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Abstract

Background: In the postgenome era, a prediction of response to treatment could lead to better dose selection for
patients in radiotherapy. To identify a radiosensitive gene signature and elucidate related signaling pathways, four
different microarray experiments were reanalyzed before radiotherapy.

Results: Radiosensitivity profiling data using clonogenic assay and gene expression profiling data from four
published microarray platforms applied to NCI-60 cancer cell panel were used. The survival fraction at 2 Gy
(SF2, range from 0 to 1) was calculated as a measure of radiosensitivity and a linear regression model was applied
to identify genes or a gene set with a correlation between expression and radiosensitivity (SF2). Radiosensitivity
signature genes were identified using significant analysis of microarrays (SAM) and gene set analysis was performed
using a global test using linear regression model. Using the radiation-related signaling pathway and identified
genes, a genetic network was generated. According to SAM, 31 genes were identified as common to all the
microarray platforms and therefore a common radiosensitivity signature. In gene set analysis, functions in the cell
cycle, DNA replication, and cell junction, including adherence and gap junctions were related to radiosensitivity.
The integrin, VEGF, MAPK, p53, JAK-STAT and Wnt signaling pathways were overrepresented in radiosensitivity.
Significant genes including ACTN1, CCND1, HCLS1, ITGB5, PFN2, PTPRC, RAB13, and WAS, which are adhesion-related
molecules that were identified by both SAM and gene set analysis, and showed interaction in the genetic network
with the integrin signaling pathway.

Conclusions: Integration of four different microarray experiments and gene selection using gene set analysis
discovered possible target genes and pathways relevant to radiosensitivity. Our results suggested that the identified
genes are candidates for radiosensitivity biomarkers and that integrin signaling via adhesion molecules could be a
target for radiosensitization.
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Figure 1 Study scheme of analysis of data from four microarray
experiments.
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Background
Predicting tumor response to radiotherapy is one of the
major issues in cancer treatment. Predicting radiosensi-
tivity is important for improving clinical outcome and
for personalized medicine decisions of the treatment
needed, doses, and fractionation schedules [1]. Under-
standing the mechanism of radiosensitiviy is also a major
issue in identifying effective biomarkers and potential
drug targets of radiosensitivity [2].
Assays evaluating radiosensitivity have been developed

and tested over the last 25 years [3]. Recently, compre-
hensive gene expression analysis with high-throughput
technology has been used to identify radiosensitivity
classifiers as well as to elucidate the radiosensitivity
mechanism in many cancer types including colorectal,
cervical, breast, head and neck cancer [4-7]. As treat-
ment response is related to the complex genetic biology
of the cancer and host, biological interaction and factors
that determine tumor response through the simultan-
eous genetic analysis of thousands of genes should be
considered in predicting treatment outcome. The cancer
cell line panel of the National Cancer Institute (NCI) has
been widely used for drug screening based on relevant
gene expression [8]. Although promising, these studies
are confined to a single platform microarray and further
validation and a larger dataset are needed. Moreover,
individually identifying every gene with a statistically sig-
nificant response is not sufficient as a biological explan-
ation. For this reason, gene set analysis is necessary,
along with defining the biological processes or pathways
in expression analysis.
In this study, to identify a common radiosensitivity

gene signature and relevant biological processes from a
large amount of data from multiple platforms, we ana-
lyzed four types of transcript microarray data from
radiosensitivity profiling of the NCI-60 cell line panel.
Differentially expressed genes, depending on the radio-
sensitivity index (survival fraction at 2 Gy of radiation,
SF2) were identified using a linear regression model. We
hypothesized their roles in radiosensitivity using gene set
analysis and pathway analysis.

Results
Selection of a common radiosensitivity signature from
four microarray platforms
The study design is in Figure 1. Four published micro-
array experiments were reanalyzed to identify genes
whose expression correlated with radiosensitivity in NCI-
60 cancer cell lines. The SF2 radiosensitivity index was
determined from previously published literature [9] and
considered as a continuous variable ranging from 0 to 1.
For gene selection, significant analysis of microarrays
(SAM) was applied at the false discovery rate (FDR) of
≤0.10. This resulted in 31 genes commonly identified
regardless of platforms and 179 selected from more than
three platforms (Figure 2A and Additional file 1). Differ-
ences in gene expression between definitely radiosensi-
tive and radioresistant cells by principal component
analysis (PCA) showed that approximately the top 10%
of radiosensitive (SF2 <0.2) cell lines were distinguished
from the bottom 10% of radioresistant lines (SF2 >0.8)
using the 31 signature genes (Figure 2B). Of these genes,
21 genes were downregulated and 10 were upregulated
in radiosensitive cell lines (Table 1). Reduced expression
in a radiosensitive cells meant that decreased gene ex-
pression was observed in radiosensitive cells relative to
radioresistant cells. Likewise, upregulation meant
increased gene expression in radiosensitive cells relative
to radioresistant cells. This was determined as the slope
of the correlation coefficient between SF2 and gene ex-
pression. The scatter plots showing relationships be-
tween SF2 and gene expression of the 31 radiosensitivity
signature genes in the four microarrays are in Additional
files 2, 3, 4, and 5.

Integrative functional gene set analysis using a global
test
To explain the biological processes and signaling path-
ways of radiosensitivity, a gene set functional study using
a global test [10] was applied. The selected gene set was
defined from the Kyoto encyclopedia of genes and gen-
omes (KEGG) pathways. The adjusted p-value corrected
for multiple comparisons using the Benjamini and
Hochberg method [11] is in Table 2. Several radiation-
related functions were enriched including the cell cycle,
DNA replication, cell junction, and cell adhesion
(Table 2A). In addition, several molecular pathways were
overrepresented including the integrin, vascular endo-
thelial growth factor (VEGF), mitogen-activated protein



Figure 2 Identification of 31 radiosensitivity signature genes in
NCI-60 cell lines. A. Venn diagram showing selection of 31
common radiosensitivity signature genes and 179 genes that were
selected in more than three platforms from four microarray
experiments. B. Principal component analysis with gene expression
profile using 31 radiosensitivity signature genes. Each cell line is
represented as a radiosensitive group (SF2 <0.2; black), an
intermediate group (SF2 between 0.2 and 0.8; red), and a
radioresistant group (SF2 >0.8; blue).
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kinase (MAPK), p53, and Wnt signaling pathways
(Table 2B).

Adhesion-related molecules as major components in a
radiosensitivty signature
To integrate the top-down and bottom-up approach, 31
radiosensitivity signature genes found through SAM
analysis were compared with the gene sets found in the
global test. Eight genes were functionally annotated in
the global test, and their major function was examined
according to KEGG pathways (Table 3). The common
function was related to cell junctions and adhesion, sug-
gesting that adhesion-related molecules might have a
major role in the mechanism of radiosensitivity.
Genetic network interaction with adhesion-related
molecules in the integrin signaling pathway
To generate a genetic network for radiosensitivity, we
performed ontology analysis using 179 genes that were
selected from more than three platforms using SAM ana-
lysis. Statistical ranking with canonical pathways was per-
formed using ingenuity pathway analysis (IPA)
(Figure 3A). Overrepresented pathways were adhesion-
related pathways including the integrin, actin-cytoskel-
eton, and focal adhesion kinase (FAK)-signaling pathway.
In addition, the cell cycle and p53 signaling pathways
important to radiosensitivity were also identified. To
identify the influence of each gene on the integrin sig-
naling pathway, which was the most overrepresented
pathway, a gene plot was produced using the gene set
determine from the global test (Figure 3B). Among the
31 signature genes, several were enriched, including
ACTN1, CAPNS1, ITGB5, RALB, which were downre-
gulated, and WAS, which was upregulated in radiosen-
sitive cell lines. Genetic network interaction showed
that adhesion-related molecules in Table 3 were
involved in the integrin-signaling pathway, and that
interaction existed with other signaling pathways such
as the PI3K, Wnt, and MAPK signaling pathways,
which were enriched, as shown in Table 2B (Figure 3C,
Additional file 6).

Discussion
The discovery of potential biomarkers and the elucida-
tion of the mechanisms of radiosensitivity are import-
ant to developing radiosensitizers as well for predicting
tumor response in radiation oncology [2,12]. We rea-
nalyzed four published microarray studies to identify a
common radiosensitivity signature regardless of plat-
form. This strengthened the reliability of our analysis.
Using SAM, we examined each gene individually to
show that the correlation with SF2 was significant.
Next, we performed a gene set analysis using a global
test based on a linear regression model with a well-
defined gene set from KEGG pathways. A combination
of both analyses found that adhesion-related molecules
and several cancer-related molecular pathways were
significantly enriched for radiosensitivity and these
molecules were linked via the integrin signaling path-
way. Using both a top-down and bottom-up approach
increases the ability to determine genes and signaling
pathways that are biologically explainable and statisti-
cally acceptable.
Several studies have reported possible radiosensitivity

predictive genes [4,7,13,14]. However, no gene is com-
mon among the previous reports. Therefore, we used
four microarrays to find genes commonly identified as
significant in radiosensitivity. We identified 31 common
genes as well as 179 genes that were selected in more



Table 1 List of 31 genes selected as a radiosensitivity signature from four microarray platforms

Symbol Description Location Expression in
radiosensitive cell

ACTN1 actinin, alpha 1 Cytoplasm Down (0.42)

ANXA2 annexin A2 Plasma Membrane Down (0.36)

ANXA5 annexin A5 Plasma Membrane Down (0.42)

ARHGDIB Rho GDP dissociation inhibitor (GDI) beta Cytoplasm Up (−0.49)

CAPNS1 calpain, small subunit 1 Cytoplasm Down (0.48)

CBR1 carbonyl reductase 1 Cytoplasm Down (0.41)

CCND1 cyclin D1 Nucleus Down (0.54)

CD63 CD63 molecule Plasma Membrane Down (0.51)

CORO1A coronin, actin binding protein, 1A Cytoplasm Up (−0.46)

CXCR4 chemokine (C-X-C motif) receptor 4 Plasma Membrane Up (−0.46)

DAG1 dystroglycan 1 (dystrophin-associated glycoprotein 1) Plasma Membrane Down (0.60)

EMP2 epithelial membrane protein 2 Plasma Membrane Down (0.41)

HCLS1 hematopoietic cell-specific Lyn substrate 1 Nucleus Up (−0.58)

HTRA1 HtrA serine peptidase 1 Extracellular Space Down (0.52)

ITGB5 integrin, beta 5 Plasma Membrane Down (0.47)

LAPTM5 lysosomal protein transmembrane 5 Plasma Membrane Up (−0.50)

LRMP lymphoid-restricted membrane protein Cytoplasm Up (−0.49)

MYB v-myb myeloblastosis viral oncogene homolog (avian) Nucleus Up (−0.59)

PFN2 profilin 2 Cytoplasm Down (0.61)

PIR pirin (iron-binding nuclear protein) Nucleus Down (0.43)

PKM2 pyruvate kinase, muscle Cytoplasm Down (0.44)

PTMS parathymosin Nucleus Down (0.48)

PTPRC protein tyrosine phosphatase, receptor type, C Plasma Membrane Up (−0.55)

PTPRCAP protein tyrosine phosphatase, receptor type, C-associated protein Plasma Membrane Up (−0.49)

PYGB phosphorylase, glycogen; brain unknown Down (0.35)

RAB13 RAB13, member RAS oncogene family Plasma Membrane Down (0.43)

RALB v-ral simian leukemia viral oncogene homolog B (ras related; GTP binding protein)

Cytoplasm Down (0.47)

SCRN1 secernin 1 Cytoplasm Down (0.40)

SQSTM1 sequestosome 1 Cytoplasm Down (0.48)

TWF1 twinfilin, actin-binding protein, homolog 1 (Drosophila) Cytoplasm Down (0.43)

WAS Wiskott-Aldrich syndrome (eczema-thrombocytopenia) Cytoplasm Up (−0.60)

“Down” refers to decreased expression observed in radiosensitive cells relative to radioresistant cells, determined as the slope of the correlation coefficient. “Up”
refers to increased expression in radiosensitive cells.
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than three studies (Table 1 and Additional file 1). Of
these 179 genes, 8 were previously reported [7,9,15,16]
(Additional file 7). Comparing the 179 genes with previ-
ous reports, the cell cycle genes CCNA2 and CDK6 in
esophageal cancer [16], and the ras-related gene RAC2
in rectal cancer [5] were common. Other genes that
were reported previously could also be possible drug tar-
gets. The 31 signature genes had cellular functions in-
cluding cell cycle and DNA repair, cell junction, and cell
adhesion. Cyclin D1 (CCND1) is well known as a DNA
repair gene and might sensitize human cancers to
radiation by limiting DNA repair [15]. In breast cancer,
overexpression of cyclin D induces radiation resistance
by inhibiting apoptosiss [17]. In our analysis, CCND1
was downregulated in radiosensitive cell lines, consistent
with this explanation. Annexins including ANXA2 and
ANXA5 are family of Ca2+-regulated membrane-binding
proteins that interact with the cellular membrane.
ANXA5, in particular, is related to induction of apoptosis
and is used as an apoptosis marker [18]. ACTN1, WAS,
HCLS1, RAB13, and PFN2 are involved with cellular
junctions and the actin cytoskeleton, and PTPRC is



Table 2 Gene set analysis using Kyoto encyclopedia of genes and genomes (KEGG) pathways

A

Function KEGG pathway cDNA HU-6800 U133 U95

Cell cycle & DNA replication

Cell cycle 0.019 0.019 < 0.001 < 0.001

DNA replication 0.001 0.125 0.003 0.001

Base excision repair 0.003 0.003 0.002 0.003

Cell junction

Adherens junction < 0.001 < 0.001 < 0.001 0.001

Tight junction 0.004 0.003 0.002 0.006

Gap junction 0.011 0.007 0.015 0.014

Cell adhesion molecules

Focal adhesion 0.016 0.315 0.014 0.015

Cell adhesion molecules 0.007 0.007 0.017 0.005

Regulation of actin cytoskeleton 0.013 0.013 0.001 < 0.001

B cDNA HU-6800 U133 U95

Molecular pathway

Integrin signaling pathway < 0.001 0.004 0.004 0.001

VEGF signaling pathway 0.003 < 0.001 < 0.001 < 0.001

Phosphatidylinositol signaling 0.009 0.009 0.006 0.003

Wnt signaling pathway 0.004 0.524 < 0.001 < 0.001

Jak-STAT signaling pathway 0.034 0.034 < 0.001 0.003

MAPK signaling pathway 0.017 0.017 0.002 0.003

ErbB signaling pathway 0.014 0.005 0.021 0.014

p53 signaling pathway 0.035 0.034 0.016 0.006

Adjusted p-value using using Benjamini and Hochberg method as represented in four microarray platforms (significance cutoff is adjusted p-value < 0.01).
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known for interacting with cell adhesion molecules. Cel-
lular adhesion-mediated radioresistance is proposed to
generate anti-apoptotic signals when integrin-mediated
adhesion interacts with the extracellular matrix (ECM)
[19,20].
Integrins are adhesion molecules localized in the plasma

membrane, and are heterodimeric glycoprotein receptors
Table 3 Eight genes encoding adhesion molecules in the radi
pathways

Symbol Entrez Gene Name

CCND1 cyclin D1

ACTN1 actinin, alpha 1

WAS Wiskott-Aldrich syndrome

HCLS1 hematopoietic cell-specific Lyn substrate 1

RAB13 RAB13, member RAS oncogene family

PTPRC protein tyrosine phosphatase, receptor type, C

ITGB5 integrin, beta 5

PFN2 profilin 2
of α- and β-subunits. They directly bind to the ECM and
contribute to proliferation, survival, and invasion in cancer
[21]. In radiation biology, several studies report integrins
as prognostic or therapeutic markers in several cancer
types including breast, head and neck, prostate, lung, and
colon cancer [22,23]. In addition to integrin β1, which was
included in our identified 179 genes and the most studied
osensitivity signature and related function in KEGG

Related function in KEGG pathways

Cell Cycle, Focal adhesion, Jak-STAT signaling pathway,
p53 pathway, Wnt signaling pathway

Focal adhesion, Tight junction, Adherens junction,
Regulation of actin cytoskeleton

Regulation of actin cytoskeleton, Adherens junction,

Tight junction

Tight junction

Cell adhesion molecules (CAMs)

Focal adhesion, Regulation of actin cytoskeleton

Regulation of actin cytoskeleton



Figure 3 (See legend on next page.)
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Figure 3 Integrin signaling pathway and its interaction as a radiosensitive target. A. Statistical ranking of pathways with the commonly
selected 179 genes using SAM analysis. The x-axis displays the -log of the p-value calculated by Fisher's exact test, right-tailed. B. Gene plot
showing the influence of individual genes of the integrin signaling pathway produced by a global test. The influence on the y-axis is represented
as the p-value, the extent of correlation between SF2 (radiosensitivity) and gene expression in a gene set. A lower p-value means that the gene is
well correlated between SF2 and the gene expression value. C. Integrin signaling pathway interaction with identified adhesion molecules from
the 31 radiosensitivity signature. (References from Ingenuity knowledge base, Additional file 6).
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relative to radiosensitivity, our study identified integrin β5
(ITGB5) as a radiosensitive gene. αvβ5 receptors are con-
sidered to be potential therapeutic targets because of their
anti-angiogenic and anti-metastatic effects, and cilengiti-
dem, which is known as αvβ5 antagonist, has been studied
in anti-cancer therapy [24]. Likewise, ITGB5 could be a
potential biomarker as a prognostic marker or radiosensi-
tizer in radiotherapy. Using systems biology, we showed
that major cancer-related signaling pathways were
enriched related to radiosensitivity (Table 2B) and that the
integrin signaling pathway interacts with other pathways,
including MAPK, Wnt, and PI3K signaling, as shown in
Figure 3B. These findings suggest that integrin signaling
with identified adhesion molecules could be central in
radiosensitivity and one of the common radiosensitivity
mechanisms, regardless of cell type. Our work could be
the basis for future biological validation targeting integrin
signaling pathways in radiosensitization.
Although we identified a common radiosensitivity sig-

nature regardless of cell type, radiosensitive cells (SF
<0.2) included cells of lymphoid origin and could have
introduced bias in analysis. To exclude the effect of
lymphoid origin, we adjusted correlation coefficients and
p-values between radiosensitive cells (SF2 <0.2) and
radioresistant cells (SF2 ≥0.2) using mean-centering and
a standardization method [25] (Additional file 8). We
observed that correlation coefficients of the 31 radiosen-
sitivity signature genes were similar before and after ad-
justment for the four microarrays. Therefore, we used
the microarray data without artificial adjustment for cell
type, which could change the true values of the experi-
mental data.
There are two limitations to this study. First, we used

NCI-60 cancer cell lines to identify common radiosensi-
tivity signatures regardless of cell type. Defining com-
mon radiosensitive mechanisms not affected by cell type
is helpful, but the actual cellular response in biological
validation might differ among cell types. However, we
adjusted for this effect using statistical methods.
Adjusted correlation coefficients were similar to correl-
ation coefficients before adjustment. Second, although
we identified a gene signature using four microarray
array platforms, using not only mRNA expression, but
also comparing DNA sequences or protein expres-
sion would give a comprehensive analysis of the radiosen-
sitivity mechanism.
Conclusions
A common radiosensitivity gene signature was identi-
fied that involved 31 genes. Their major functions were
in the cell cycle, cell junctions, and cell adhesion.
Adhesion-related molecules were enriched in the integ-
rin signaling pathway and could be targeted for radio-
sensitization. This is the first study to use multiple
microarray platforms to study radiosensitivity, and
might provide insights in elucidating novel therapeutic
targets and common radiosensitivity mechanisms re-
gardless of cell type.
Methods
Radiosensitivity profiling and mRNA expression profiling
Radiosensitivity profiling was defined as the survival frac-
tion at 2 Gy radiation (SF2) [9]. Radiosensitivity signature
genes were identified from previously published SF2 data
on radiosensitivity profiling and gene expression profiling
[8,9,26,27] of the NCI-60 cell line panel. Briefly, the cells
had been plated and radiated with 2 Gy of x-rays. After
fixation, colonies of over 50 cells were calculated. SF2
was determined by the formula: (SF2 = number of col-
onies/total numbers of cells plated × plating efficiency).
SF2 ranged from 0 to 1, with a lower SF2 representing
more radiosensitivity. Gene expression profiling data
using the NCI-60 cancer cell line panel was from cDNA
and two-color arrays [8], and HU-6800 [26], HG-U133
[27], and HG-U95 Affymetrix microarrays [27], and
obtained from Cellminer (http://discover.nci.nih.gov/
cellminer) and http://www.broadinstitute.org/mpr/NCI60/
NCI60.html. The gene expression data were acquired
from the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (GPL1290, GSE5720,
and GSE5949). Gene annotations were obtained from
the SOURCE database (http://smd.stanford.edu/cgi-bin/
source/sourceSearch. After gene annotation, we matched
gene symbols among the four microarray platforms.
For normalization, robust multiarray analysis (RMA)
was used for normalizing Affymetrix gene chips and the
linear models for microarray data (LIMMA) package
was used with the R program for normalizing the two-
color array [28]. Missing values were imputed using the
K-nearest neighbor method. All acquired microarray
data were from experiments using cells in the unirra-
diated status.

http://discover.nci.nih.gov/cellminer
http://discover.nci.nih.gov/cellminer
http://www.broadinstitute.org/mpr/NCI60/NCI60.html
http://www.broadinstitute.org/mpr/NCI60/NCI60.html
http://smd.stanford.edu/cgi-bin/source/sourceSearch
http://smd.stanford.edu/cgi-bin/source/sourceSearch
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Identification of a common radiosensitive gene signature
A radiosensitive signature gene was defined as a gene
whose mRNA expression correlated with SF2. SF2
was defined as a continuous variable. Gene selection
was performed using SAM [29]. Parameters for SAM
analysis were test statistic, T-statistic, number of per-
mutations = 1000, false discovery rate (FDR) = 0.1.
Correlation between mRNA expression and SF2 was
calculated using a quantitative method calculating
the linear regression coefficient between gene expres-
sion and radiosensitivity from the linear regression
model, and genes were identified under a false dis-
covery rate of 10% for all four microarray platforms.
We performed SAM for each microarray platform. A
common radiosensitive gene signature were defined
as genes commonly identified in all four microarray
platforms. A Venn diagram was plotted using Venny
(http://bioinfogp.cnb.csic.es/tools/venny/index.html).
Principal components analysis was performed for
data reduction, simplifying datasets to three dimen-
sions for plotting purposes. Principal component ana-
lysis was conducted using R statistical software
(www.r-project.org), using “princomp()” function and
default options.

Gene set enrichment analysis using a global test
To find a pathway of genes correlated with SF2, gene set
analysis was performed using a global test [10] with a
defined gene set from the Kyoto encyclopedia of genes
and genomes (KEGG) pathways. This test was based on
the generalized linear model and tested the null hypoth-
esis in which all regression coefficients between SF2 and
gene expression were zero. This was a score test based
on random-effect modeling of parameters corresponding
to the coefficients of the individual genes in a pathway.
It was used to determine whether the global expression
pattern of a gene set was significantly related to SF2. If
the global test was significant, the genes in the gene set
were more associated with SF2 than expected under a
null hypothesis (not associated with SF2). These associa-
tions could involve both upregulation (positive) and
downregulation (negative). Typically, a significant gene
set is a combination of positively and negatively related
genes. P-value was corrected for multiple comparisons
using the Benjamini and Hochberg method [11]. An
adjusted p-value under 0.01 was considered as signifi-
cant. Analysis was done using R statistical software. We
used function “gt” in the R package “globaltest”.

Canonical pathway analysis, gene plot and genetic
network representation
In addition to gene set analysis, canonical pathway ana-
lysis was performed using 179 genes identified in more
than three microarray platforms using SAM analysis.
Canonical pathway analysis identified the pathways from
the Ingenuity Pathways Analysis library of canonical
pathways that were most significant to the 179 genes. In
this test, the p-value was measured to decide the likeli-
hood that the association between 179 genes and a given
pathway was due to random chance. The smaller the p-
value, the lower the likelihood of random association and
the more significant the association. The significance of
association between the 179 genes and the canonical
pathways was measured in two ways: 1) the ratio of the
number of molecules from the data set that mapped to
the pathway divided by the total number of molecules
that mapped to the canonical pathway; 2) Fisher’s exact
test to calculate a p-value determining the probability
that the association between the genes in the data set
and the canonical pathway was explained by chance
alone. The Benjamini-Hochberg method of multiple test-
ing was used for correction [11].
A gene plot exploits the fact that a global test statis-

tic for a set of alternative covariates can be written as
the weighted sum of the global test statistics for each
single contributing covariate. Displaying these compo-
nent global test results in a bar plot that gives insight
into the subset of covariates that is most responsible
for the significant test result. The plot showed the p-
values of the component tests on a reversed log scale.
The influence on the y-axis means the extent of cor-
relation between SF2 and gene expression in a gene
set. A lower p-value meant that the gene was well cor-
related between SF2 and the gene expression value.
In the genetic network, molecules were represented as

nodes, and the biological relationship between two
nodes was represented as an edge. All edges were sup-
ported by at least one reference from the literature, a
textbook, or canonical information stored in the Ingenu-
ity Pathways Knowledge Base. Data were analyzed using
Ingenuity Pathways Analysis (Ingenuity Systems, www.
ingenuity.com).
Additional files

Additional file 1: List of 179 genes selected in more than three
platforms. “Down” refers to decreased expression observed in
radiosensitive cells relative to radioresistant cells, determined as the slope
of the correlation coefficient. False discovery rate was calculated from
SAM analysis.

Additional file 2: Scatter plots of the 31 radiosensitivity signature
genes between gene expression and radiosensitivity (SF2) in cDNA
microarray.

Additional file 3: Scatter plots of the 31 radiosensitivity signature
genes between gene expression and radiosensitivity (SF2) in HU-
6800 microarray.

Additional file 4: Scatter plots of the 31 radiosensitivity signature
genes between gene expression and radiosensitivity (SF2) in Affy
U133 microarray.

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://www.r-project.org
http://www.ingenuity.com
http://www.ingenuity.com
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S4.pdf
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Additional file 5: Scatter plots of the 31 radiosensitivity signature
between gene expression and radiosensitivity (SF2) in Affy U95
microarray.

Additional file 6: Interaction between identified radiosensitivity
genes and target genes for the integrin signaling pathway from the
Ingenuity knowledge base.

Additional file 7: Comparison with published radiosensitivity
signatures. Previously reported genes in our gene lists are
highlighted in yellow.

Additional file 8: Adjusted correlation coefficient and p-value of 31
radiosensitivity signature genes to remove the effect of lymphoid
origin using mean-centering and standardization method in four
microarrays.
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HSK and SCK performed analysis, interpreted the results and drafted the
manuscript. SJK and CHP participated in collection and preprocessing of
microarray data. JBA and YBK helped to build the research scheme and data
analysis method. HCJ and HCC participated in intellectual discussions. SYR
planned this study and supervised the research team. All authors read and
approved the final manuscript.

Acknowledgements
This research was supported by the Public Welfare & Safety research
program through the National Research Foundation of Korea (NRF), funded
by the Ministry of Education, Science and Technology (2010–0020841) and
by the Korean Government (MOEHRD) (KRF-2007-612-C00040), and by the
department of internal medicine research program from the Yonsei
University College of Medicine.

Author details
1Cancer Metastasis Research Center, Yonsei University College of Medicine,
Seoul, Korea. 2Department of Internal Medicine, Yonsei University College of
Medicine, Seoul, Korea. 3Korean Bioinformation Center, Korea Research
Institute of Bioscience and Biotechnology, Daejeon, Korea. 4Department of
Radiation Oncology, Yonsei Cancer Center, Seoul, Korea. 5Brain Korea 21
Project for Medical Science, Yonsei University College of Medicine, Seoul,
Korea.

Received: 21 September 2011 Accepted: 18 July 2012
Published: 30 July 2012

References
1. Hirst DG, Robson T: Molecular biology: the key to personalised treatment

in radiation oncology. Br J Radiol 2010, 83(993):723–728.
2. Jeggo P, Lavin MF: Cellular radiosensitivity: how much better do we

understand it? Int J Radiat Biol 2009, 85(12):1061–1081.
3. Begg AC: Predicting response to radiotherapy: evolutions and

revolutions. Int J Radiat Biol 2009, 85(10):825–836.
4. Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, McCarthy S, Cantor AB,

Scuto A, Li C, Zhang S, et al: Prediction of radiation sensitivity using a
gene expression classifier. Cancer Res 2005, 65(16):7169–7176.

5. Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J,
Tanaka T, Yamamoto Y, Shirane M, Muto T, et al: Prediction of sensitivity of
rectal cancer cells in response to preoperative radiotherapy by DNA
microarray analysis of gene expression profiles. Cancer Res 2006,
66(7):3370–3374.

6. Harima Y, Ikeda K, Utsunomiya K, Shiga T, Komemushi A, Kojima H, Nomura
M, Kamata M, Sawada S: Identification of genes associated with
progression and metastasis of advanced cervical cancers after
radiotherapy by cDNA microarray analysis. Int J Radiat Oncol Biol Phys
2009, 75(4):1232–1239.
7. Ogawa K, Murayama S, Mori M: Predicting the tumor response to
radiotherapy using microarray analysis (Review). Oncol Rep 2007,
18(5):1243–1248.

8. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS,
Van de Rijn M, Waltham M, et al: Systematic variation in gene expression
patterns in human cancer cell lines. Nat Genet 2000, 24(3):227–235.

9. Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, Reimers M,
Chen Y, Scudiero DA, Weinstein JN, et al: Integrating global gene
expression and radiation survival parameters across the 60 cell lines of
the National Cancer Institute Anticancer Drug Screen. Cancer Res 2008,
68(2):415–424.

10. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global test
for groups of genes: testing association with a clinical outcome.
Bioinformatics 2004, 20(1):93–99.

11. Yoav Benjamini YH: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Statist Soc B 1995,
57(1):289–300.

12. Kim IA, Kim JH, Shin JH, Kim IH, Kim JS, Wu HG, Chie EK, Kim YH, Kim BK,
Hong S, et al: A histone deacetylase inhibitor, trichostatin A, enhances
radiosensitivity by abrogating G2/M arrest in human carcinoma cells.
Cancer Res Treat 2005, 37(2):122–128.

13. Spitzner M, Emons G, Kramer F, Gaedcke J, Rave-Frank M, Scharf JG, Burfeind
P, Becker H, Beissbarth T, Ghadimi BM, et al: A gene expression signature
for chemoradiosensitivity of colorectal cancer cells. Int J Radiat Oncol Biol
Phys 2010, 78(4):1184–1192.

14. Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Torres-Roca JF:
Systems biology modeling of the radiation sensitivity network: a
biomarker discovery platform. Int J Radiat Oncol Biol Phys 2009,
75(2):497–505.

15. Jirawatnotai S, Hu Y, Michowski W, Elias JE, Becks L, Bienvenu F,
Zagozdzon A, Goswami T, Wang YE, Clark AB, et al: A function for
cyclin D1 in DNA repair uncovered by protein interactome analyses
in human cancers. Nature 2011, 474(7350):230–234.

16. Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y, Hagiwara A,
Mitsufuji S, Okazaki Y, Hayashizaki Y, et al: Differential gene
expression profiles of radioresistant oesophageal cancer cell lines
established by continuous fractionated irradiation. Br J Cancer 2004,
91(8):1543–1550.

17. Xia F, Powell SN: The molecular basis of radiosensitivity and
chemosensitivity in the treatment of breast cancer. Semin Radiat Oncol
2002, 12(4):296–304.

18. Rescher U, Gerke V: Annexins–unique membrane binding proteins with
diverse functions. J Cell Sci 2004, 117(Pt 13):2631–2639.

19. Sandfort V, Koch U, Cordes N: Cell adhesion-mediated radioresistance
revisited. Int J Radiat Biol 2007, 83(11–12):727–732.

20. Makrilia N, Kollias A, Manolopoulos L, Syrigos K: Cell adhesion molecules:
role and clinical significance in cancer. Cancer Invest 2009,
27(10):1023–1037.

21. Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications
and therapeutic opportunities. Nat Rev Cancer 2010, 10(1):9–22.

22. Nam JM, Chung Y, Hsu HC, Park CC: beta1 integrin targeting to enhance
radiation therapy. Int J Radiat Biol 2009, 85(11):923–928.

23. Park CC, Zhang HJ, Yao ES, Park CJ, Bissell MJ: Beta1 integrin inhibition
dramatically enhances radiotherapy efficacy in human breast cancer
xenografts. Cancer Res 2008, 68(11):4398–4405.

24. Vocca I, Franco P, Alfano D, Votta G, Carriero MV, Estrada Y, Caputi M, Netti
PA, Ossowski L, Stoppelli MP: Inhibition of migration and invasion of
carcinoma cells by urokinase-derived antagonists of alphavbeta5
integrin activation. Int J Cancer 2009, 124(2):316–325.

25. Luo J, Schumacher M, Scherer A, Sanoudou D, Megherbi D, Davison T, Shi T,
Tong W, Shi L, Hong H, et al: A comparison of batch effect removal
methods for enhancement of prediction performance using MAQC-II
microarray gene expression data. Pharmacogenomics J 2010,
10(4):278–291.

26. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U,
Lee JK, Reinhold WO, Weinstein JN, et al: Chemosensitivity prediction by
transcriptional profiling. Proc Natl Acad Sci U S A 2001, 98(19):10787–10792.

27. Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK,
Reimers MA, Scherf U, Kahn A, Dolginow D, et al: Transcript and protein

http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S6.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S7.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-348-S8.xls


Kim et al. BMC Genomics 2012, 13:348 Page 10 of 10
http://www.biomedcentral.com/1471-2164/13/348
expression profiles of the NCI-60 cancer cell panel: an integromic
microarray study. Mol Cancer Ther 2007, 6(3):820–832.

28. Smyth GK: Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol
2004, 3:Article3.

29. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001,
98(9):5116–5121.

doi:10.1186/1471-2164-13-348
Cite this article as: Kim et al.: Identification of a radiosensitivity
signature using integrative metaanalysis of published microarray data
for NCI-60 cancer cells. BMC Genomics 2012 13:348.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Selection of a common radiosensitivity signature from four microarray platforms
	Integrative functional gene set analysis using a global test

	link_Fig1
	Adhesion-related molecules as major components in a radiosensitivty signature
	Genetic network interaction with &b_k;adhesion-&e_k;&b_k;related&e_k; molecules in the integrin signaling pathway

	Discussion
	link_Fig2
	link_Tab1
	link_Tab3
	link_Tab2
	Conclusions
	Methods
	Radiosensitivity profiling and mRNA expression profiling

	link_Fig3
	Identification of a common radiosensitive gene signature
	Gene set enrichment analysis using a global test
	Canonical pathway analysis, gene plot and genetic network representation

	Additional files
	Competing interests
	Authors´ contributions
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29

