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Summary 
CD4 + T lymphocytes provide contact-dependent stimuli to B cells that are critical for the 
generation of specific antibody responses in a process termed T helper function. The surface 
structures on activated CD4 + T cells that mediate this function are not fully known. We 
previously reported the isolation of a functionally unique subclone of the Jurkat leukemic T 
cell line (D1.1) that constitutively expressed contact-dependent helper effector function. To identify 
T cell surface molecules that mediate contact-dependent T helper function, a monoclonal antibody 
(mAb), designated 5c8, was generated that inhibits Dl.l-mediated B cell activation and 
immunoprecipitates a novel 30-kD protein structure from surface-iodinated D1.1 cells. Normal 
CD4 + T cells express 5c8 antigen (Ag) transiently after activation by phorbol myristate acetate 
and phytohemagglutinin with maximal expression 5-6 h after activation and absence of expression 
by 24 h. In contrast, neither resting nor activated CD8 § T cells express 5c8 Ag. In functional 
studies, mAb 5c8 inhibits the ability of fixed, activated CD4 § T cells to induce B cell surface 
CD23 expression. In addition, mAb 5c8 inhibits the ability of CD4 + T cells to direct terminal 
B cell differentiation driven by pokeweed mitogen. Taken together, these data suggest that 5c8 
Ag is a novel, activation-induced surface T cell protein that is involved in mediating a contact- 
dependent element of the helper effector function of CD4 § T lymphocytes. 

I 
n a contact-dependent process, termed T helper (Th) func- 
tion, CD4 + T lymphocytes direct the activation and 

differentiation of B lymphocytes and thereby regulate the hu- 
moral immune response by modulating the specificity, secre- 
tion and isotype-encoded effector functions of antibody mol- 
ecules (1-7). The T cell surface molecules that mediate the 
contact-dependent elements of Th cell function are not fully 
known. 

The process by which T cells help B cells to differentiate 
has been divided into two distinct phases: the inductive and 
the effector (8, 9). In the inductive phase, resting T cells con- 
tact antigen-primed B cells and this association allows clono- 
typic TCR-CD4 complexes to interact with Ia/Ag complexes 
on B cells (5, 10-16). TCP,/CD4 recognition of Ia/Ag results 
in the formation of stable T-B cognate pairs and bidirectional 
T and B cell activation (17-22). In the effector phase, acti- 
vated T cells drive B cell differentiation by secreting lym- 
phokines (23, 24) and by contact-dependent stimuli (20, 
25-32), both of which are required for T cells to drive small, 
resting B cells to terminally differentiate into Ig-secreting cells 
(25, 33, 34). 

Although the inductive phase of T cell help is Ag depen- 

dent and MHC restricted (5, 10-15, 34, 35), the effector phase 
of Th function can be Ag independent and MHC nonre- 
stricted (25, 28, 30, 34, 36-43). An additional contrasting 
feature is that the inductive phase of T cell help often re- 
quires CD4 molecules and is inhibited by anti-CD4 mAb 
(16), whereas helper effector function does not require CD4 
molecules (44) and is not inhibited by anti-CD4 mAbs (27, 
28, 30, 42). The nonspecific helper effector function is be- 
lieved to be focused on specific B cell targets by the localized 
nature of the T-B cell interactions within antigen-specific, 
cognate pairs (21, 22, 45). 

Although terminal B cell differentiation requires both 
contact-mediated and lymphokine-mediated stimuli from T 
cells, intermediate stages of B cell differentiation can be in- 
duced by activated T cell surfaces in the absence of secreted 
factors. These intermediate effects on B cells include induc- 
tion of surface CD23 expression (26, 29, 46), enzymes as- 
sociated with cell cycle progression (31), and responsiveness 
to lymphokines (20, 31, 42, 47-49). Although the activation- 
induced T cell surface molecules that direct B cell activation 
have not been identified, functional studies have character- 
ized some features of induction and biochemistry. First, T 
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cells acquire the ability to stimulate B cells 4-8 h after activa- 
tion (32, 42). Second, the B cell stimulatory activity associated 
with the surfaces of activated T cells is preserved on 
paraformaldehyde-fixed cells (20, 26, 31, 42, 49) and on purified 
membrane fragments (27, 47). Third, the B cell stimulatory 
activity is sensitive to protease treatment (20, 47, 50). Fourth, 
the process of acquiring these surface active structures after 
T cell activation is inhibited by cyclohexamide (42, 47). Al- 
though these studies strongly suggest the existence of 
activation-induced T cell surface proteins that deliver contact- 
dependent stimuli to B cells, the molecular identities of such 
structures remain unknown. 

We have previously reported the isolation of a CD4-  
Jurkat subclone (D1.1) that possessed the unique functional 
potential to activate B cells to express surface CD23 mole- 
cules and to support the terminal differentiation of B cells 
in the presence of lectins (51). Jurkat D1.1 activated B cells 
from a large number of unrelated donors suggesting that the 
D1.1 effect was Ag independent and M H C  unrestricted. The 
mechanism of Jurkat Dl . l -mediated B cell activation was 
found to depend on cell-cell contact or close proximity be- 
cause paraformaldehyde-fixed D1.1 cells, but not secreted 
factors, possessed the ability to induce B cell CD23. In addi- 
tion, the effect of D1.1 on B cells was not inhibited by anti- 
Ib4  antibodies. Further, the effect of D1.1 on B cells was 
distinct from that of IL-4 because rlLo4 but not D1.1 induced 
upregulation of B cell surface IgM (slgM) (51, 52). Taken 
together, these data suggested that Jurkat D1.1 and activated 
CD4 § T cells shared surface structures that provide contact- 
dependent elements of T cell help to B cells (51). 

In the present work, we generated a murine IgG2a mAb 
(5c8) that inhibits Dl. l-mediated B cell activation and im- 
munoprecipitates a novel 30-kD non disulfide-linked protein 
from the surface of D1.1. On normal T cells, the 5c8 Ag 
is transiently expressed on activated CD4 + T cells in a 
manner that requires m R N A  and protein synthesis. In func- 
tional studies, mAb 5c8 inhibits the ability o f T  cells to mediate 
B cell activation and terminal differentiation. Taken together, 
these data demonstrate that the 5c8 Ag is an important com- 
ponent of the activation-induced T cell surface structures that 
mediate contact-dependent stimuli for B cell differentiation. 

Materials and Methods 

Generation and Characterization of 5c8 mAt~ Five BALB/c mice 
were immunized with 2 x 106 D1.1 cells in saline intravenously 
and then boosted intraperitoneally at five ,,o2-wk intervals. The 
sera of these mice were titrated to test for the presence of anti- 
bodies that bound preferentially to Jurkat D1.1 (helper done), versus 
B2.7 cells (nonhelper clone) by FACS* (Becton Dickinson & Co., 
Mountain View, CA). One mouse, which showed the best differen- 
tial titer, received a boost of 2 x 106 D1.1 cells intravenously 3 d 
before fusion. Splenocytes from this mouse were fused with 7 x 
107 murine SP2/0 myeloma fusion partner cells as previously de- 
scribed (53). The cell mixture was cultured overnight in DMEM 
containing 15% FCS before the fusion product was seeded into 
360 8-mm wells. Colonies appeared in 220 wells and all were 
screened by FACS* for differential binding to D1.1 and B2.7 cells. 
A mAb designated 5c8 was found to bind to D1.1 ceils and not 

B2.7 cells. The 5c8 clone was subcloned multiple times until 
monoclonality was established. The 5c8 mAb was found to be IgG2a 
by ELISA (HyClone Laboratories, Logan, UT). 

rnAbs. The following mAbs were produced by hybridomas avail- 
able from the American Type Culture Collection (Rockville, MD): 
OKT4 (anti-CD4), OKT8 (anti-CDS), OKT3 (anti-CD3), W6/32 
(anti-MHC class I), and 187.1 (anti-human Ig [Fab]). These mAbs 
were either used at saturating concentrations of hybridoma super- 
natants, or purified from ascites fluid on protein A columns (Bio- 
Pad Laboratories, Richmond, CA). Anti-CD23-PE mAbs and un- 
labeled anti-CD69 were purchased from Becton Dickinson & Co. 
FITC-labeled anti-IgM was purchased from Tago Inc. (Burlingame, 
CA). KOLT-4 (anti-CD28) was purchased from Accurate Chem- 
ical & Scientific Corp. (Westbury, NY). 

Cytofluorographic Analysis. Approximately 105 cells were in- 
cubated with saturating concentrations of the indicated mAbs for 
45 min at 4~ in the presence of 80/~g/ml heat-aggregated human 
IgG (International Enzyme, Fallbrook, CA). Cells were washed 
to remove unbound mAb before incubation with F(ab)2 goat 
anti-mouse Ig secondary antibody coupled to fluorescein (Cappel 
Laboratories, Cochranville, PA). For two-color analysis, cells were 
reacted with the indicated directly coupled FITC- or PE-conjugated 
mAb for 45 min at 4~ in the presence of aggregated human IgG. 
Before analysis, cells were washed and resuspended in PBS. Fluores- 
cence intensity was measured on a FACScan | cytofluorograph 
(Becton Dickinson & Co.). In experiments involving coculture of 
B cells with Jurkat clones, the Jurkat cells were excluded from the 
analysis of B cell fluorescence by gating on the distinct population 
of cells with low forward and side light scatter. In experiments 
with PMA- and PHA-activated cells, dead cells were excluded from 
analysis by treatment with propidium iodide and electronic FACS* 
gating. 

Cell Lines. The following cell lines were from the American 
Type Culture Collection: Jurkat, CEM, PEEK, MOLT-IV, K562, 
Ramos, paji, and U937. BA is an EBV-transformed B cell line that 
has been previously reported (54). H9 is available from the HIV 
Repository (Kockville, MD). 

Isolation of Cell Populations. PBL were obtained from the freshly 
drawn blood of healthy volunteers by centrifugation on Ficoll- 
Hypaque (Sigma Chemical Co., St. Louis, MO). T cells were posi- 
tively selected with neuraminidase-treated sheep erythrocytes. 
CD4+CD8 - and CD4-CD8 § T cell subsets were isolated by anti- 
CD8 or anti-CD4 mAb treatment, respectively, followed by 
complement-mediated lysis as previously described (16). B cells were 
derived from the population of cells that did not pellet through 
Ficoll-Hypaque after two rounds of rosetting with neuraminidase- 
treated sheep erythrocytes. 

B cells were further purified by either density centrifugation or 
by positive selection on an anti-lg column, as indicated in the text 
or figure legends. In the first method, E- cells were cultured over- 
night in polystyrene flasks (37~ 5% CO2) to adherence deplete 
macrophages. These non-T cell, nonmacrophage cells were frac- 
tionated into high- and low-density fractions in a discontinuous 
30%/50%/100% percoll gradient by centrifugation at 2,300 rpm 
for 12 rain. High-density cells were obtained from the 50/100% 
interface and low-density cells from the 30/50% interface (55). The 
high-density (resting) cells were typically 60-80% CD20 § 
55-80% IgM +, and <5% CD3 § and <5% CD23 + (background). 
In other experiments (where indicated) B cells were purified by 
sephadex G-200 anti-F(ab)2 Ig affinity chromatography into slg § 
cells, as has been described (16, 56). The slg + populations were 
typically <5% CD3 +, <10% CD2 +, and >90% CD20 + when 
analyzed by FACS | 
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SDS-PAGE. Jurkat clones were iodinated by the lactoperoxi- 
dase method, solubilized in 1% NP-40, 15 mM Tris-buffered saline 
containing iodoacetamide, and I mM PMSF. The cell lysates were 
reacted with protein A-4B Sepharose beads (Pharmacia, Uppsala, 
Sweden) that were coated with mAb 187.1 {anti-human F[ab]Ig) 
and '~100 ng of the indicated mAb. After washing the beads to 
remove nonspecifically bound proteins, the precipitated proteins were 
denatured by heating in SDS in the presence or absence of 2-ME. 
The denatured proteins and prestained molecular weight markers 
(Bio-Rad Laboratories) were subjected to electrophoresis through 
12.5% polyacrylamide in 12-cm gels (Bio-Rad Laboratories), and 
fixed, dried gels were used to expose x-ray film (Kodak, Rochester, 
NY). 

mitomycin C and Paraformaldehyde Treatments. Jurkat cells 
(107/ml) were treated with 50/xg/ml mitomycin C (Sigma Chem- 
ical Co.) for 60 rain at 37~ The mitomycin-treated Jurkat cells 
were washed twice, resuspended in mitomycin free media, and then 
cultured for 45-60 min at 37~ The cells were washed two addi- 
tional times and then added to the B cell cultures. In fixation ex- 
periments, T cells were treated with freshly made 0.5% parafor- 
maldehyde for 5 min, quenched with 0.2 M L-lysine, and washed 
five times before addition to cultures of B cells. 

T Cell Activation. In experiments studying expression of 5c8 
Ag, resting T cells were cultured in the presence or absence of 10 
ng/ml PMA (Sigma Chemical Co.) and 10/~g/ml PHA (Sigma 
Chemical Co.). In experiments studying the metabolic requirements 
for 5c8 Ag expression, T cells were activated in the presence of 
100/~M cyclohexamide (Sigma Chemical Co.) or 10/zg/ml ac- 
tinomycin D (Sigma Chemical Co.). 

In experiments studying the induction of CD23 expression on 
high-density B cells by activated T cells, the mAbs OKT3 or OKT4 
were immobilized on the surfaces of 24-well culture plates by incu- 
bation of 10/~g/ml of mAb in normal saline for 1 h. Control wells 
were incubated in saline containing no mAb. After washing un- 
bound mAb or saline, T cells were cultured in the control or mAb- 
coated plates at 2 • 10 ~ cells/well in the presence or absence of 
10 ng/ml phorbol dibutyrate (PDB) ~ (Sigma Chemical Co.) for 
6 h. The cells were removed by vigorous pipetting, washed, and 
fixed with 0.5% paraformaldehyde as described above before cul- 
ture at the indicated ratio with 2 x 10 s high-density, percoll- 
isolated, resting B cells for 18 h. B cell CD23 expression was deter- 
mined by two-color FACS | as described above. 

Assays of B Cell Activation and Differentiation. In experiments 
measuring the induction of B cell surface CD23 expression, 2 x 
10 s high-density B cells were added to the indicated number of 
Jurkat cells or T cells in 200 #1 of IMDM-10% FCS in round- 
bottomed microtiter wells (Nunc, Roskilde, Denmark) and assayed 
for CD23 expression after 18-24 h. 

The measurement of plaque-forming colonies (PFC) was a 
modification of the reverse hemolytic plaque assay (16). Briefly, 2.5 
x 105 B cells were cultured with varying numbers of mitomycin 
C-treated Jurkat cells or untreated freshly isolated, autologous T 
cells for 6 d in the presence or absence of a 1:400 dilution of PWM 
(Gibco Laboratories, Grand Island, NY). The ceils were washed 
twice and resuspended in HBSS. From an appropriate dilution, 50 
/~1 of cultured cell suspension was mixed with: 10 t*l of an 11% 
solution of SRBC that had been coated with rabbit anti-human 
Ig by chromic chloride, 10/~1 of diluted rabbit anti-human Ig, and 
10 #1 of guinea pig complement. These mixtures were introduced 

I Abbreviations used in this paper: PDB, phorbol dibutyrate; PFC, plaque- 
forming colonies. 

into duplicate glass chambers and cultured for 1 h at 37~ Plaques 
were counted using a dissecting microscope and expressed as 
PFC/10* B cells. 

Resul ts  

To characterize cell surface proteins on activated CD4 § T 
cells that mediate helper effector function, mice were im- 
munized with the D1.1 done  of Jurkat that possessed contact- 
dependent helper effector function (51). mAbs were gener- 
ated and hybridoma supernatants were screened for differen- 

tial binding to the D1.1 clone and a nonhelper Jurkat clone, 
B2.7. A murine IgG2a mAb, termed 5c8, was identified that 
bound specifically to the surface of D1.1 cells and not to the 
surface of the nonhelper, B2.7 cells (Table 1). Because the 

mAb 5c8 bound specifically to the helper Jurkat clone, D1.1, 
the mAb 5c8 was studied in further detail. The  mAb 5c8 
did not bind to a variety of other cell lines, including the 
T cell leukemia lines CEM, H9, Molt-4, and Peer; the B 
cell-derived cell lines BA, Raft, or Ramos; the myelomono- 
cytic cell line U937; or the erythroleukemia cell line K562 
(Table 1). 

To assess whether  mAb 5c8 reacted with a molecule that 
was functionally relevant to the helper capacity of  the Jurkat 
clone D1.1, the effect of mAb 5c8 was studied in assays of  
Dl . l - induced CD23 expression on B cells. The mAb 5c8 po- 
tently inhibited Jurkat Dl . l - induced  B cell activation (Fig. 
1). In contrast, the isotype control mAb, W 6 / 3 2  (Fig. 1), 

Table 1. The Expression of 5c8 Ag on Cell Populations 
and Cell Lines 

Cell lines Resting Activated 

Jurkat D1.1 + + 

Jurkat B2.7 - - 

CEM - - 

H9 - ND 

Molt-4 - - 

PEER - - 

BA - ND 

Raji - ND 

Ramos - ND 

U937 - - 

K562 - ND 

Cell populations 

T cells - + 

B cells - - 

Monocytes - - 

These data derive from FACS ~ analyses of mAb 5c8 binding to the indi- 
cated cell lines or cell populations. The presence of mAb 5c8 binding 
was determined relative to FACS | staining of appropriate positive and 
negative control mAbs for each cell line or population. 

1093 Lederman et al. 



B cells 
cultured with: B Cells Alone 

1% 

1% 
B2.7 Cells 

r 
0 c- 
(D 
0 u) 

O 

,7" 

O 

t"- 

50% 

Dl.lCells 

�9 : 

1% 

D1.1 Cells plus 5C8 

50% 

D1.1 Cells plus W6/32 

anti-lgM Fluorescence 

Figure 1. mAb 5c8 inhibits 
Jurkat Dl.l-induced CD23 ex- 
pression by B lymphocytes. Shown 
are two-color FACS | analyses of 
adherence-depleted, high-density 
B cells after 24 h of culture alone 
or with the B2.7 or D1.1 Jurkat 
clones using anti-IgM-FITC (on 
the x-axis) and anti-CD23-PE (on 
the y-axis). The number in the 
upper fight hand corner of the 
FACS | tracings represents the per- 
centage of IgM + cells that ex- 
pressed CD23. The mAbs were 
present at 1 #g/ml. The murine 
IgG2a mAb W6/32 recognizes a 
monomorphic determinant on 
class I MHC molecules. 

did not inhibit Dl.l-mediated B cell activation. The data 
presented here suggested that the 5c8 Ag played a critical 
role in the helper effector function of D1.1 cells. 

To biochemically characterize the Ag recognized by mAb 
5c8, immunoprecipitations were performed with mAb 5c8 
or control mAbs that recognized class I MHC (W6/32) or 
CD28 (Kolt-4) on cell lysates of surface-iodinatedJurkat D1.1 
cells and control, nonhelper Jurkat B2.7 cells that lacked sur- 
face mAb 5c8 binding. The mAb 5c8 immunoprecipitated 
a protein that migrated on SDS/PAGE at 30 kD from lysates 
of the helper clone D1.1 but not from the control B2.7 ly- 
sates (Fig. 2). The protein species immunoprecipitated by mAb 
5c8 was not affected by reduction with 2-ME, suggesting 
that the 30-kD band was neither a disulfide-linked homodimer 
nor disulfide linked to another protein that was not acces- 
sible to iodination (Fig. 2). In contrast, the control, anti- 

CD28 mAb, KOLT-4 immunoprecipitated an 88-kD band 
in the absence of 2-ME and a 44-kD band in the presence 
of 2-ME that is consistent with published reports (57) and 
with the interpretation that this structure is a disulfide-linked 
homodimer (Fig. 2). The control mAb W6/32 precipitated 
a non-disulfide-linked heterodimer of 43- and 12-kD pro- 
teins (Fig. 2). These data suggested that the mAb 5c8 recog- 
nized a 30-kD non-disulfide-linked protein species from the 
surface of D1.1 cells. 

The next series of experiments characterized the expres- 
sion of 5c8 Ag by normal lymphoid cells. The binding of 
mAb 5c8 or a variety of control mAbs was studied by FACS | 
on freshly isolated, T and B lymphocytes, monocytes, and 
PMA- and PHA-stimulated T cells. Although resting T or 
B lymphocytes or monocytes did not express 5c8 Ag (Table 
1, Fig. 3), a subset of activated T cells was found to express 
5c8 Ag, 5 h after activation with PMA and PHA (Fig. 3). 

To characterize the kinetics and cellular distribution of 5c8 
Ag expression, the binding of mAb 5c8 to T cells was studied 
by FACS | at various intervals after T cell activation. The CD69 
molecule, which is a 32/28-kD disulfide-linked heterodimer, 
was selected as a control because it is known to be induced 
rapidly on virtually all T cells after T cell activation (58, 59). 
Whereas 5c8 Ag was absent from resting T cells and was 
expressed on a subset of T cells after activation, in contrast, 
a variable, but low level of CD69 expression was present on 
resting T cells, and high-level CD69 expression was induced 
by activation on the entire T cell population (Fig. 3). The 
kinetics of expression further distinguished 5c8 Ag from CD69 
because mAb 5c8 binding was significant 3 h after activa- 
tion, peaked at 6 h, and returned to baseline (no binding) 
after 24 h, whereas high-level CD69 was induced 1 h after 
activation (58, 59, and data not shown) and persisted for 
>24 h (Fig. 4). The data presented here distinguish the 5c8 
Ag from CD69 both by the cellular distribution of their 
expression and by the kinetics of their upregulation after 
activation. 

To determine if mR.NA or protein synthesis were required 
for 5c8 Ag expression, T cells were stimulated with PMA 
and PHA in the presence or absence of actinomycin D or 
cyclohexamide and the expression of 5c8 Ag and CD69 was 
compared. The expression of 5C8 Ag was inhibited by ei- 
ther actinomycin D or cyclohexamide treatment (Fig. 3). In 
contrast, CD69 was upregulated by activation (although to 
a lesser extent) despite the presence of 10 #g/ml actinomycin D 
or 100 /~M cyclohexamide (Fig. 3), as has been reported 
previously (58-60). These data suggested that the expression 
of the 5c8 Ag after T cell activation depends on transcription 
of mRNA and de novo protein synthesis. 

To characterize the subset of T cells that expressed 5c8 Ag 
after activation, CD4+CD8 - or CD4-CD8 + T cell popu- 
lations were isolated by anti-CD8 or anti-CD4 mAb treat- 
ment, respectively, followed by complement depletion. The 
CD4 § or CD4-  CD8 § populations were activated 
with PHA and PMA and studied for 5c8 Ag or CD69 ex- 
pression by FACS | After activation, 5c8 Ag expression was 
induced exclusively on CD4 § T cells and not on CD8 + T 
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Figure 2. SDS/PAGE analysis of surface proteins im- 
munoprecipitated by mAb 5c8 and control mAbs. 
Shown are autoradiograms of immunoprecipitates with 
mAb 5c8 or control mAbs from cell lysates of surface- 
iodinated Jurkat D1.1 or Jurkat B2.7 cells that were 
separated on 12.5 % polyacrylamide in the presence (re- 
duced, R) or absence (nonreduced, NR) of 2-ME. 
mAbs shown are anti-CD28 (KOLT-4) and anti-MHC 
class I (W6/32). Molecular mass markers represent 
the migration of prelabeled standards. NMS, normal 
mouse serum. 

cells, despite the fact that CD4 § and CD8 § cells expressed 
similar levels of CD69 after activation (Fig. 4). Taken together, 
these data demonstrated that 5c8 Ag expression is restricted 
to activated CD4 § T cells. 

To evaluate the role of 5c8 Ag in Th function mediated 
by normal T cells, the effect of mAb 5c8 was studied on the 
ability of activated T cells to induce small resting B cells to 
express surface CD23 molecules. Freshly isolated CD4 § T 
cells were cultured on surfaces that were either uncoated, or 
coated with anti-CD3 (OKT3) or control, anti-CD4 (OKT4), 
mAbs in the presence of PDB, and then fixed with parafor- 
maldehyde. These fixed T cells were studied for B cell-ac- 
tivating capacity in the presence of soluble mAbs 5c8 or 
OKT4. The mAb OKT4 was selected as a control for these 
experiments because OKT4 is an isotype-matched control 
mAb that reacts with CD4 § T cells but does not affect T-B 
interactions (16), CD4 + T cells activated by either PDB or 
immobilized OKT3 alone, before fixation, induced CD23 
expression on 6% and 13% orB cells, respectively (Table 2). 
T cells stimulated with both anti-CD3 plus PDB before fixa- 
tion activated 32% orB cells, which was similar to the potency 
of paraformaldehyde-fixed D1.1 cells (36%) (Table 2). The 
mAb 5c8 completely inhibited the ability of D1.1 cells to 
induce B cell activation and inhibited the activating ability 
of CD4 § T cells by 63% (Table 2). These data are repre- 
sentative of four similar experiments and suggest that 5c8 
Ag on activated CD4 + T cells plays an important role in B 
cell activation. 

We next studied the effect of mAb 5c8 on terminal B cell 
differentiation driven by normal human T cells. In these ex- 
periments, CD4 § T cells were cultured with autologous, 
column-isolated B cells in the presence of PWM, and the 

number of Ig-secreting B cells (PFC) was measured by re- 
verse hemolytic plaque assay. The mAb 5c8, but not OKT4, 
inhibited the CD4 § cell-driven PFC response (Table 3). 
Taken together, these data demonstrate that the 5c8 Ag 
mediates a contact-dependent aspect of the helper effector func- 
tion of activated CD4 § T cells. 

Discussion 

In the present work, a functionally unique subclone of the 
Jurkat leukemic line (DI.1) with constitutive, contact- 
dependent helper function was used to generate a murine mAb, 
designated 5c8, that inhibited Dl.l-induced B cell activation. 
The mAb 5c8 recognized a unique protein species on DI.1 
cells that was not disulfide linked and migrated at 30 kD 
on SDS/PAGE. On normal lymphoid cells, the expression 
of 5c8 Ag was restricted to a subset of T lymphocytes after 
activation. The activation-induced expression of 5c8 Ag on 
T cells required transcription of mRNA and de novo protein 
synthesis. The 5c8 Ag was found to be transiently expressed 
on activated T cells with peak expression at 6 h and loss of 
expression by 24 h. The expression of 5c8 Ag was restricted 
exclusively to activated CD4 + T cells. In functional studies 
on normal T cells, the mAb 5c8 inhibited the ability of fixed, 
activated T cells to induce B cell CD23 expression. In addi- 
tion, mAb 5c8 inhibited the ability of normal CD4 + T cells 
to direct B cell differentiation. Taken together, these data dem- 
onstrate that the 5c8 Ag is a novel activation-induced surface 
protein expressed exclusively on activated CD4 + T cells that 
is involved in mediating a contact-dependent element of Th 
function. 

The tissue distribution, kinetics of expression, and bio- 
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Figure 3. Effects of T cell activation and metabolic inhibitors on the expression of 5c8 Ag. Shown are FACS | histograms of resting and activated 
T cells using mAb 5c8 or anti-CD69 as indicated. T cell activation was induced by PMA (10 ng/ml) and PHA (10 Atg/ml) for 5 h. Where indicated, 
activation was performed in the presence of actinomycin D (10/~g/m]) or cyclohexamide (100 I~M). 

chemistry of the 5c8 Ag distinguished the 5c8 Ag from other 
known surface proteins induced by T cell activation. First, 
all other known human T cell activation markers (e.g., CD69, 
CD25, Ia) are expressed by both CD4 + and CD8 + T cells, 
whereas the 5c8 Ag is expressed exclusively by CD4 + T 
cells. In the rat, an activation molecule designated OX-40 
is restricted to CD4 + T cells, but appears to be distinct from 
5c8 Ag by virtue of its molecular mass and kinetics of ex- 
pression (see below) (61). Second, the kinetics of 5c8 Ag ex- 
pression after T cell activation were distinct from that of other 
T cell activation molecules. Whereas 5c8 Ag was maximally 

expressed 6 h after activation and absent 24 h after activa- 
tion, CD25 (62), Ia (63, 64), and the 32-kD form of CD27 
(65) are induced 18 h or more after activation. In addition, 
CD69 and OX-40 expression persists for >24 h. Third, the 
5c8 Ag is a 30-kD, non-disulfide-linked species that is dis- 
tinct from CD69 (28/32-kD disulfide-linked heterodimer [59]) 
and OX-40 (50 kD). Taken together, these data suggest that 
the 5c8 Ag was distinct from other known T cell activation 
molecules. 

The 5c8 Ag was also distinguished from other T cell sur- 
face molecules that are known to play roles in T-B interac- 

1096 Contact Help-mediating Protein on Activated CD4 § T Cells 



c- 

O 

B 
ffJ 
.J 
_1 2s= 
tu 

m 

z 

e- 

N 

C D 4  + 

 Cont , A I " "  

= ..... ; , ' " ' ; ; , ' " ' / ; ,  ........ , 

2S~ 
B 

Control 

/k ~ "' ~-,#.-CD69 / 

C 25= 

fl.,/.-Cont rol 

C D 8  + 

!:/~C CD69 

. , ,,,i;i ~. ...;;=.....;;,. ..... 

5~176 E 1 

C8 . '  I 

' .=.-- C D69 / 
.... ; ~  :i ~.;, : . . , ; ;  ...... 

~ i  C~176 F] 
5C8 

i/ ki . "  '....e-CD69 

M e a n  F l u o r e s c e n c e  

Figure 4. Kinetics of expression of 5c8 Ag on isolated CD4 § or CD8 + 
T cell subsets. Shown are fluorescence histograms of CD4 + cells or CD8 + 
cells at the indicated time points after freshly purified T cell subsets were 
activated with PHA (10/~g/ml) and PMA (10 ng/ml). Solid line, 5c8 binding; 
dashed line, IgG2a control; dotted line, anti-CD69. 

tions by several aspects of  their tissue distribution and bio- 
chemistry. First, 5c8 Ag was induced by T cell activation 
but was not expressed on resting cells. In contrast, CD4, 
CD2, CD5, CD28, LFA-1, ICAM-1, CD45RO, and 6C2, 
which interact with B cell surface ligands (66-74)are  ex- 
pressed on resting T cells (73-77). Second, the specific ex- 
pression of  5c8 Ag on activated T lymphocytes and not on 
B cells, monocytes, or the panel of cell lines (Table 1) distin- 
guished 5c8 Ag from ICAM-1, CD4, CD5, LFA-1, CD2, 
and 6C2 molecules, which are also expressed on either mono- 
cytes, B cells, or certain of the cell lines (data not shown). 
Third, the expression of 5c8 Ag was restricted to CD4 § T 
cells, whereas CD2, CD5, CD28, LFA-1, ICAM-1, CD45RO, 
and 6C2 are expressed on CD8 § as well as CD4 + cells 
(73-77). Fourth, the 30-kD protein precipitated by mAb 5c8 
is unlike any of these other proteins (73-77). Finally, 5c8 Ag 
was distinct from these other molecules because mAb 5c8 
was identified by its ability to inhibit the helper effector func- 
tion mediated by Jurkat D1.1. 

Because mAb 5c8 inhibits the contact-dependent helper 
effects of Jurkat D1.1 and fixed, activated CD4 + T lympho- 
cytes, it is likely that 5c8 Ag mediates a B cell-activating 
function by interacting with a ligand (or "counter-receptor") 
on the surfaces of B cells. The interaction of 5c8 Ag with 
a B cell counter-receptor may mediate helper function either 
by providing additional adhesive forces to T-B pairs, trans- 
ducing a stimulatory signal to B cell cytoplasms, or by a com- 
bination of these mechanisms. Regardless of the precise mech- 
anism, the transient expression of 5c8 Ag may provide a 

Table  2. The Effect of mAb 5c8 Treatment on B Cell Surface CD23 Induction Mediated by Paraformaldehydefixed, Activated CD4 § 

T Cells 

Resting B cells cultured with: 

Soluble mAbs 

Media 5c8 OKT4 

No T cells 2 

B2.7 4 

D1.1 (1:1) 78 2 78 

D1.1 fixed 36 2 32 

Phorbol Immobilized mAb 

CD4*T (fixed) Control None 2 

CD4§ (fixed) Control OKT3 13 2 9 

CD4+T (fixed) Control OKT4 3 2 2 

CD4§ (fixed) + PDB None 6 2 6 

CD4 § T (fixed) + PDB OKT3 32 13 32 

CD4+T (fixed) + PDB OKT4 4 2 5 

Shown are the percentages of IgM § B cells that expressed CD23 by two-color FACS | analysis after B cells were cultured alone or in the presence 
of a 4:1 ratio (T/B) of paraformaldehyde-fixed Jurkat D1.1 cells or CD4 § T cells that had been stimulated with 10 ng/ml PDB alone or in the 
presence of either immobilized anti-CD3 (OKT3) or anti-MHC-I (W6/32) mAbs, as indicated. The IgG2a mAbs, 5c8 and OKT4, were present 
in solution at 5 /~g/ml. Also shown is the effect of a 1:1 ratio of Jurkat D1.1 and B2.7 without paraformaldehyde fixation. 
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Table 3. The Effect of mAb 5c8 Treatment on the Induction of Antibody-forming Cells 

PFC 

T cells B cells PWM mAb Exp. 1 Exp. 2 Exp. 3 

B 120 240 600 

B PWM 240 600 4,800 

CD4 § T 240 120 180 

CD4 + T B 2,580 780 ND 

CD4* T PWM 3,840 240 60 

CD4 + T B PWM Media 149,760 85,200 25,800 

CD4 § T B PWM 5c8 58,000 4,680 9,000 

CD4 § T B PWM OKT4 143,520 103,200 30,960 

Shown are the results of three separate experiments on unrelated donors in which CD4 § T cells were cultured in a 0.6:1 ratio with autologous, 
anti-lg column-isolated B cells in the presence or absence of PWM. The number of PFC per 106 B cells was measured by reverse hemolytic plaque 
assay. The mAbs 5c8 and OKT4 were present at 500 ng/ml, except in Exp. 1, in which OKT4 was present at 1 /~g/ml. 

molecular solution to limiting nonspecific B cell activation. 
We envision that the transient expression of 5c8 Ag in the 
localized milieu of antigen-specific cognate T-B pairs may 
channel the antigen/MHC-unrestricted activating function 
of 5c8 Ag to appropriate B cell targets. The kinetics of ex- 
pression and downregulation of 5c8 Ag are shared by the 
endothelial cell, activation-induced, cell surface mediator of 
leukocyte and lymphocyte binding, ELAM-1 (78). This 
similarity might indicate that the strategy of using transient 
expression to affect localized intercellular interactions may 
be shared by 5c8 Ag, ELAM-1, and potentially other, yet 
uncharacterized, surface molecules that transmit potent signals 
to other ceils by direct contact. 

The CD4 molecule identifies the population of T cells that 
contains precursors o f T  cells with helper function (4). How- 
ever, the CD4 § subset is functionally heterogeneous and 
contains cytotoxic and suppressor cells in addition to helper 
cells (79, 80). The fact that 5c8 Ag is involved in helper func- 
tion suggests that 5c8 Ag may correlate more closely with 

the helper phenotype than CD4 expression. The heteroge- 
neous distribution of 5c8 expression on activated CD4 § cells 
suggests that functional subsets of CD4 + T cells might be 
distinguished by their level of 5c8 expression. For example, 
it will be of interest to determine the functional potential 
of 5c8- and 5c8 § CD4 § T cells with respect to helper or 
cytotoxic activity. 

T cell helper effector function is a complex process resulting 
in B cell responsiveness (19, 47-49), regulation of isotype 
switching (81), and somatic hypermutation (82). The fact 
that T cells interact with B cells by a number of cell-cell in- 
teractions as well as by secreting various lymphokines sug- 
gests that individual signals or certain combinations of signals 
may regulate specific aspects of B cell differentiation. The 
fact that mAb 5c8 inhibits a contact-dependent aspect of T 
cell helper function provides a means of further dissecting 
the processes by which CD4 § T cells regulate the humoral 
immune response. 
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