicity of the M42 ectodomain might provide the virus with

a route to escape selection pressure imposed by a vaccine directed

against the M2e sequence, given that in many viruses, a single

nucleotide change would be predicted to alter the balance of

splicing towards M42.

The viruses in which we can be reasonably confident of M42

expression represent a very small minority (,0.2%) of the

available sequences. However, there are two further considerations

that may render M42 expression more widespread in IAV than

our conservative prediction in Table 1. Firstly, we do not yet fully

understand what controls segment 7 splicing. A sizeable number of

viruses (around 15%; mostly from avian hosts) have an mRNA4

SD sequence of AG/GCA. An A at position+3 clearly promotes

more efficient use of the splice site when position +2 is U but it

remains to be determined if it is sufficient to override a C at +2.

Furthermore, the differences in relative splicing seen between PR8

and WSN viruses make it clear that sequence elements outside of

the core consensus splice sites affect their use; these sequences are

identical in the two viruses but their splicing patterns are very

different. Analysis of a 7+1 PR8:WSN reassortant indicates that

the difference is intrinsic to segment 7 (HW, PD, unpublished

data) but we have not yet identified the sequence determinants.

Secondly, there are many precedents for cell-type dependence of

alternative splicing in cellular mRNAs [52] so it may be that in

some host species and/or cell types, M42 expression is present in a

wider array of IAV strains. Further experiments are required to

test these hypotheses.

Materials and Methods

Ethics statement
Animal experiments were carried out in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals under the auspices of an NIH Animal Care

and Use Committee-approved animal study protocol. The

protocol was approved by the NIAID Animal Care and Use

Committee (Permit Number LID-6E). All efforts were made to

minimize suffering.

Cells, viruses, plasmids and antisera
Madin-Darby Canine Kidney, 293T human embryonic kidney

and A549 human lung adenocarcinoma cells were cultured

according to standard procedures [53]. A reverse genetics clone

of influenza PR8 and its M2-null derivative, V7-T9 have been

previously described [37,47]. A clone of A/chicken/Pennsylvania/

10210/1986 (GU052748) with the UTRs derived from A/

chicken/Pennsylvania/1/1983 (CY015074; where a complete

segment sequence was available) was synthesized by Genscript

and cloned into pDUAL reverse genetics vector [47]. Further

mutants were made using the 8 bidirectional promoter plasmid

system described in [47], following oligonucleotide-directed

mutagenesis to introduce the desired changes, as indicated in

Fig. S1. Primer sequences are available upon request. Non-

recombinant Cambridge lineage PR8 virus, A/USSR/77 and A/

WSN/33 viruses were obtained from the University of Cambridge

Division of Virology’s collection of viruses. A/Udorn/72 was a gift

from Professor Compans [54]. M2 and M42-GFP tagged

expression constructs were produced by cloning the coding

sequences of the respective proteins into the KpnI/AgeI sites of

pEGFP-N1 (Clontech). An M42-mCherry fusion was made by

substituting the EGFP open reading frame with mCherry.

Purchased monoclonal antisera were against ß-tubulin (clone

YL1/2: AbD-Serotec), GM130 (Clone 610822; BD Transduction

Laboratory), GFP (clone JL8, Clontech) and anti-influenza M2

(Clone 14C2, Abcam). Further anti-M2 reagents of a goat

polyclonal (G74) raised against the whole protein and a mouse

polyclonal raised against the M2 ectodomain (M2e) were the

generous gifts of Drs. Alan Hay and Xavier Saelens, respectively.

Rabbit polyclonal anti-M1 (A2917) and anti-NP (A2915) have

been previously described [55,56]. Affinity purified anti-M42

specific serum was purchased from Genscript. Rabbits were

immunized with a peptide corresponding to the N-terminal 16

amino acids of the protein, MSLQGRTPILRPIRNE (where

unique sequences compared to M2 are underlined).

Virus rescue, growth and titration
Recombinant viruses were rescued by 8 plasmid transfection

into 293T cells followed by amplification in MDCK cells as

previously described [37]. In some cases, stocks were further

amplified by growth in day 10–12 embryonated eggs, also as

described [37]. Tissue culture cells were infected by allowing virus

to adsorb for 30–60 min in serum free medium. For synchronous

analyses of viral RNA and protein synthesis, infections were

carried out at an MOI of 3–10. For analyses of virus growth,

infections were initiated at low multiplicity and cells overlaid with

serum free medium supplemented with 1 mg/ml trypsin

(Worthington Biochemicals) and 0.14% bovine serum albumin.

Serial passages were performed by infecting 36106 MDCK cells at

an MOI of 0.01. At 48 h p.i., the medium was clarified and 10 ml

(of 5 ml) used to infect fresh MDCK cells. This procedure was

repeated a further five times.

Plaque assays were carried out in MDCK cells using an Avicel

overlay followed by staining with toluidine blue [37,57]. Plaque

areas were measured from scanned images using an oval selection

marquee in the program Image J [58] and calibrated with respect

to the area of a 6-well dish. HA assays were performed using 1%

chicken red blood cells in 96 well plates according to standard

procedures [37].

Mouse infection
Infection of C57BL/6J or BALB/c mice (strains 664 and 1026,

JAX Mice and Services) was carried out under animal BSL3

conditions at the National Institutes of Health. Groups of five 9–10

week old female mice were infected intranasally with 100 PFU of

virus in 50 ml DMEM under oxygenated isoflurane anesthesia.

Mice were individually identified and weighed daily; mice losing

25% or more of their initial body weight were euthanised. Three

mice on days 2 and 7 and four mice on day 4 postinfection were

euthanised and lungs collected for weight-normalized homogeni-

zation and MDCK plaque titration.

RNA and protein analyses
Total cellular RNA was extracted using Trizol (Sigma) and

individual RNA species detected using radiolabelled reverse
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transcriptase primer extension followed by urea-PAGE and

autoradiography as previously described [17,59]. The primer

GAAGGCCCTCCTTTCAGTCC, which targeted nucleotides

885–904 in mRNA sense, was used to detect segment 7 mRNA.

Quantitation was performed using Fujifilm imaging plates and a

Fujifilm FLA-5000 fluorescent image analyser. Data was analysed

using AIDA software (Raytest). SDS-PAGE followed by western

blotting was performed according to standard procedures. Blots

were developed using infrared fluorescent secondary antibodies

and imaged using a LiCor Biosciences Odyssey platform. Cells

were stained for immunofluorescence after formaldehyde fixation

using primary followed by Alexa-fluor conjugated secondary

antibodies (Invitrogen) as previously described [60] and imaged

on Zeiss LSM510, Leica SPE or TCS-NT confocal microscopes.

Live cell imaging was performed in a temperature-controlled hood

and CO2-independent medium as previously described [53].

Supporting Information

Figure S1 Alignment of IAV segment 7 splice site
sequences from strains either used or discussed in this
study. Individual cDNA sequences are shown for PR8 (Reverse

genetics (RG) clone EF467824), WSN (CY034133), Udorn

(324335) and Penn (GU052748) viruses. Partial consensus

sequences for the regions of interest from indicated strains of

human-infecting viruses (H1N1, H2N2, H3N2 and pdm2009

viruses as well as human-derived H5N1 post 1997) were generated

by multiple alignment of publicly available sequences on GenBank

in August 2011. AUG codons are highlighted in bold and

underlined. Positions mutated in PR8 or Penn segment 7 in this

study are highlighted in red and labeled with arrows. Consensus

sequences for cellular splice donor (SD), splice acceptor (SA) and

Kozak sequences surrounding AUGs 1 and 2 are shown above the

sequences in bold (M: A or C; R: A or G; Y: C or T). Sequences

shown to be important for binding the cellular splicing factor

ASF/SF2 [62] are also shown. Matches to the cellular consensus

are shaded in green.

(TIF)

Video S1 Live cell imaging of M2 and M42. A549 cells

were transfected with plasmids encoding M42-mCh and M2-GFP,

and imaged 16 h p.i. Cells were imaged at 37uC in CO2-

independent medium on a Leica SPE confocal microscope. The

video shows a merged image of red and green channels.

(MOV)

Video S2 Live cell imaging of M2. As above (Video S1), but

showing the green (M2-GFP) channel only.

(MOV)

Video S3 Live cell imaging of M42. As above (Video S1), but

showing the red (M42-mCh) channel only.

(MOV)
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