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Abstract: Myocardial infarction (MI) is a multifactorial global disease, recognized as one of the
leading causes of cardiovascular morbidity and mortality. Timely and correct diagnoses and effective
treatments could significantly reduce incidence of complications and improve patient prognoses.
In this study, seven unconventional differentially expressed genes (DEGs) (MAN2A2, TNFRSF12A,
SPP1, CSNK1D, PLAUR, PFKFB3, and CXCL16, collectively termed the MTSCPPC signature) were
identified through integrating DEGs from six MI microarray datasets. The pathological and theranos-
tic roles of the MTSCPPC signature in MI were subsequently analyzed. We evaluated interactions of
the MTSCPPC signature with ovatodiolide, a bioactive compound isolated from Anisomeles indica (L.)
Kuntze, using in silico molecular docking tools and compared it to specific inhibitors of the members
of the MTSCPPC signature. Single-cell transcriptomic analysis of the public databases revealed high
expression levels of the MTSCPPC signature in immune cells of adult human hearts during an MI
event. The MTSCPPC signature was significantly associated with the cytokine–cytokine receptor
interactions, chemokine signaling, immune and inflammatory responses, and metabolic dysregula-
tion in MI. Analysis of a micro (mi)RNA regulatory network of the MTSCPPC signature suggested
post-transcriptional activation and the roles of miRNAs in the pathology of MI. Our molecular
docking analysis suggested a higher potential for ovatodiolide to target MAN2A2, CSNK1D, and TN-
FRSF12A. Collectively, the results derived from the present study further advance our understanding
of the complex regulatory mechanisms of MI and provide a potential MI theranostic signature with
ovatodiolide as a therapeutic candidate.
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1. Introduction

Myocardial infarction (MI) is a multifactorial global disease, recognized as one of the
leading causes of cardiovascular morbidity and mortality in both men and women [1].
It is caused by the partial or complete occlusion of a coronary artery, which blocks the
supply of oxygen and nutrients to the myocardium, leading to myocardial cell death [2].
MI may occur transiently or in a disastrous manner that could lead to hemodynamic valve
deterioration and sudden death [2,3]. Risk factors for MI are classified into non-modifiable,
modifiable, and emerging risk factors [4]. Non-modifiable risk factors include age, gender,
and family history; modifiable risk factors are related to one’s lifestyle (such as a poor diet,
smoking, alcohol intake, a sedentary lifestyle, etc.), dyslipidemia, diabetes, hypertension,
and metabolic disorders, while emerging risk factors are coronary artery calcification (CAC),
C-reactive protein (CRP), homocysteine, fibrinogen, and lipoproteins [4].

Timely and correct diagnoses and effective treatments can significantly reduce inci-
dence of complications and improve the prognosis of patients with MI [5]. The current
diagnostic methods for MI involve a physical examination, clinical history, cardiac markers,
electrocardiography, and evidence of myocardial ischemia. The levels of cardiac-specific
troponins T (cTnT) and I (cTnI) are the preferred biomarkers for the evaluation of my-
ocardial injury and high-sensitivity (hs)-cTn assays are recommended for routine clinical
use [4,6]. Other less important serum biomarkers include creatine kinase (CK), MB iso-
forms of creatine (CK-MB), and myoglobin [4]. However, the reliability of these biomarkers
is limited by their inadequate specificity and sensitivity [7–10], which can lead to false
diagnostic outcomes.

Although myocardial injury (defined by an elevated cTn value) is a prerequisite for
the diagnosis of MI, the presence or absence of nonischemic myocardial injury must be
confirmed in order to establish a reliable diagnosis [11]. Hence, the current Fourth Universal
Definition of Myocardial Infarction Consensus Document defined clinical criteria for MI
as the presence of acute myocardial injury detected by elevated cTn values above the
99th percentile upper reference limit (URL) in the setting of evidence of acute myocardial
ischemia [12].

Despite increased understanding of the causes and treatments of MI, high rates of
morbidity and mortality still remain [13]. Although great progress has been made with
percutaneous coronary intervention (PCI), which provided good treatment outcomes in
MI Patients presenting with ST-segment elevation [14] as well as in patients presenting
without persistent ST-segment elevation [15], there is an urgent need to find more sensitive
and specific genetic markers for early diagnoses and for the development of novel targeted
therapies for better prognoses of patients with MI [16].

Bioinformatics or in silico analysis of clinical data, novel targets, and drug candidate
identification are indispensable parts of modern research strategies for disease prevention
and treatment [17]. Targets for drug discovery could be biological pathways, abnormal
molecular phenotypes, essential nodes of biological network or molecular functions, and
disease-related microRNAs, genes, or proteins [18–23]. In the present study, differen-
tially expressed genes (DEGs) from six MI microarray datasets were integrated to identify
overlapping DEGs, and the pathological and theranostic roles of these DEGs in MI were
subsequently analyzed. The pathological mechanisms of MI involved the interaction of
several regulatory networks involving cytokine–cytokine receptors, chemokine signaling,
immune and inflammatory responses, and metabolic dysregulation. Hence, targeted modu-
lation of immune, inflammatory, and metabolic pathways could yield a novel and effective
therapeutic approach for preventing and treating MI.
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Natural products are rich sources of health-promoting bioactive compounds for treat-
ing numerous diseases [24–27]. Ovatodiolide is a bioactive compound isolated from a
Taiwanese plant, Anisomeles indica (L.) Kuntze, that is commonly and traditionally used for
treating inflammation-associated diseases [28]. The therapeutic properties of ovatodiolide
against various diseases are well described in the literature [28–34]. It is also an important
modulator of inflammatory responses [35] and can serve as a potential immunotherapeu-
tic agent [36]. However, despite the extensive medicinal use of the plant, there are no
reports available on its use for MI. The use of molecular docking has greatly aided drug
development by providing information related to interactions of therapeutic agents with
molecular targets of disease [37,38]. Hence, we evaluated interactions of ovatodiolide with
DEGs using in silico molecular docking studies. Collectively, results from the present
study have aided our understanding of the complex regulatory mechanisms of MI and
provide a promising approach for MI theranostic markers. We await future validation and
investigation of the therapeutic role of ovatodiolide in experimental and clinical MI.

2. Results
2.1. Identification of MAN2A2/TNFRSF12A/SPP1/CSNK1D/PLAUR/PFKFB3/CXCL16 as a
Novel Pathological Signature of Myocardial Infarction

To study deregulated genes associated with MI, we analyzed DEGs between healthy
and MI cohorts. The workflow of the entire study is summarized in Figure 1. DEGs from
six GEO transcriptomic datasets of MI patients (GSE66360, GSE62646, GSE19339, GSE62646,
GSE61145, and GSE61144) were selected based on established cutoff values. The distribu-
tions and numbers of DEGs in each dataset, including up- and downregulated DEGs are
presented in volcano plots (Figure 2A). When DEGs in each series were intersected with one
another (Figure 2B), seven genes (MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3,
and CXCL16), considered as integrated DEGs (Figure 2C), were obtained. Furthermore,
we conducted a meta-analysis of the six databases and identified a total of 4258 and 4754
differentially expressed genes based on the size effect combination and p-value combination
analysis, respectively (Figure 2). Similar to the DEGs integration method, our meta-analysis
also revealed that MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3, and CXCL16
were significantly over-expressed in all the datasets with effect size combination and p-value
combination ranges of 5.5~10 zval and 0.0081~1.5 × 10−9 fdr_pval respectively (Table 1).
The complete results of size effect and p-value combination meta-analysis are presented in
supplementary file (File S3). Meeting all the cutoff criteria across all the data set analyzed,
MAN2A2/TNFRSF12A/SPP1/CSNK1D/PLAUR/PFKFB3/CXCL16 (herein we termed
it MTSCPPC signature) was identified as a novel pathological signature of myocardial
infarction and was used for subsequent analyses.

Table 1. Meta-analysis profile of six myocardial infarction (MI) databases.

Gene ID
p-Value Combination Effect Size Combination

Gene_Name
fdr_pval FC_mean fdr_pval pval zval

MAN2A2 0.0005 0.09 7.5 × 10−7 2.9 × 10−8 5.5 mannosidase alpha class 2A member 2
TNFRSF12A 0.0081 0.13 1.6 × 10−7 5.1 × 10−9 5.8 TNF receptor superfamily member 12A

SPP1 0.0064 0.33 3.0 × 10−5 2.0 × 10−6 4.8 secreted phosphoprotein 1
CSNK1D 0.0029 0.13 1.2 × 10−6 5.3 × 10−8 5.4 casein kinase 1 delta

PLAUR 1.5 × 10−9 0.22 0 0 10 plasminogen activator, urokinase
receptor

PFKFB3 0.0004 0.13 1.4 × 10−9 2.1 × 10−11 6.7 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase3

CXCL16 3.0 × 10−6 0.17 0 0 8.9 C-X-C motif chemokine ligand 16

Fdr: false discovery rate; FC: fold change; pval: p-value; zval: Z value.
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Figure 2. Identification of the potential genes related to myocardial infarction (MI). (A) Volcano 
plots of differentially expressed genes (DEGs) in the microarray datasets between MI patients and 
healthy controls. (B) Venn diagram showing the numbers of DEGs in each dataset and intersections 
of the DEGs from all MI datasets. (C) Heat maps of the intersected upregulated DEGs from the six 
datasets. Seven upregulated DEGs (MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3, and 
CXCL16) the MTSCPPC signature associated with MI were identified. 
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Figure 2. Identification of the potential genes related to myocardial infarction (MI). (A) Volcano plots
of differentially expressed genes (DEGs) in the microarray datasets between MI patients and healthy
controls. (B) Venn diagram showing the numbers of DEGs in each dataset and intersections of the
DEGs from all MI datasets. (C) Heat maps of the intersected upregulated DEGs from the six datasets.
Seven upregulated DEGs (MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3, and CXCL16)
the MTSCPPC signature associated with MI were identified.

2.2. Subcellular Localization and Single-Cell Transcriptomic Data of DEGs Signature in the Adult
Human Heart during MI

We retrieved single-cell transcriptomic datasets of the adult human heart during MI
and compared transcript levels of DEGs in different cells. Our analysis revealed that
out of the nine single cells comprising cardiomyocytes, immune cells, endothelial cells,
smooth muscle cells, and fibroblasts, expressions of the gene set were highly expressed in
immune cells and endothelial cells compared to other single cells of heart tissues during
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MI (Figure 3A). However, analysis of immunofluorescence (IF) staining from the HPA
database for subcellular localizations revealed localization discrepancies of the target genes;
PLAUR and TNFRSF12A were localized to plasma membranes, CSNK1D and PFKFB3 were
localized in the nucleoplasm, and CXCL16 and SPP1 were localized to the Golgi apparatus
(Figure 3B).
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Figure 3. Subcellular localization of proteins and single-cell transcriptomic data of differentially
expressed genes (DEGs) in the adult human heart during myocardial infarction. (A) Bar plots of
single-cell transcriptomic data of the DEGs in different cells during myocardial infarction. (B) Im-
munofluorescence staining of the subcellular distributions of target proteins within the nucleus
and endoplasmic reticulum (ER) of cells. Immunofluorescence staining was adopted from the
HPA database.

2.3. The Novel MTSCPPC Signature Is Associated with Disruption of Metabolic and
Immune-Inflammatory Pathways during the Pathogenesis of MI

To further understand the pathological mechanisms of the DEGs in MI, we con-
ducted functional enrichment and biological network analysis of the MTSCPPC signature.
Our results revealed the significant involvement of the MTSCPPC signature in several
immune, inflammatory, and metabolic remodelings (Figure 4). In the KEGG pathway anal-
ysis, cytokine–cytokine receptor interactions, Toll-like receptor signaling, gonadotropin-
releasing hormone (GnRH) secretion, gap junctions, extracellular matrix (ECM)-receptor
interactions, complement and coagulation cascades, hypoxia-inducible factor (HIF)-1,
adenosine monophosphate-activated protein kinase (AMPK), apelin, Hippo, Hedgehog,
chemokine signaling, and various sugar-metabolism pathways were significantly enriched
(Figure 4A). Similarly, our GO molecular function enrichment analysis of the MTSCPPC
signature identified cytokine activity, chemokine receptor binding, cadherin binding, and
activities of various sugar-metabolizing enzymes. The biological process analysis also
indicated that several metabolic processes (including carbohydrate, lipid, and protein
metabolism pathways), hormonal (androgen and testosterone), and other biological pro-
cesses (including non-canonical Wnt signaling, fibrinolysis, and T cell chemotaxis) were
the most significantly enriched processes of the DEGs (Table 2). To investigate interac-
tions between the proteins encoded by the MTSCPPC signature, PPI and GGI networks
were employed (Figure 4B,C). Based on the STRING database, the PPI network was con-
structed with the MTSCPPC signature, yielding 47 nodes, 359 edges, and a PPI enrichment
p-value of <1.0 × 10−16. The most significantly enriched genes in the PPI included EGFR
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(23 node degrees), CAV1 (23 node degrees), EGF (22 node degrees), CD44 (22 node de-
grees), and ANXA2 (19 node degrees) (Figure 4B). On the other hand, the GGI network
of the MTSCPPC signature contained 27 human genes (nodes) and 52 interactions (edges,
Figure 4C) and generated strict functional enrichment of metabolic pathways associated
with carbohydrates, nucleotides, and ATP metabolic processes.

Table 2. Enriched biological processes associated with the MTSCPPC signature.

Index Name p-Value Odds Ratio Combined Score

GO:0071394 cellular response to testosterone stimulus 0.001749 832.88 5287.72
GO:0006003 fructose 2,6-bisphosphate metabolic process 0.001749 832.88 5287.72
GO:0010818 T-cell chemotaxis 0.003844 333.05 1852.16
GO:0032370 positive regulation of lipid transport 0.004542 277.51 1497.03
GO:0006706 steroid catabolic process 0.004890 256.15 1362.86
GO:2000050 regulation of non-canonical Wnt signaling pathway 0.005239 237.85 1249.08
GO:0042730 fibrinolysis 0.005239 237.85 1249.08
GO:0006491 N-glycan processing 0.006632 184.95 927.70
GO:0045821 positive regulation of glycolytic process 0.007328 166.44 818.24
GO:0008209 androgen metabolic process 0.007328 166.44 818.24
GO:1900544 positive regulation of purine nucleotide metabolic process 0.007328 166.44 818.24
GO:0045913 positive regulation of carbohydrate metabolic process 0.008371 144.71 692.15
GO:0022409 positive regulation of cell-cell adhesion 0.01634 72.27 297.35
GO:0009100 glycoprotein metabolic process 0.01909 61.54 243.60
GO:0031401 positive regulation of protein modification process 0.002310 37.32 226.57
GO:0034341 response to interferon-gamma 0.02767 42.01 150.72
GO:0001934 positive regulation of protein phosphorylation 0.006776 21.27 106.24
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2.4. The MTSCPPC Signature Is Implicated in Therapy Resistance and Pathogenesis of Heart
Related Diseases

Genomic aberrations are major drivers of disease progression and therapy response.
We queried the gene–disease association network of the DEGs. Our analysis suggested the
involvement of DEGs in several diseases including ischemic stroke, myocardial ischemia,
atherosclerosis, acute coronary syndrome, carotid atherosclerosis, diabetic maculopathy,
and so on (Figure 5A). To investigate the roles of the MTSCPPC signature in response to
therapy, drug sensitivity and gene expression profiling data were integrated. Our results
demonstrated that high expression levels of TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3,
and CXCL16 were associated with drug resistance to several small molecules (Figure 5B).
However, expression levels of MAN2A2 were associated with increased drug sensitivity.
Collectively, our results suggested that the dysregulated expressions of the members of
the MTSCPPC signature were associated with the development and progression of several
heart-related diseases and could mediate resistance to small molecule drugs.
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2.5. miRNA Regulatory Network of the DEGs

In order to further understand the mechanisms and pathological roles of the MTSCPPC
signature, we queried the miRNA regulation network targets for this signature (Figure 6A).
Our analysis revealed that the MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3,
and CXCL16 were regulated by several miRNA regulatory networks involving hsa-miR-149-
5p, hsa-miR-3150a-3p, hsa-miR-105-5p, hsa-miR-124-3p, hsa-miR-16-5p, hsa-miR-15a-5p,
hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-1294, hsa-miR-525-5p, hsa-miR-424-5p, hsa-
miR-195-5p, hsa-miR-520a-5p, hsa-miR-512-3p, and several other miRNAs (Figure 6A).
Furthermore, we found that the miR regulatory networks were enriched in several path-
ways, GOs, and disease networks (Figure 6B and Figure S1). Of importance, we found
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high enrichment of miRNAs in coronary artery disease, MI, myocarditis, congenital heart
defects, cardiomegaly, and myocardial ischemia (Figure 6B).
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2.6. Ovatodiolide, a Macrocyclic Diterpenoid, a Potential Drug for Targeting the
MTSCPPC Signature

We queried the MTSCPPC signature for the available clinical/preclinical drug targets
(Figure 7A–D) and identified several kinase- and phosphatase-targeting small molecules in
clinical and preclinical settings. Specifically, two clinical drugs, PFK-015 and PFK-158, for
targeting PFKFB3 were identified. The preclinical drugs, including 4-chlorophenylguanidine
(PLAUR inhibitor), ASK 8007 (SPP1 inhibitor), LH846, and several other inhibitors of
CSNK1D (Figure 7C,D) were identified. Furthermore, we evaluated the therapeutic po-
tential of a natural compound, ovatodiolide, a macrocyclic diterpenoid, by comparing it
with the identified clinical/preclinical drugs, its binding affinities, and interaction with
amino acid residues of the targets binding sites. Our molecular docking analysis revealed
that ovatodiolide docked to the binding cavities of the DEGs with different binding affini-
ties; MAN2A2 (−7.6 kcal/mol), CSNK1D (−7.4 kcal/mol), TNFRSF12A (−6.9 kcal/mol),
PLAUR (−6.6 kcal/mol), SPP1 (−6.5 kcal/mol), PFKFB3 (−6.4 kcal/mol), and CXCL16
(−5.8 kcal/mol) (Figures 7 and 8). Several non-covalent interactions, including the H-bonds,
halogen bonds, and multiple π-interactions, were found in the complexes formed between
the ovatodiolide and the targets (Figures 7 and 8). Furthermore, several hydrophobic
contacts and van der Waals forces were found around the ovatodiolide backbone with the
respective binding amino acid residues of the receptor’s binding pockets. Judging by the
number of interactions and the binding affinities of ovatodiolide, our results suggest that
MAN2A2, CSNK1D, and TNFRSF12A are more favored ligands for ovatodiolide thera-
peutic utility than are PFKFB3, PLAUR, SPP1, and CXCL16. Ovatodiolide demonstrated a
higher potential for targeting PLAUR than the preclinical inhibitor of the protein and was
comparable to LH846 in its affinity for binding to CSNK1D. However, PFK158, a clinical
inhibitor, demonstrated a higher potential for targeting PFKB3 in silico than ovatodiolide.
Altogether, our results suggest that ovatodiolide has molecular features for targeting the
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MTSCPPC signature with higher efficiency for three members of the MTSCPPC signature,
namely, MAN2A2, CSNK1D, and TNFRSF12A.
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3. Discussion

Annual cases of myocardial infarction (MI, acute and chronic) are steadily increasing.
Exploring molecular mechanisms of MI is critical to controlling the number of patients
with MI and developing precision therapeutic strategies. This study analyzed DEGs from
six independent microarray datasets and identified seven overlapping genes (termed
the MTSCPPC signature), subsequently analyzed for their pathogenic roles in MI and as
therapeutic targets. GO biological and function enrichment analyses identified that the
MTSCPPC signature was mainly enriched in several metabolic- (particularly carbohydrate
metabolic pathways), hormonal-, immune-, and inflammation-related pathways. Similarly,
our KEGG pathway analysis identified cytokine–cytokine receptor interactions, Toll-like
receptor signaling, GnRH secretion, gap junctions, ECM-receptor interactions, complement
and coagulation cascades, HIF-1, AMPK, Apelin, Hippo, Hedgehog, chemokine signaling,
and various sugar-metabolism pathways. Results of these enrichment analyses are in line
with higher levels of the MTSCPPC signature in the immune cells than in other cells of the
human heart during an MI event, as revealed by our analysis from single-cell transcriptomic
databases (Figure 3A). These findings suggest the critical roles of immune and inflammatory
responses during MI. Furthermore, the GGI network of the DEGs generated strict functional
enrichment of metabolic pathways associated with carbohydrate, nucleotide, and ATP
metabolic processes which correlated with our KEGG and ontological findings.

Results of our analysis may provide future directions for better diagnoses and treat-
ments of AMI. Innate immune responses and inflammatory reactions are essential reg-
ulators of tissue damage and repair after an MI [39]. Myocardial necrosis induces com-
plement activation, free radical generation, cellular depletion of free radical scavengers,
lipid peroxidation, and release of chemotactic factors and triggers a tumor necrosis factor
(TNF)-α-mediated cytokine cascade [40,41]. During an MI, immune responses are induced
by activating Toll-like receptors on circulating blood cells, increasing the infarct size and
mediating ventricular transformation [42]. The chemokine (C-X-C motif) ligand family
(Cxcl) contains neutrophil chemoattractants [43], whose overexpression was implicated in
aggressive acute inflammation after an MI [44]. Pharmacologic inhibition of Cxcl attenuated
MI via neutrophil exclusion at the infarct site [43].

We further investigated interactions between proteins encoded by the MTSCPPC
signature via a PPI network and found a significantly higher degree of interactions with
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EGFR, CAV1, EGF, CD44, and ANXA2. Therefore, we speculated that these genes, which
were core genes in the PPI network, might play important roles in regulating cardiac re-
modeling and be more closely related to MI. Our literature survey revealed that these genes
were implicated in immune differentiation, regulation of inflammation, and MI [45–47],
which indicated that our results of integrated bioinformatics analysis, KEGG, and GO
enrichment analysis were reliable. Cav1 was shown to play a critical role in regulating
inflammatory responses to an MI by regulating macrophage differentiation in mice [48].
EGF and EGFR were also implicated in the proliferation of cardiac fibroblasts and car-
diac remodeling after an MI in rats [47]. CircANXA2 promotes myocardial apoptosis in
myocardial ischemia-reperfusion injury [46].

Integrating these genes with the MTSCPPC signature of MI would produce a sig-
nificantly pronounced pathological phenotype compared to phenotypes of individual
genes [49,50]. Per our hypothesis, targeting genes that interact with disease hallmark genes
were proposed as a therapeutic concept [51,52] and adopted in clinical trials [53]. Alto-
gether, our study identified the importance of cytokine–cytokine receptor interactions and
chemokine signaling, immune and inflammation responses, and metabolic abnormalities
in the pathology of MI and identified novel biomarker signature of theranostic relevance
for these processes.

Increasing evidence has revealed that dysfunction of 3′- and 5′-untranslated regions
(UTRs) of mRNAs is often associated with the pathophysiology of several diseases [54].
miRNAs are small non-coding RNAs that bind to the UTR region and regulate the mRNA
translation of target genes [55] and, hence, contribute to the development of various dis-
eases, including MI [56,57]. The binding of miRNAs to the 3′-UTR of target mRNAs is a
mechanism (canonical mode) of post-transcriptional repression of target genes [58]. How-
ever, recent studies revealed other miRNA regulatory modes that favor post-transcriptional
activation [55,59]. We showed that several miRNAs regulated the MTSCPPC signature.
These miRNA networks were significantly associated and implicated in coronary artery
disease, MI, myocarditis, congenital heart defects, cardiomegaly, and myocardial ischemia
(Figure 6B). Our data provided new insights into the molecular mechanism of MI, where
miRNA-mediated post-transcriptional activation and regulation of many bioprocesses.

In silico receptor–ligand interaction studies are an important stage in drug discov-
ery and development pipelines. By studying receptor–ligand interactions, behaviors of
therapeutic agents around the accommodating cavity of a target protein can be known,
and hence we can speculate on the biological activities of drug candidate [21,60] Interest-
ingly, our molecular docking study revealed the potential of ovatodiolide for targeting the
MTSCPPC signature in the order of MAN2A2 (−7.6 kcal/mol) > CSNK1D (−7.4 kcal/mol)
> TNFRSF12A (−6.9 kcal/mol) > PLAUR (−6.6 kcal/mol) > SPP1 (−6.5 kcal/mol) >
PFKFB3 (−6.4 kcal/mol) > CXCL16 (−5.8 kcal/mol). The importance of hydrogen, ionic,
hydrophobic, and other non-covalent bonds is crucial to the stability and behavior of a drug
candidate within the cavity of a target molecule. The higher affinities of ovatodiolide for
MAN2A2, CSNK1D, and TNFRSF12A suggest the differences in therapeutic susceptibilities
of the MTSCPPC signature to ovatodiolide. This target favoritism could be attributed to
the higher numbers of interactions between amino acid residues of the target proteins
and reacting molecules of ovatodiolide. It was reported that high van der Waals forces
between a drug candidate and amino acid residues in the binding cavity of the target
create a strong, cohesive environment for stabilization of the complexes [60]. Interestingly,
ovatodiolide demonstrated a higher potential for targeting PLAUR than the preclinically-
validated protein inhibitor and was comparable to the preclinically-validated inhibitor
of CSNK1D. However, as expected, PFK158, a clinical inhibitor, demonstrated higher in
silico potential for targeting PFKB3 than did ovatodiolide. Collectively, the results from
the present study aid our understanding of the complex regulatory mechanisms of MI and
provide a promising approach for MI theranostic markers with ovatodiolide as a promising
therapeutic candidate.
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However, the limitations of the present study merit discussion. The sample size was
relatively small as only a few datasets of MI from the GEO database qualified for inclusion.
Therefore, larger cohorts of patients with MI are required to confirm the diagnostic relevance
of the identified genes. In addition, no validation experiment was performed. In future
studies, we plan to perform experiments such as qPCR and Western blot to verify the
expression changes of MAN2A2, TNFRSF12A, SPP1, CSNK1D, PLAUR, PFKFB3, and
CXCL16, as well as microRNAs that might target the DEGs in experimental models of
MI and clinical samples. As we described, the DEGs were associated with metabolic and
immune-inflammatory dysregulation. Whether these screened biomarkers are linked to
the above indicators in MI patients also requires confirmation. In-depth functional studies
including gene over-expressing/silencing and clinical studies such as correlations analysis
between gene expression and clinical indicators in MI patients will also be conducted.
Furthermore, the full therapeutic potential of ovatodiolide for targeting the DEGs awaits
our experimental validation with in vitro and in vivo models.

4. Materials and Methods
4.1. Transcriptomic Data Acquisition and Identification of DEGs in MI

In total, six datasets (GSE66360, GSE19339, GSE61145, GSE61144, GSE62646, and
GSE60993) [61–63] consisting of high-throughput gene expression profiles from MI patients
and healthy cohorts were downloaded from the NCBI Gene Expression Omnibus (GEO).
Detailed information of the microarray datasets is presented in Table 3. Data processing and
analysis of DEGs were conducted using the GEOR2 embedded LIMMA package [64] and
excel sorting. Analyses were conducted based on the limma contrast selection of all possible
pairwise contrasts. The Benjamini–Hochberg correction method was used for p-value
adjustment of the false discovery rate (FDR) as reported previously [36]. InteractiVenn,
a web tool, was used to visualize the intersecting DEGs and generate a Venn diagram
to visualize overlapping DEGs [65]. The corresponding raw files from each dataset are
presented in supplementary file 1 (File S1). In addition to the conventional DEG integration,
we also conducted a meta-analysis of the datasets based on p-value integration and effect
size combination methods. The web-based application ImaGEO was used to perform the
meta-analysis [66]. The effect size, defined as Z value based on statistical Z-tests, reflects
the inter-study variation and the different quantitative measurements used to explain
the strength of a phenomenon in different datasets while a p-value reflects whether an
effect exists [67]. Therefore, both the substantive significance (effect size) and statistical
significance (p-values) are essential for dataset meta-analyses [68]. All our p-value analysis
was adjusted for multiple testing by the FDR (<0.05) method. All the necessary codes and
files to repeat the main analysis are presented in the supplementary section (File S2).

Table 3. Characteristics of the microarray datasets of myocardial infarction and healthy cohorts.

GEO Accession No. Platform Control MI

GSE60993 GPL6884 Illumina HumanWG-6 v3.0 expression beadchip 7 7

GSE62646 GPL6244 HuGene-1_0-st] Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version]2 14 14

GSE19339 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array 4 4

GSE61145 GPL6884 Illumina HumanWG-6 v3.0 expression beadchip 7 7
GSE61144 GPL6106 Sentrix Human-6 v2 Expression beadchip 10 14

GSE66360 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array 50 49

4.2. Subcellular Localization and Single-Cell Transcriptomic Data Analysis of the Adult Human
Heart during MI

We used the Human Protein Atlas (HPA) database to acquire the subcellular local-
ization of the DEGs based on immunofluorescence staining of the proteins within the
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nucleus, endoplasmic reticulum (ER), and microtubules [69]. In addition, the single-cell
transcriptomic dataset of the adult human heart during heart failure was retrieved from the
GEO, with the accession number GSE109816 [70]. The total read counts for genes in each
cluster were calculated by adding up the read counts of the genes in all cells belonging to
the corresponding cluster. Finally, read counts were normalized to transcripts per million
protein-coding genes (pTPM) for each single-cell cluster.

4.3. Interaction and Disease Networks, and Gene Set Enrichment Analysis of the DEGs

A DEG enrichment analysis including the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and gene ontology (GO) enrichment analyses of the DEGs was conducted
using the Enrichr server [71,72], with the enrichment value set to p < 0.05. Protein–protein
interaction (PPI) enrichment of the DEGs was analyzed using the Multiple Protein modules
of the String server [73], while gene–gene interactions (GGIs) of hub genes were evaluated
via the GENEMANIA web tool [74]. In order to analyze gene/disease-specific associa-
tions of the DEGs, we explored the disease/phenotype-specific filters of the Open Targets
Genetics server [75].

4.4. Drug Response and Sensitivity Analysis of the DEGs

A drug-sensitivity analysis of the DEGs was conducted through the GSCALite server [76].
We explored Spearman correlation methods to analyze correlations between messenger
(m)RNA expression levels of the DEGs and values of the 50% inhibitory concentration (IC50)
of small molecules against various cells in the Therapeutics Response Portal (CTRP) and
Genomics of Drug Sensitivity (GDSC) databases.

4.5. Micro (mi)RNA Regulatory Network and Enrichment Analysis of the DEGs

miRNA regulatory networks of the DEGs were collected from experimentally verified
databases (TarBase, mir2disease, and miRTarBase) and predicted databases (miRanda
and targetscan). The miRNA regulatory network was visualized using the visNetwork
R package. We used the miRNA Enrichment Analysis and Annotation (miEAA) tool to
conduct a functional enrichment analysis of sets of miRNA targets [77]. Analyses were
conducted using an FDR (Benjamini–Hochberg) adjustment p-value of 0.05 and a minimum
required hit of four miRNAs.

4.6. Comparative Analysis of Ovatodiolide, a Macrocyclic Diterpenoid and Conventional Drugs for
Targeting the DEGs

We used the DGIDB database, a drug–gene interaction database [78] and Connectivi-
tyMap, a perturbation-driven gene expression dataset [79] to identify clinical and preclinical
drugs for targeting the DEGs. The AutoDock Vina (vers. 0.8, Scripps Research Institute, La
Jolla, CA, USA) [80] was used for molecular docking analyses to explore ligand–receptor
interactions between target DEGs and drug candidates. All ligand preparations before dock-
ing were conducted according to the method described in our previous studies [81,82]. PDB
files of the three-dimensional (3D) structures of the target DEGs of MAN2A2 (PDB:1PS3),
TNFRSF12A (PDB:2RPJ), SPP1 (PDB:5VFJ), CSNK1D (PDB:4TN6), PLAUR (PDB:6AEX),
PFKFB3 (PDB:3QPW), and CXCL16 (PDB:1RJT) were obtained from the Protein Data Bank
(PDB). The Avogadro molecular builder and visualization tool version 1.XX [83] was used
to build the 3D structure of ovatodiolide in Sybyl mol2 format. SDF files of standard drugs
of LH846 (CID: 851474), PFK-158 (CID: 19739459), and 4-chlorophenylguanidine (CID:
2757788) were obtained from Pubchem. All mol2 files were converted to PDB format using
the PyMOL Molecular Graphics System, vers. 1.2r3pre, while PDB files were converted to
pdbqt format using AutoDock VINA. All dockings were visualized and analyzed with the
aid of Discovery studio visualizer (vers. 19.1.0.18287, BIOVIA, San Diego, CA, USA) [84].



Int. J. Mol. Sci. 2022, 23, 1281 14 of 17

5. Conclusions

The present study identified MAN2A2/TNFRSF12A/SPP1/CSNK1D/PLAUR/PFKFB3/
CXCL16 as a novel and potential signature of cytokine–cytokine receptor interactions, chemokine
signaling, immune and inflammatory responses, and metabolic dysregulation associated with
MI. Based on the molecular docking of receptor–ligand interaction, ovatodiolide demonstrated
the potential for targeting this signature and could be considered for subsequent experimental
validation for the development of a new drug.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23031281/s1.
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