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Abstract
We consider the problem of identification of a pollution source in a river. The
mathematical model is a one-dimensional linear advection–dispersion–reaction
equation with the right-hand side spatially supported in a point (the source) and
a time-dependent intensity, both unknown. Assuming that the source becomes
inactive after the time T ∗, we prove that it can be identified by recording the
evolution of the concentration at two points one of which is strategic.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When we observe a river, the transparency of its water, the natural aspect of its banks and
its bottom can sometimes reflect its quality. However, to be sure of this quality, we have to
analyse the composition of the water and the quality of sediments the river transports.

By the quality of water we mean its physical, chemical and biological properties which
can be estimated by measuring, for example, the quantity of organic matter contained in water.

By organic matter we mean a set of organic substances the degradation of which implies
consumption of the oxygen dissolved in the water with direct consequences on the aquatic
life. These substances are contained in the discharges of human and agricultural origin and in
numerous industrial discharges. The importance of this pollution is estimated by the measures
of the so-called BOD (biologic oxygen demand) and COD (chemical oxygen demand); see
[12, 16] for more details.

In this paper, we are concerned with the problem of identifying the location and intensity
of a pollution point source from the measurements of BOD or COD at some points in the
river. The portion (of the river) under surveillance is assimilated to a segment of a line. The
governing equations and the problem statement are specified in section 2. We then prove,
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in section 3, that the pollution source is identifiable with measurements at two points, one
upstream, the other downstream from the source, provided that one of them is strategic in a
sense that will be described later. We establish, in section 4, a local Lipschitz stability result.
Section 5 is devoted to two numerical algorithms to recover this source. Some experiments
comparing their efficiency are given in section 6.

2. Governing equations and problem statement

The pollutant concentration u that we consider here (BOD or COD) is governed by the
following one-dimensional linear advection–dispersion–reaction equation,

L[u](x, t) = F(x, t), 0 < x < �, 0 < t < T (2.1)

where

L[u](x, t) = ∂tu(x, t) − D∂xxu(x, t) + V ∂xu(x, t) + Ru(x, t)

with u the concentration of pollutant, V the velocity of the river, D a dispersion coefficient, R
a reaction coefficient, and F the source term.

For more information one can see [12] or [16] where detailed derivations and discussions
of the governing equations for flow and transport on surface water systems are available.

As usual, to the evolution equation (2.1) one has to append initial and boundary conditions.
For the first one, there is no restriction to start the time interval at some moment where no
pollution has occurred yet. For the second one, physical considerations indicate that things
are different at the two extreme points of the observed portion of the river. Indeed, in most
situations of interest, transport is unidirectional in nature. It means that, there is no significant
transport upstream. Therefore, the null concentration at some point situated upstream can be
used as the boundary condition. On the other hand, there are two options for modelling the
downstream boundary: a zero gradient or a zero concentration assumption. The first option
corresponds better to the transport physics, however if the downstream point is far enough
from the source, the second one seems reasonable as well. To simplify the presentation, we
will only consider here the first option. This corresponds to the following initial–boundary
conditions:

u(x, 0) = 0 for 0 < x < �
(2.2)

u(0, t) = 0 and ∂xu(�, t) = 0 for 0 < t < T .

The operator L is merely a linear parabolic partial differential operator, and it is well known
that, under various assumptions on F, the problem (2.1), (2.2) has a unique solution, denoted
here by u = u(x, t;F), which is smooth enough so that it makes sense to talk about its point
values. Then for 0 < a < b < �, one can define the observation operator

B[F ] := {u(a, t;F), u(b, t;F), 0 < t < T }.
This is the so-called direct problem. The inverse problem we are concerned with is as follows:

ISP. Given the records {d1(t), d2(t), 0 < t < T } of the concentration u at two observation
points a, b ∈ (0, �), find the source of the pollutant; that is, to find F such that

B[F ] = {d1(t), d2(t), 0 < t < T }. (2.3)

Several questions arise in such inverse problem: do the available data (the RHS of (2.3))
uniquely determine F (identifiability) and if so, how do the source parameters depend on
the measurements (stability)? Is there a constructive algorithm for determining this source
(identification)?
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These questions will be treated in the following sections, but we can say here and now
that the identifiability of function sources is not true in general. This non-identifiability is
shown by the following example.

Let f ∈ C∞
c (a, b). Then for real σ �= ρ, and F(x, t) = L[(eσ t − eρt )f (x)], it is apparent

that u(x, t;F) = (eσ t − eρt )f (x) satisfies (2.1) and (2.2) as well as B[F ] = {0, 0}. Thus, two
function sources F1, F2 cannot be distinguished from measurements at two points a and b.

To overcome this difficulty, people generally assume that some a priori information on
the sources is available. For example, time-independent sources F(x, t) = f (x) are treated
by Cannon [2] using spectral theory, and by Engl, Scherzer and Yamamoto [9] using the
approximated controllability of the heat equation. The results of this last paper are generalized
by Yamamoto [19, 20] to the sources of the form F(x, t) = α(t)f (x), f ∈ L2, where the time
part function α ∈ C1[0, T ] is known and satisfying the condition α(0) �= 0. Recently, Hettlich
and Rundell [10] considered a 2D problem for the heat equation with the sources of the form
F(x, t) = χD(x), where D is a subset of a disc. They proved that the set D can be identified
with the measures of the flow at two different points on the boundary, and gave a numerical
method to identify it. Finally, the non-linear source problem, where F is dependent on the
solution of the equation, i.e. F(x, t) = G(u(x, t)), is considered in the papers of DuChateau
and Rundell [6], and Cannon and DuChateau [3].

3. Identifiability

Following the usual modelling of point sources in physics, we assume that F is of the form

F(x, t) = λ(t)δ(x − S), (3.4)

with 0 < S < � and λ ∈ L2(0, T ).
In this case, it is known (see, for example, [14]) that the problem (2.1), (2.2) has a unique

solution which belongs to the functional space

L2(0, T ;H 1(0, �)) ∩ C([0, T ];L2(0, �)).

Thus, by imbedding Sobolev theorem, one can define, as claimed in the previous section, the
values of u at any point (x, t) in (0, �) × (0, T ) and the problem (ISP) makes sense again. To
determine the parameters λ and S of the source, and to emphasize their role, we will denote
the solution in the following as u = u(x, t; λ, S) and the observation operator as

B[λ, S] = {u(a, t; λ, S), u(b, t; λ, S) 0 < t < T }.
It is also worth noting that the dependence of u and B on the couple (λ, S) is no more linear.

In [7], for general two-dimensional (2D) and three-dimensional (3D) space domains, we
have considered the problem of detecting pointwise sources with boundary measurements.
Here, in the one-dimensional (1D) case, as stated in ISP, the measurements are made at two
interior points. We also assume that, from some a priori knowledge of the localization of the
source, one of the two points is chosen upstream and the other downstream with respect to
the source, that is 0 < a < S < b < �. The main result (theorem 1 below) is then slightly
different from that in [7] and appeals to the concept of strategic point introduced by El Jai and
Pritchard in [8] in a control problem.

Definition 1. Let {ψn} be a complete orthonormal family of continuous functions in L2(0, �).
Then a point b ∈ (0, �) is said to be a ‘strategic point’ relative to the family {ψn} if

ψn(b) �= 0 ∀ n. (3.5)



4 A El Badia et al

In particular, let {ψn} denote the complete orthonormal family of eigenfunctions for the
following Sturm–Liouville problem, in which the parameters, D,V,R are those from the
operator L[u],

−Dψ(x)′′ + 
ψ(x) = µψ(x), 0 < x < �

ψ(0) = ψ ′(�) − αψ(�) = 0,
(3.6)

where

α = −V

2D
and 
 = α2D + R. (3.7)

One can easily verify that ψn(x) = cn sin(βnx) where (βn), n � 0 are the positive solutions
of equation βl cot(βl) = αl listed in increasing order, and cn a normalization coefficient. The
associated eigenvalues µn to ψn are

µn = 
 + Dβ2
n.

Thus

βn = (2n + 1)
π

2
− εn with 0 < εn < π/2 and lim

n→∞ εn = 0, (3.8)

so that


 < µn < µn+1, µn ∼ D2

�2
π2n2 at infinity. (3.9)

Then we have the following:

Lemma 1. Let T ∗ < T and b ∈ (0, �) be a strategic point relative to the family {ψn}, and
suppose that w = w(x, t) satisfies

L[w](x, t) = 0, 0 < x < �, T ∗ < t < T,

w(0, t) = ∂xw(�, t) = 0, for T ∗ < t < T, (3.10)

w(., T ∗) ∈ L2(0, �).

Then

w(b, t) = 0, ∀ t ∈]T ∗, T [ 
⇒ w(., T ∗) = 0 in L2(0, �).

Proof. Let

z(x, t) = eαxw(x, t) with α given in (3.7). (3.11)

Then, w is the solution of (3.10) if and only if z is the solution of the following heat equation:

∂tz − D∂xxz + 
z = 0, 0 < x < �, T ∗ < t < T

z(0, t) = ∂xz(�, t) − αz(�, t) = 0, for T ∗ < t < T, (3.12)

z(., T ∗) ∈ L2(0, �).

Thus, z is given by the Fourier expansion in L2 sense,

z(x, t) =
∞∑

n=0

〈z(., T ∗), ψn〉L2ψn(x) e−µn(t−T ∗), (3.13)

where 〈f, g〉L2 denotes the L2(0, �) inner product
∫ �

0 f (x)g(x) dx.

Actually, from (3.9), one sees that the expansion on the RHS of (3.13) is uniformly
convergent for all t � t0 > T ∗ and represents a real analytic function of t ∈]T ∗,∞[ for every
x ∈ (0, �). This gives a sense for z(b, t) and w(b, t) for t > T ∗.
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Now, since

z(b, t) = 0, ∀ t ∈]T ∗, T [,

by analytic continuation, we conclude that
∞∑

n=0

〈z(., T ∗), ψn〉L2(0,�)ψn(b) e−µn(t−T ∗) = 0 ∀ t ∈ ]T ∗, +∞[. (3.14)

Therefore, using again (3.9), one can successively deduce that all the coefficients of e−µn(t−T ∗)

in the series (3.14) are null:

〈z(., T ∗), ψn〉L2ψn(b) = 0, ∀ n ∈ N.

Since b is strategic, one has

〈z(., T ∗), ψn〉L2 = 0, ∀ n ∈ N.

Thus, z(., T ∗) = 0 in L2(0, �) and therefore w(., T ∗) = 0 in L2(0, �). This is the desired
conclusion. �

Theorem 1. Suppose Fj (x, t) = λj (t)δ(x − Sj ) where λj ∈ L2(0, T ) is such that for
j = 1, 2, λj (t) � 0 with λj (t) = 0 for T ∗ < t < T, and Sj ∈ (a, b), j = 1, 2. If at least one
of the points a or b is strategic with respect to the family {ψn}, then B[λ1, S1] = B[λ2, S2]
implies λ1(t) = λ2(t), almost everywhere in (0, T ), and S1 = S2.

Proof. Let ui, i = 1, 2 be the solutions of

L[uj ](x, t) = λj (t)δj (x − Sj ), 0 < x < �, 0 < t < T,

uj (0, t) = ∂xuj (�, t) = 0 for 0 < t < T,

uj (x, 0) = 0 for 0 < x < �.

Consider the difference v = u2 − u1, which is the solution of

L[v](x, t) = λ2(t)δ2(x − S2) − λ1(t)δ1(x − S1), 0 < x < �, 0 < t < T,

v(0, t) = ∂xv(�, t) = 0 for 0 < t < T, (3.15)

v(x, 0) = 0 for 0 < x < �,

while B[λ1, S1] = B[λ2, S2] means that

v(a, t) = v(b, t) = 0 for 0 < t < T . (3.16)

In the first step, we consider v in ]0, �[×]T ∗, T [. Since, λj (t) = 0 for T ∗ < t < T , one gets

L[v](x, t) = 0, 0 < x < �, T ∗ < t < T,
(3.17)

v(0, t) = ∂xv(�, t) = 0 for T ∗ < t < T .

Since v(b, t) = 0 in ]T ∗, T [, lemma 1 implies that

v(x, T ∗) = 0 for 0 < x < �. (3.18)

In the second step, we consider v in ]0, �[×]0, T ∗[. For more clarity, let us rewrite (3.18)
here:

L[v](x, t) = λ2(t)δ2(x − S2) − λ1(t)δ1(x − S1), 0 < x < �, 0 < t < T ∗,
v(0, t) = ∂xv(�, t) = 0, for 0 < t < T ∗, (3.19)

v(x, 0) = 0 for 0 < x < �.
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Since 0 < a < Si < b < �, j = 1, 2, we deduce from (3.19)

v = 0 in ]0, a[×]0, T ∗[∪]b, �[×]0, T ∗[.

Therefore

∂xv(a, t) = ∂xv(b, t) = 0 for 0 < t < T ∗. (3.20)

Let now ri, i = 1, 2 be the solutions of the characteristic equation −Dr2 − V r + R = 0 and
vi(x) = erix .

Multiplying the first equation of (3.19) by vi and, integrating with respect to x and t, one
gets∫ b

a

∫ T ∗

0
L[v](x, t)vi(x) dt dx = eriS2

∫ T ∗

0
λ2(t) dt − eriS1

∫ T ∗

0
λ1(t) dt. (3.21)

Since v ∈ L2(0, T ;H 1(0, �)) ∩ C(0, T ;L2(0, �)), using Green’s formula and according to
(3.16), (3.18) and (3.20), the LHS of (3.21) vanishes, so that

λ2 er1S2 = λ1 er1S1

λ2 er2S2 = λ1 er2S1

where λ = ∫ T ∗

0 λ(t) dt. Since r1 �= r2 and λi > 0, one has S1 = S2 and λ1 = λ2.
Let us now set S = S1 = S2. Let y(x, t) = eαxv(x, t) withα given in (3.7). Then, v is

the solution of (3.15) if and only if y is the solution of the following heat equation,

∂ty − D∂xxy + 
y = eαS [λ2(t) − λ1(t)] δ(x − S), 0 < x < �, 0 < t < T

y(0, t) = ∂xy(�, t) − αy(�, t) = 0 for 0 < t < T (3.22)

y(x, 0) = 0 for 0 < x < �

which is given by the Fourier expansion

y(x, t) =
∑

n

an(t)ψn(x)

with an(t) = ∫ �

0 y(x, t)ψn(x) dx and an(0) = 0. Now, since d
dt

〈y(x, t), ψn(x)〉 = 〈
∂
∂t

y(x, t),

ψn(x)
〉

([5], chapter 18), one obtains

a′
n(t) =

∫ �

0
[D∂xxy(x, t) − 
y(x, t)]ψn(x) dx + eαS [λ2(t) − λ1(t)] ψn(S)

= −µnan(t) + eαS [λ2(t) − λ1(t)] ψn(S)

and therefore

v(x, t) =
∞∑

n=0

ψn(S)ψn(x) e−α(x−S)

∫ t

0
(λ2 − λ1)(ζ ) e−µn(t−ζ ) dζ

that is

v(x, t) =
∫ t

0
(λ2 − λ1)(ξ)�(x, t − ζ ) dζ

where

�(x, t) =
∞∑

n=0

ψn(S)ψn(x) e−α(x−S) e−µnt .
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The above inversion of integration and summation is justified by Lebegues’s theorem of
dominated convergence. This is seen from the estimate

∞∑
n0

|ψn(S)ψn(x) e−α(x−S)| e−µnt � C

∞∑
n0

e−Kn2t

� C

∫ ∞

0
e−Ktξ 2

dξ

= C1
1√
t

(3.23)

where C,K,C1 are constant.
The first inequality of (3.23) is obtained according to (3.9), for a sufficiently large n0.

Now, since v(b, t) = 0 (or v(a, t) = 0), 0 < t < T, one gets∫ t

0
(λ2 − λ1)(ξ)�(b, t − ξ) dξ = 0, ∀ t ∈]0, T [.

According to Titchmarsh’s theorem on convolution of L1 functions [18], the functions
(λ2 − λ1) and � must vanish identically at least in intervals ]0, T ′[ and ]0, T ′′[ respectively,
with T ′ and T ′′ such that T ′ + T ′′ � T .

Now, if � = 0 in ]0, T ′′[ with T ′′ > 0, by analytic continuation one has � = 0 in ]0, +∞[
and therefore ψn(S)ψn(b) = 0,∀ n.

Since b is strategic, we obtain ψn(S) = 0 ∀ n, which is impossible according to (3.8).
Thus

λ2 = λ1 in ]0, T [.

This ends the proof of the theorem. �

Remark 1.

(1) The point c ∈ (0, �) such that ψn(c) = 0 satisfies c = mπ
βn

< �, for m an integer; i.e.,
these points are countable, hence an arbitrarily chosen point b ∈ (0, �) has probability 1
of being strategic.

(2) The assumption that λ(t) = 0 ∀ t ∈ (T ∗, T ) where 0 < T ∗ < T corresponds to the case
of an accidental pollution stopped at time T ∗, while the recording of the concentration u
is continued until a later time T.

(3) For the sources of the form F(x, t) = λ(t)
∑m

i=1 αiδSi
, where λ ∈ C1[0, T ] is known

and satisfying the condition λ(0) �= 0, one can use an appropriate change of functions
to prove that the source identification problem is equivalent to the identification of initial
data. This was made by Yamamoto in [19] in a wave source problem. However, his proof
can easily be adapted to our parabolic equation. In this case, the number m, the values αi ,
and the locations Si are uniquely determined by one pointwise measurement situated at a
strategic point.

4. Stability

Stability, with which we are concerned here, means continuous dependence of the source F on
the measurements B[F ]. Stability is a crucial issue for the numerical applications and it has
concerned many authors in other situations. In this section, we prove a local Lipschitz stability
result derived from the Gâteaux differentiability, by establishing that the Gâteaux derivative is
not zero.
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First, consider the set

G(T ∗) = {(λ, S) ∈ L2(0, T ) × (a, b) : λ(t) � 0 with λ(t) = 0 for t � T ∗}.
If (λ, S) and (µ, τ) both belong to G(T ∗), then for all h �= 0 sufficiently small, (λ + hµ,

S + τh) also belongs to G(T ∗), we therefore define the corresponding source

Fh(x, t) = (λ(t) + hµ(t))δ(x − (S + hτ))

and, moreover, Taylor expansion with respect to h shows that there exists a point Sh satisfying
|S − Sh| < |τh| such that

Fh(x, t) = F(x, t) + hF̂ (x, t) + h2F̃ (x, t)

where

F̂ (x, t) = µ(t)δ(x − S) − λ(t)τδ′(x − S)

and

F̃ (x, t) = −µ(t)δ′(x − S) + 1
2λ(t)τ 2δ′′(x − Sh).

Hence,

u(x, t;Fh) = u(x, t;F) + hu(x, t; F̂ ) + h2u(x, t; F̃ )

where u(x, t; F̂ ) and u(x, t; F̃ ) are, respectively, solutions of (2.1) and (2.2) with F̂ and F̃ as
source terms and, therefore,

lim
h−→0

B[Fh] − B[F ]

h
= {u(a, t; F̂ ), u(b, t; F̂ )}.

Furthermore, since λ and µ both belong to L2(0, �), one can prove using transposition method
(see [14]) that the function u(., .; F̂ ) belongs to L2((0, �) × (0, T )), and therefore it also
belongs to C([0, T ];H−1(0, �)). We need this regularity result to justify the integration by
parts below.

Now we are able to state our local stability result.

Theorem 2 (local Lipschitz stability). If (µ, τ) �= (0, 0) for 0 < t < T , then

lim
h−→0

B[Fh] − B[F ]

h
�= 0.

Proof. By the same technique used to show identifiability, we will proof that

{u(a, t; F̂ ), u(b, t; F̂ )} �= (0, 0), 0 < t < T .

In the first step, as for the identifiability issue, one can prove that

u(x, T ∗; F̂ ) = 0 for 0 < x < �

and

∂xu(a, t; F̂ ) = ∂xu(b, t; F̂ ) = 0 for 0 < t < T ∗.

In the second step, we consider an infinitely differentiable function ξ ∈ D(0, �) such that
ξ = 1 in a neighbourhood of S.

Then, multiplying the first equation of (2.1) with F̂ as a source term by ξvi and, integrating
with respect x over (0, �), one gets

〈∂tu(x, t; F̂ ), ξ(x) erix〉H−1,H 1
0

= µ(t) eriS + λ(t)τ ri eriS, 0 < t < T ∗,

where 〈., .〉H−1,H 1
0

denotes the duality bracket between H−1 and H 1
0 .
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Since

u(x, T ∗; F̂ ) = u(x, 0; F̂ ) = 0 for 0 < x < �,

and

∂tu(x, t; F̂ ) ∈ L1(0, T ;H−1(0, �)) and ξ erix ∈ H 1
0 (0, �)

one has∫ T ∗

0
〈∂tu(x, t; F̂ ), ξ(x) erix〉H−1,H 1

0
dt =

〈∫ T ∗

0
∂tu(x, t; F̂ ) dt, ξ(x) erix

〉
H−1,H 1

0

= 0.

Thus, we get

µ + λτr1 = 0

µ + λτr2 = 0

where µ = ∫ T ∗

0 µ(t) dt and λ = ∫ T ∗

0 λ(t) dt. Since r1 �= r2 and λ > 0, one has τ = 0 and
µ = 0.

Now using the same techniques to prove identifiability, we arrive at µ = 0. This ends the
proof of theorem 2. �

5. Identification

The method we will present requires the knowledge of u(x, T ∗) for 0 < x < �, ∂xu(a, t) and
∂xu(b, t) for 0 < t < T ∗.

In the first step, we will use the data {d1(t), d2(t), T
∗ < t < T } to determine the function

uT ∗ by using the system

L[u](x, t) = 0, 0 < x < �, T ∗ < t < T

u(0, t) = ∂xu(�, t) = 0 for T ∗ < t < T,

u(x, T ∗) = uT ∗(x) for 0 < x < �,

where the right-hand side of the first equation is null because λ(t) = 0 for T ∗ < t < T . It
is a classical observability problem for which we use a least-squares regularized method to
identify uT ∗ .

In the second step, we use the data {d1(t), 0 < t < T ∗} to determine ∂xu(a, t) by solving
the following direct problem

L[u](x, t) = 0, 0 < x < a, 0 < t < T ∗,
u(0, t) = 0 for 0 < t < T ∗,
u(a, t) = d1(t) for 0 < t < T ∗,
u(x, 0) = 0 for 0 < x < a,

where the right-hand side of the first equation is null because a < S.
Finally, as above, we use the data {d2(t), 0 < t < T ∗} to identify ∂xu(b, t) by solving the

following direct problem

L[u](x, t) = 0, b < x < �, 0 < t < T ∗,
u(b, t) = d2(t) for 0 < t < T ∗,
∂xu(�, t) = 0, for 0 < t < T ∗,
u(x, 0) = 0 for b < x < �,

since S < b.
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5.1. Recovering the location S

We suppose that u(x, T ∗), ∂xu(a, t) and ∂xu(b, t) are completely determined in their respective
domains and consider the system

L[u](x, t) = λ(t)δ(x − S), 0 < x < �, 0 < t < T ∗,
u(0, t) = ∂xu(�, t) = 0 for 0 < t < T ∗,
u(x, 0) = 0 for 0 < x < �.

Multiplying the first equation by vi and integrating with respect x and t over ]0, �[×]0, T ∗[,
by using Green’s formula, one has

λ eriS = −D erib

∫ T ∗

0
∂xu(b, t) dt + D eria

∫ T ∗

0
∂xu(a, t) dt

+
∫ b

0
u(x, T ∗) erix dx, i = 1, 2

which allows us to determine S.

5.2. Recovering the function λ

The problem that we have to solve is the following. Given {d2(t), 0 < t < T }, determine λ

such that

d2(t) =
∫ t

0
λ(ζ )�(b, t − ζ ) dζ, 0 < t < T .

We will present two methods for solving numerically this problem. The first one consists in
replacing the above convolution equation by its approximated version. Set

h = T ∗

M
, tm = mh, m = 1 . . . , M, 0 < t1 < · · · < tk < · · · < tm−1 < tm.

Denote

ym = d2(tk) and λk = λ(tk).

In each interval ]tk, tk+1[ we approximate the integral
∫ tk+1

tk
λ(ζ )�(b, t−ζ ) dζ by the trapezoidal

rule, that is

h

2
(�(b, tm−k1)λ

k+1 + �(b, tm−k)λ
k).

Thus

ym = h

2

m−1∑
k=0

(�(b, tm−k1)λ
k+1 + �(b, tm−k)λ

k) m = 1, . . . , M,

which leads to a linear system

A� = Y. (5.24)

The second method consists in decomposing the function λ on a finite Fourier basis lk

λ(t) =
m∑

k=1

θklk(t).

This method also leads to a linear system

A� = Y (5.25)
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where the coefficients of A are∫ tm

0
lk(ζ )�(b, tm − ζ ) dζ.

6. Numerical results

The numerical results are obtained in the case of a portion of the river of length � = 1000 m
and during a period T = 4 h, with T ∗ = 3 h, R = 1.01 × 10−5 s, V = 0.66 m s−1 and
D = 29 m2 s−1 [17]. The source is located at S = 600 m with the intensity

λ(t) =
∑

1

3αi e−βi (t−τi )
2

where α1 = 1.2, α2 = 0.4, α3 = 0.6, β1 = 1×106, β2 = 5×105, β3 = 1×106, τ1 = 4500 s,
τ2 = 6500 s, τ3 = 9000 s.

The purpose of this numerical work is to identify the location S and intensity λ according
to the method proposed in section 5. We have reduced the domain of study ]0, �[×]0, T [ to
]0, 1[×]0, 1[ and considered the following undimensioned system

L1[u](x, t) = T λ(t)δ(x − S1), 0 < x < 1, 0 < t < 1,

u(0, t) = ∂xu(1, t) = 0, for 0 < t < 1,

u(x, 0) = 0, for 0 < x < 1

with D1 = 0.417, V1 = 9.504, R1 = 0.145, S1 = S
�
, a1 = a

�
, b1 = b

�
, T ∗

1 = T ∗
T

and λ1(t) =
λ(tT ). Here L1[u](x, t) = ∂tu(x, t) − D1∂xxu(x, t) + V1∂xu(x, t) + R1u(x, t).

The numerical results are presented in the initial domain of study ]0, �[×]0, T [.

First step. The unknown function uT ∗ has been determined by using Tikhonov regularization
method with a regularization parameter ε = 0.1; at first by using the measurements d1(t) and
then d2(t) for T ∗ < t < T .

Figure 1 is obtained by using upstream measurements d1(t) for T ∗ < t < T at
a = 300 m. The second with downstream measurements d2(t) for T ∗ < t < T at b =
800 m.

Second step. The location S1 is given by

S1 = 1

r1 − r2
ln

(
c1

c2

)
where

ci = −D1 erib1

∫ T ∗
1

0
∂xu(b1, t) dt + D1 eria1

∫ T ∗
1

0
∂xu(a1, t) dt +

∫ b1

0
[u(x, T ∗

1 ) erix − g(x)] dx.

The normal derivatives ∂xu(a1, t) and ∂xu(b1, t) are approximated by the finite differences
method and the above integrals by the trapezoidal rule. We then obtain S1 = 0.853 and
therefore S = 583.

Last step. In this step, we determine the intensity λ by two different methods by using the
numerical results obtained in both steps above.

Figures 3 and 4 compare the exact solution λ with that obtained by solving the system
(5.24) by using SVD regularization method. In both cases we chose m = 60.

Figures 5 and 6, respectively figures 7 and 8, compare the exact solution λ with
that obtained by solving the system (5.25), by using the least-squares method with SVD
regularization, with m = 10 for 6, 7 and m = 15 for 7, 8.
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Figure 1. Relative error 0.13.
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Figure 2. Relative error 0.09.
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Figure 3. Noise 3%, relative error 0.25.
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Figure 4. Noise 5%, relative error 0.32.
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Figure 7. Noise 3%, relative error 0.35.
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7. Conclusion

The localization for a pollution point source (location and intensity) in a river has been studied
by two pointwise measurements situated one upstream and another downstream with respect
to the source. Identifiability and stability results are established when at least one of the two
points is strategic.

Assuming that the source becomes inactive after some time T ∗, which corresponds
to an accidental pollution stopped at time T ∗, the measurements after T ∗ first permit us
to obtain the knowledge of the state at T ∗. This information is then used to identify the
source by a variational method, without any iterative procedure. Finally, the intensity can be
determined numerically by a deconvolution or a Fourier method. Some numerical results are
presented.
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