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Identification of advanced spin-driven thermoelectric materials

via interpretable machine learning
Yuma Iwasaki1,2*, Ryohto Sawada1, Valentin Stanev3,4,5, Masahiko Ishida1, Akihiro Kirihara1, Yasutomo Omori1, Hiroko Someya1,

Ichiro Takeuchi3, Eiji Saitoh6,7,8 and Shinichi Yorozu9

Machine learning is becoming a valuable tool for scientific discovery. Particularly attractive is the application of machine learning

methods to the field of materials development, which enables innovations by discovering new and better functional materials. To

apply machine learning to actual materials development, close collaboration between scientists and machine learning tools is

necessary. However, such collaboration has been so far impeded by the black box nature of many machine learning algorithms. It is

often difficult for scientists to interpret the data-driven models from the viewpoint of material science and physics. Here, we

demonstrate the development of spin-driven thermoelectric materials with anomalous Nernst effect by using an interpretable

machine learning method called factorized asymptotic Bayesian inference hierarchical mixture of experts (FAB/HMEs). Based on

prior knowledge of material science and physics, we were able to extract from the interpretable machine learning some surprising

correlations and new knowledge about spin-driven thermoelectric materials. Guided by this, we carried out an actual material

synthesis that led to the identification of a novel spin-driven thermoelectric material. This material shows the largest thermopower

to date.
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INTRODUCTION

Recent progresses of materials science technologies enable the
collection of large volumes of materials data in a short time1–4.
Accordingly, the development of tools to process such big data
sets is becoming necessary. Machine learning technologies are
extremely promising, not only due to their ability to rapidly
analyze data5–8, but also for their potential to discover novel
knowledge, not rooted in conventional theories.
To apply machine learning for actual materials development,

cooperation between scientists and machine learning tools is
necessary. Materials scientists often try to understand the
rationale behind the data-driven models in order to obtain some
actionable information to guide materials development. However,
such attempts have been impeded so far by the low interpret-
ability of many machine learning methods. For example, it is
difficult for a human to understand the models constructed by a
deep neural network9, expressed as the connections between
large numbers of perceptrons (neurons). Therefore, the notion of
interpretable machine learning (explainable or transparent
machine learning), which has not only high predictive ability but
also high interpretability, has recently seen a resurgence10,11,
especially in the field of scientific discovery.
Here, we show an actual material development by using state-

of-the-art interpretable machine learning called factorized asymp-
totic Bayesian inference hierarchical mixture of experts (FAB/
HMEs)12,13. The development demonstrated the synergy between
the FAB/HMEs and the materials scientists. In the field of material
development, the machine learning algorithm must meet the
following three requirements: “sparse modeling”; “prediction
accuracy”; and “interpretability”, as shown in Fig. 1. The seizes of

materials-related data sets are often quite small compared with
the data sets in other scientific fields (e.g., astrophysics or particle
physics), due to the time necessary to carry out the experiments
and calculations/simulations. This results in a significant data
sparsity in a material space; therefore, the sparse modeling
approach, which automatically selects only the important
descriptors (attributes) and reduces the dimension of the search
space, is extremely useful. One of the most popular sparse
modeling methods is LASSO, which is a linear model with L1
regularization14. However, such linear models do not always have
high prediction accuracy, because material data often includes
non-linear relationships (for example, due to proximity to phase
transitions). To achieve high prediction accuracy, non-linear
models, such as support vector machine (SVM), deep neural
network (NN), or random forest (RF), are often required14.
However, such non-linear models commonly lack interpretability.
Although they can tell us which descriptors are important for the
machine learning model, they rarely clarify how the descriptors
actually contribute to it. Extracting actionable information from
such non-linear models is not easy.
Interpretable machine learning FAB/HMEs constructs a piece-

wise sparse linear modeling12 that meets the three requirements
of “sparse modeling”, “prediction accuracy”, and “interpretability”.
Therefore, the actionable information from the data-driven model
provided by the FAB/HMEs can leads us to discoveries of novel
materials.
For the case study, we applied the interpretable machine

learning for the development of a new thermoelectric material.
Thermoelectric technologies are becoming indispensable in the
quest for a sustainable future15,16. In particular, the emerging
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spin-driven thermoelectric (STE) materials, which employ spin-
Seebeck effect (SSE)17,18 and anomalous Nernst effect (ANE)19–21,
has garnered much attention as a promising path toward low cost
and versatile thermoelectric technology with easily scalable
manufacturing. In contrast to the conventional thermoelectric
(TE) devices, the STE devices consist of simple layered structures,
and can be manufactured with straightforward processes, such as
sputtering, coating, and plating, resulting in lower fabrication
costs. An added advantage of the STE devices is that they can
double their function as heat-flow sensors, owing to their lower
thermal resistance22. However, STE material development is
hampered by the lack of understanding of the fundamental
mechanism of STE material. Research on the STE phenomena,
studying the complicated relationship between spin, heat and
charge currents and called spin caloritronics, is at the cutting edge
of materials science and physics23. A data-driven approach
utilizing machine learning can exhibit its full potential in such
rapidly developing scientific field.
Figure 2 shows the general configuration of one of the STE

devices using the anomalous Nernst effect (ANE). It is composed
of a magnetic layer, and a single crystal substrate. When a
temperature difference ΔT and a magnetic field H are applied
along the z and the x direction, respectively, a heat current is
converted into an electric current by ANE due to spin–orbit
interaction, then one can detect the thermopower SSTE (one of the
most important figures of merit for thermoelectric phenomena24)

along the y direction. By searching for the STE materials using the
ANE with improved thermopower SSTE, we have used the
interpretable machine learning to discover non-trivial behaviors
of material parameters governing the STE phenomena. We have
successfully leveraged this machine-learning-informed knowledge
to discover a high-performance STE material, whose thermopower
is greater than that of the best known STE material to date25.

RESULTS

Material data

Figure 3a–c shows the material data of STE devices using a
M100−xPtx binary alloy, where M= Fe, Co, and Ni. The thermo-
power SSTE is experimental data on different experimental
conditions (different substrates) C≡ {Si, AlN, GGG}. A temperature
difference ΔT was applied between the top and bottom of the STE
tips shown in Fig. 2 by sandwiching the tips between copper heat
baths at 300 K and 300+ ΔT K. Magnetic field H was applied along
the x direction. Under these conditions, the thermopower SSTE can
be detected along the y direction. The details about the
experimental conditions are in Supplementary Methods. The
material parameters X≡ {X1, X2, X3… X14}, whose simple descrip-
tions are shown in Fig. 3d, were obtained by density function
theory (DFT) calculation based on composition data experimen-
tally obtained from X-ray fluorescence (XRF) measurement.
However, it is difficult to simulate disordered (random) phases
by using common DFT methods such as projector-augmented
wave (PAW) method. For example, to simulate Fe50.1Pt49.9 binary
alloy, we have to make a very large unit cell, calculation of which is
not feasible. Therefore, a Greens-function-based ab initio method,
Korringa-Kohn-Rostoker coherent-potential approximation (KKR-
CPA) method26, was employed to calculate the disordered
M100−xPtx binary alloys. The KKR-CPA, where the CPA deal with
random (disordered) material systems and allows us to simulate
band structures of multicomponent materials with a single unit
cell, is known for its good agreement with experimental results,
especially in disordered alloy systems27–29. The details about the
data, experiments, DFT (KKR-CPA) calculations, data-preproces-
sing, and the reason we use these material parameters X are
shown in Supplementary Methods.

Machine learning modeling by the interpretable machine learning

We used the interpretable machine learning to construct the
following data-driven model

SSTE ¼ f X; I; S;Cð Þ; (1)

where X are the material parameters (with X≡ {X1, X2, X3 … X14}),
their interaction terms I≡ {X1X2, X1X2, X1X3 … X13X14}, their square
terms S � fX2

1 ; X2
2 ; X2

3 ¼ X2
14g;, and experimental condition terms

C≡ {CAlN, CSi, CGGG}, respectively. The experimental condition terms
C are binary parameters (i.e., CAlN= {0, 1}, CSi= {0, 1}, CGGG= {0, 1}).
More details are provided in Supplementary Methods. The
interpretable machine learning can solve data-classification and
data-regression problems simultaneously, by maximizing a novel
information criterion (factorized information criterion, which is
referred to as FIC) with an Expectation-Maximization-like algorithm
(factorized asymptotic Bayesian inference, referred to as FAB), thus
constructing a piecewise sparse linear model12,13.
Figure 4a, b shows the visualization of the model constructed

by the interpretable machine learning. The data is classified
according to the tree structure, as shown in Fig. 4a. For each data
group, regression models (component 1, 2, 3, and 4, as shown in
Fig. 4b) are created. Note that the interpretable machine learning
does not sequentially carry out the data classification and data
regression. The FAB/HMEs searches for proper regression models
while at the same time creating proper data groups, thus selecting
a better combination of regression models and data groups from a

Fig. 1 Three requirements of machine learning in materials
developments. Good collaboration between machine learning tools
and scientists in materials developments requires sparse modeling,
prediction accuracy, and interpretability. One type of interpretable
machine learning called factorized asymptotic Bayesian inference
hierarchical mixture of experts (FAB/HMEs) satisfies all three criteria

Fig. 2 Schematic of the spin-driven thermoelectric (STE) device. The
device is composed of a magnetic layer, and a single crystal
substrate. When a temperature difference ΔT and a magnetic field H
are applied along the z and the x direction, respectively, then one
can detect the thermopower SSTE along the y direction. The Lx ; Ly ;

and Lfilmz are 2 mm, 8mm, and 150 nm, respectively. The substrate

thickness Lsub:

z of Si, AlN, and GGG are 381, 450, and 500 μm,
respectively
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very large space of potential groupings. The prediction accuracy of
this model is comparable with other non-linear machine learning
models. The details are given in the Discussion section.
The structure of the model can guide our understanding of the

data; we can focus on each group separately (shown by the tree
structure in Fig. 4a), and interpret the regression models
(component 1, 2, 3, and 4) for each data group on its own
(shown in Fig. 4b). Therefore, it becomes much easier for materials
scientists to connect the data-driven model with the existing body
of knowledge of physics and materials science.
For instance, we notice that the data is first classified by average

spin moment (X14) at gate 1. The data with small average spin
moment X14 go to component 1, where the thermopower SSTE is
equal to zero (SSTE= 0, as shown in Fig. 4b). This is natural from
the viewpoint of materials science and physics. It is known that
STE phenomena are not observed on non-magnetic materials with
small average spin moment X14

20,25. Only magnetic materials with
large average spin moment X14 can have finite SSTE values;
accordingly, they go to gate 2. Thus, we see that the interpretable
model can confirm relationships that are consistent with existing
knowledge (this is discussed in Supplementary Discussion).
Fortunately, sometimes it is possible to obtain entirely novel

knowledge from the data-driven model. We notice that there is a
positive correlation between SSTE and the product term X2X8,
where X2 and X8 are the amount of Pt atoms and the Pt spin
polarization, respectively. All regression models of magnetic
materials (component 2, 3, and 4) have positive coefficient in
front of the X2X8 (see Fig. 4b). As with the case of the positive X2X8
term, we also notice the existence of negative X6X13 terms, where
X6 and X13 are the orbital moment of Pt atom and spin–orbit
interaction energy, respectively, in component 2, 3, and 4 as
shown in Fig. 4b. These correlations, uncovered by the machine
learning models, appear to be beyond our current understanding

of STE. The details of the physical interpretation underlying these
relations are also discussed in Supplementary Discussion. These
surprising connections can lead to a more comprehensive theory
of the fundamental mechanism of STE phenomena.

Actual material development guided by the interpretable machine
learning modeling

A theoretical discussion about the possible physical origins of the
newly discovered correlations is provided in Supplementary
Discussion. We now focus on demonstrating that this unantici-
pated result of the interpretable machine learning can indeed
help us to develop novel STE materials.
It has been difficult to develop STE materials because the

fundamental mechanism of the STE phenomena have not been
well understood yet. The materials development in such a novel
scientific field can be significantly accelerated by application of
the interpretable machine learning modeling. One of the insights
of the machine-learning model, which is the positive correlation
between SSTE and X2X8 on the condition of the magnetic material
data (data with large X14), suggests that we have to search for
magnetic materials with large X2X8 values to obtain a large SSTE.
Searching for a material with large X2X8 value is feasible because
we can simulate it by using conventional computational methods.
As a result of screening of materials for large X2X8 by the

computational tools, we found that Co50Pt50N10 has a large X2X8
(the details are shown in Supplementary Discussion). Therefore, as
an initial example, we carried out actual material synthesis of
Co50Pt50Nx and measured its thermopower SSTE. Figure 5 shows
the SSTE values of Co50Pt50Nx materials with different N
concentration. It is clear that SSTE increases with increasing X2X8
driven by an increase in N concentration. The SSTE of
Co48.9Pt51.1N7.2 achieves the value of 13.04 μV/K, which is larger
than that of the current generation of STE materials (according to

Fig. 3 STE material data. Collected data for the spin-driven thermopower SSTE and descriptors X used in machine learning modeling. a FePt
binary alloy. b CoPt binary alloy. c NiPt binary alloy. d Table of simple description relevant to these STE material data
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Guin et al., SSTE of ferromagnetic materials are typically <10 μV/
K25). Details of the actual material synthesis are given in
Supplementary Discussion. Since the discovered STE materials
have high thermopower as well as high thermal conductivity, they
are promising candidates for heat flow sensor components, which
can detect a heat flow with little parasitic thermal resistance.

DISCUSSION

Figure 6a shows the fourfold cross-validation root mean square
error (CV-RMSE) of the FAB/HMEs and other commonly used
machine learning algorithms, including neural network (NN),
support vector machine (SVM), random forest (RF), least absolute
shrinkage and selection operator (LASSO), and multiple linear
regression (MLR). Non-linear models using the FAB/HMEs, NN,
SVM, and RF have better prediction accuracy than linear models
using LASSO and MLR. The prediction performance of the FAB/
HMEs is comparable to that of other non-linear models.
Although the NN and SVM models are highly predictive, they

are also difficult to interpret. On the other hand, the highly
interpretable FAB/HMEs, LASSO, and MLR models, as well as RF,
which is somewhat interpretable, allow us to obtain novel
information based on the data. Because it exhibits the smallest

CV-RMSE in these interpretable models, the FAB/HMEs was
employed in our materials development process. In fact, even
using the other interpretable models (RF, LASSO, and MLR) it is
difficult to notice the positive correlation between SSTE and X2X8
for magnetic materials (X14 > 0.6325). Figure 6b shows the top 10
importance of descriptors in RF model, and we can see no X2X8
term. This term is also missing from the top 10 regression
coefficient of LASSO and MLR shown in Fig. 6c, d, respectively. The
difference between the FAB/HMRs and the other interpretable
models can be attributed to its hierarchical nature. In the case we
are studying, magnetic materials data (X14 > 0.6325) is completely
different from non-magnetic materials data (X14 < 0.6325) as for
the STE phenomena. Therefore, a non-magnetic STE model and
magnetic STE model should be constructed individually. The FAB/
HMEs automatically divides the data into magnetic materials data
and non-magnetic materials data at gate 1 in Fig. 4a, and
constructed different models. On the other hand, the other
models try to express the STE phenomena by a single model using
both magnetic and non-magnetic materials data. Detailed
descriptor dependencies in each magnetic and non-magnetic
STE model are averaged and buried in Fig. 6b–d. Such data
hierarchies often appears in materials data (because of differences
due to, for example, phase transition, experimental conditions,
calculation conditions, etc.). Therefore, the FAB/HMEs, which is
able to discover and represent this hierarchical structure of the
data, can help scientists both better model and understand
physical phenomena, as well as accelerate material discoveries.
In summary, we have demonstrated the utility of interpretable

machine learning modeling (FAB/HMEs) in the material develop-
ment process. Because of their high predictive power and
interpretability, materials scientists can obtain from such models
non-trivial knowledge useful for novel materials development.
Guided by the surprising correlation discovered by the inter-
pretable model, we have succeeded in developing a spin-driven
thermoelectric material, whose thermopower SSTE is larger than
that of the current generation of thermoelectric materials. In
addition, the novel insight we found from the data-driven model
can lead to a more comprehensive understanding of the

Fig. 4 Interpretable data-driven model created by FAB/HMEs. One
type of interpretable machine learning called factorized asymptotic
Bayesian inference hierarchical mixture of experts (FAB/HMEs)
creates piecewise sparse linear model, which is visualized with
a tree structure and b regression models. Scientists can interpret
tree structure and regression models from viewpoint of materials
science and physics

Fig. 5 Spin-driven thermopower SSTE of CoPtN thin films. SSTE
increases with increasing X2X8 in CoPtN, which was selected by
material screening guided by the knowledge obtained from the
FAB/HMEs model, namely, the positive correlation between SSTE and
X2X8. SSTE of Co48.9Pt51.1N7.2 thin film reaches 13.04 μV/K, which is
larger than all other known STE materials
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mechanism of emerging STE phenomena. Thus, the interpretable
machine learning can help not only in the development of novel
materials, but also in guiding the theoretical studies.

METHODS

FAB/HMEs

The factorized asymptotic Bayesian inference hierarchical mixture of
experts (FAB/HMEs) constructs a piecewise sparse linear model that assigns
sparse linear experts to individual partitions in feature space and expresses
whole models as patches of local experts12,13. By maximizing the factorized
information criterion including two L0-regularizations for partition-
structure determinations and feature selection for individual experts, the
FAB/HMEs performs the partition-structure determination and feature
selection at the same time. To maximize the FIC, a factorized asymptotic
Bayesian inference (FAB), which combines an expectation-maximization
(EM) algorithm with an automatic shrinkage of non-effective experts, is
used. In this paper, we set the termination condition δ= 10−5, shrinkage
threshold ε= 0.062, and number of initial experts was 32 (i.e., 5-depth
symmetric tree). The fourfold cross-validation root mean square error (CV-
RMSE) was 0.188253, as shown in Fig. 6.

NN

The neural network (NN) models the data by means of a statistical learning
algorithm mimicking the brain14. Here, we have utilized a simple 3-layer
perceptron. The cross-validation with “caret (nnet)” package in the R
programming language decides the number r of hidden units NH= 8 and
the decay value D= 3.91 × 10−3. The CV-RMSE was 0.169454, as shown in
Fig. 6.

SVR

The support vector regression (SVR) constructs a data-driven model with a
kernel method14. Here, we have used the radial basis function (RBF) kernel.
We set the cost value C= 16 and sigma of the RBF σ= 3.125 × 10−2, which
were decided by the cross-validation with “caret (svmradial)” package in
the R programming language. The CV-RMSE was 0.132847, as shown in
Fig. 6.

RF

The random forest (RF) is an ensemble learning method using a multitude
of decision trees14. The number of trees (ntree) and the number of features
(mtry) were set to 1000 and 120, respectively. We have performed the RF
by using the “caret (rf)” package in the R programming language. The CV-
RMSE was 0.246274, as shown in Fig. 6.

Lasso

The least absolute shrinkage and selection operator (LASSO) creates a
linear regression model with feature selection by using a L1-regularization
term14. The complexity parameter λ was set to 3.052 × 10−4, which was

decided by the cross-validation with the “caret (glmnet)” package in the R
programming language. The CV-RMSE was 0.583379, as shown in Fig. 6.

Data preparation of thermopower SSTE
The spin-driven thermoelectric performance (thermopower SSTE) data were
obtained by experiments including material fabrication processes and
material characterization processes. The details are shown in Supplemen-
tary Methods.

Data preparation of descriptors X

The descriptors X data were calculated by the conventional material
simulation technique, the Korringa-Kohn-Rostoker and coherent-potential
approximation (KKR-CPA)26. The details are shown in Supplementary
Methods.

DATA AVAILABILITY

The data and the code that support the results within this paper and other findings of

this study are available from the corresponding author upon reasonable request.

Received: 13 May 2019; Accepted: 3 October 2019;

REFERENCES

1. Koinuma, H. & Takeuchi, I. Combinatorial solid-state chemistry of inorganic

materials. Nat. Mater. 3, 429 (2004).

2. Takeuchi, I. et al. Identification of novel compositions of ferromagnetic shape-

memory alloys using composition spreads. Nat. Mater. 2, 180–184 (2003).

3. Curtarolo, S. et al. The high-throughput highway to computational materials

design. Nat. Mater. 12, 191–201 (2013).

4. Nishijima, M. et al. Accelerated discovery of cathode materials with prolonged

cycle life for lithium-ion battery. Nat. Commun. 5, 4553 (2014).

5. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning

for molecular and materials science. Nature 559, 547–555 (2018).

6. Xia, R. & Kais, S. Quantum machine learning for electronic structure calculations.

Nat. Commun. 9, 4195 (2018).

7. Kusne, A. G. et al. On-the-fly machine-learning for high-throughput experiments:

search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (4014).

8. Iwasaki, I., Kusne, A. G. & Takeuchi, I. Comparison of dissimilarity measures for

cluster analysis of X-ray diffraction data from combinatorial libraries. npj Comput.

Mater. 3, 4 (2017).

9. Dimiduk, D. M., Holm, E. A. & Niezqoda, S. R. Perspectives on the impact of

machine learning, deep learning and artificial intelligence on materials, processes

and structures engineering. Integr. Mater. Manuf. Innov. 7, 157–172 (2018).

10. Guidotti, R. et al. A survey of methods for explaining black box models. ACM

Comput. Surv. 51, 5 (2018).

11. Chen, J., Song, Le. Wainwright M. J., & Jordan, M. I. Learning to explain: an

information-theoretic perspective on model interpretation. Proceedings of

International Conference on Machine Learning (ICML). PMLR 80, 883–892 (2018).

Fig. 6 Comparison of machine learning models. a Comparison of fourfold cross-validation root mean square error (CV-RMSE) of several major
machine learning methods. FAB/HMEs has not only high interpretability but also prediction accuracy that is comparable to black box machine
learning such as NN and SVM. b Top 10 importance of descriptors in the RF model. c Top 10 regression coefficients of LASSO model. d Top 10
regression coefficients in the MLR model. The positive X2X8 term was not discovered by the RF, LASSO, and MLR models

Y. Iwasaki et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2019)   103 



12. Asahara, M. & Fujimaki, R. An emperical study on distributed bayesian approx-

imation inference of piecewise sparse linear models. IEEE Trans. Parallel Distrib.

Syst. https://doi.org/10.1109/TPDS.2019.2892972 (2019).

13. Eto, R., Fujimaki, R., Morinaga, S. & Tamano, H. Fully-automatic bayesian piecewise

sparse linear models. Proceedings of Artificial Intelligence and Statistics (AISTAT).

PMLR 33, 238–246 (2014).

14. Bishop, C. M. Pattern Recognition and Machine Leaning (Springer, 2006).

15. Goldsmid, H. J. Introduction to Thermoelectricity (Springer, 2010).

16. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with

thermoelectric systems. Science 321, 1457–1461 (2008).

17. Kirihara, A. et al. Spin-current-driven thermoelectric coating. Nat. mater. 11,

686–689 (2012).

18. Uchida, K. et al. Observation of the spin-Seebeck effect. Nature 455, 778–781

(2008).

19. Sakuraba, Y. Potential of thermoelectric power generation using anomalous

Nernst effect in magnetic materials. Scr. Mater. 111, 29 (2016).

20. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral

antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

21. Iwasaki, Y. et al. Machine-learning guided discovery of a new thermoelectric

material. Sci. Rep. 9, 2751 (2019).

22. Kirihara, A. et al. Flexible heat-flow sensing sheets based on the longitudinal

spinSeebeck effect using one-dimensional spin-current conducting films. Sci. Rep.

6, 23114 (2016).

23. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. mater. 11, 391

(2012).

24. Uchida, K. et al. Thermoelectric generation based on spin seebeck effects. Proc.

IEEE 104, 1946 (2016).

25. Guin, S. N. et al. Anomalous Nernst ettect beyond the magnetization scaling

relation in the ferromagnetic Heusler compound Co2MnGa. NPJ Asia Mater. 11, 16

(2019).

26. Akai, H. Electronic structure Ni-Pd alloys calculated by the self-consistent KKR-

CPA method. J. Phys. Soc. Jpn. 51, 468–474 (1982).

27. Khan, N. S., Staunton, J. B. & Stocks, G. M. Statistical Physics of multicomponent

alloys using KKR-CPA. Phys. Rev. B 93, 054206 (2016).

28. Yang, L. et al. Investigation of the site preference in Mn2RuSn using KKR-CPA-LDA

calculation. J. Magn. Magn. Mater. 382, 247–251 (2015).

29. Jin, K. et al. Tailoring the physical properties of Ni-based single-phase equiatomic

alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).

ACKNOWLEDGEMENTS

This work was supported by JST-PRESTO “Advanced Materials Informatics through

Comprehensive Integration among Theoretical, Experimental, Computational and

Data-Centric Sciences” (Grant No. JPMJPR17N4), JST-ERATO “Spin Quantum

Rectification Project” (Grant No. JPMJER1402), I.T. is supported in part by C-SPIN,

one of six centers of STARnet, a Semiconductor Research Corporation program,

sponsored by MARCO and DARPA.

AUTHOR CONTRIBUTIONS

Y.I., M.I., A.K., H.S. and Y.O. designed the experiment, fabricated the samples, and

collected all of the data. Y.I., R.S. and E.S. contribute to the theoretical discussion. Y.I.,

R.S., V.S. and I.T. discussed the results of machine learning modeling. Y.I., V.S., I.T. and

M.I. wrote the paper. S.Y. supervised this study. All the authors discussed the results

and commented on the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/

s41524-019-0241-9.

Correspondence and requests for materials should be addressed to Y.I.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://creativecommons.

org/licenses/by/4.0/.

© The Author(s) 2019

Y. Iwasaki et al.

6

npj Computational Materials (2019)   103 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1109/TPDS.2019.2892972
https://doi.org/10.1038/s41524-019-0241-9
https://doi.org/10.1038/s41524-019-0241-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Identification of advanced spin-driven thermoelectric materials via interpretable machine learning
	Introduction
	Results
	Material data
	Machine learning modeling by the interpretable machine learning
	Actual material development guided by the interpretable machine learning modeling

	Discussion
	Methods
	FAB/HMEs
	NN
	SVR
	RF
	Lasso
	Data preparation of thermopower SSTE
	Data preparation of descriptors X

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION


