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Abstract

Alzheimer’s Disease (AD) currently affects more than 5 million Americans, with numbers expected to grow dramatically as
the population ages. The pathophysiological changes in AD patients begin decades before the onset of dementia,
highlighting the urgent need for the development of early diagnostic methods. Compelling data demonstrate that
increased levels of amyloid-beta compromise multiple cellular pathways; thus, the investigation of changes in various
cellular networks is essential to advance our understanding of early disease mechanisms and to identify novel therapeutic
targets. We applied a liquid chromatography/mass spectrometry-based non-targeted metabolomics approach to determine
global metabolic changes in plasma and cerebrospinal fluid (CSF) from the same individuals with different AD severity.
Metabolic profiling detected a total of significantly altered 342 plasma and 351 CSF metabolites, of which 22% were
identified. Based on the changes of .150 metabolites, we found 23 altered canonical pathways in plasma and 20 in CSF in
mild cognitive impairment (MCI) vs. cognitively normal (CN) individuals with a false discovery rate ,0.05. The number of
affected pathways increased with disease severity in both fluids. Lysine metabolism in plasma and the Krebs cycle in CSF
were significantly affected in MCI vs. CN. Cholesterol and sphingolipids transport was altered in both CSF and plasma of AD
vs. CN. Other 30 canonical pathways significantly disturbed in MCI and AD patients included energy metabolism, Krebs
cycle, mitochondrial function, neurotransmitter and amino acid metabolism, and lipid biosynthesis. Pathways in plasma that
discriminated between all groups included polyamine, lysine, tryptophan metabolism, and aminoacyl-tRNA biosynthesis;
and in CSF involved cortisone and prostaglandin 2 biosynthesis and metabolism. Our data suggest metabolomics could
advance our understanding of the early disease mechanisms shared in progression from CN to MCI and to AD.
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Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative

disorder that involves loss of memory and cognitive abilities. The

molecular mechanisms of AD remain elusive. Neuritic plaques

that contain b-amyloid (Ab) aggregated peptides and intracellular

neurofibrillar tangles consisting of hyperphosphorylated microtu-

bule-associated tau protein are two major hallmarks of AD [1,2].

Accumulating research evidence suggests that pathophysiological

changes associated with AD begin at least 10 to 25 years before

dementia onset [3–7]. Indeed, the FDA-approved drugs for AD do

not provide cure, most likely because they are administered too

late in the disease process. Clinical trials conducted over 18

months utilizing Ab-clearing monoclonal antibodies failed to slow

cognitive and functional decline in AD patients despite the

maintenance of amyloid burden and actual decrease in phospho-

tau (p-tau) levels in cerebrospinal fluid (CSF) [8–10]. Thus, there is

an urgent need to identify alternative disease mechanisms and

associated biomarkers that can help to diagnose AD in the

preclinical and early clinical (i.e., mild cognitive impairment

(MCI)) stages [11].

Research conducted in multiple cellular and animal models

strongly suggests that AD pathophysiology involves early changes

in functionally connected networks across many brain regions that

are not limited to cognition and learning [12–19] However,

currently available biomarkers are limited to the measurements of

tau, p-tau, and Ab levels in CSF and plasma [20–22] that

represent rather narrow hypothesis-driven biomarker develop-

ment. Combining data on tau and Ab levels with the results

obtained using advanced brain imaging techniques comprising of

computed tomography, nuclear magnetic resonance imaging, and

single photon or positron emission computed tomography could

enhance AD diagnosis [23]. Nevertheless, there is clearly a need

for broader biomarker investigations that should lead to better
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understanding of early disease mechanisms. Therefore, the

identification of markers in readily available biofluids suitable for

large-scale clinical applications using methods that could provide

information on global changes in the cellular networks with high

accuracy and reduced cost is of great importance.

Metabolomics is a powerful tool that studies perturbations in the

metabolome, which reflects genomic, transcriptomic and proteo-

mic changes and represents an accurate biochemical phenotype of

the organism in health and disease [24]. Metabolomic profiling

can be done relatively easily in peripheral tissues, CSF or plasma,

making this approach valuable for clinical application. Based on

the type of utilized analytical platform, non-targeted metabolomics

facilitates establishing of broad metabolic profiles in samples

including identification of novel metabolites that can be used as

biomarkers. This approach detects changes in the levels of

hundreds of metabolites providing valuable information on the

alterations in multiple metabolic networks. Targeted metabolo-

mics offers data on quantitative changes in specific classes of

metabolites of interest such as amino acids, lipids, fatty acids and

others. Using a targeted metabolomics approach, we previously

identified particular pathways and a mutation-specific panel of

biomarkers in the brain tissue of three transgenic mouse models

representing familial AD (FAD) [25] that were affected early in

disease process, prior to the formation of amyloid plaques and the

onset of memory impairment. We demonstrated that changes in

brain energetic and mitochondrial function were among the

underlying mechanisms in all three FAD animal models [25].

Recent investigations conducted in human samples have identified

changes in a number of metabolites in CSF or plasma that also

correlated with AD severity validating metabolomics as a useful

tool to study the disease progression [17,18,26–31]. However,

none of these studies applied a non-targeted metabolomics

approach to identify global changes in metabolites and canonical

metabolic pathways perturbed across the AD clinical spectrum

(e.g., cognitively normal, MCI, and AD) in both CSF and plasma

from the same individuals. Since plasma represents a non-invasive,

inexpensive, and acceptable source for repeated measures, the

demonstration that metabolic profiles in plasma resemble the

profiles in CSF, which most closely reflects brain-specific changes,

is of great importance. Here, we present the results of the study

conducted in the cohort of MCI, AD and cognitively normal (CN)

subjects enrolled in the longitudinal Mayo Clinic Study of Aging

(MCSA) and Mayo Clinic Alzheimer Disease Research Center

(ADRC) utilizing a non-targeted ultra-performance liquid chro-

matography coupled to time-of-flight mass spectrometry (UPLC-

ToF-MS)– based metabolomics.

Materials and Methods

Subjects and Sample Collection
The study was approved by the Institutional Review Boards of

the Mayo Clinic and Olmsted Medical Center. Written informed

consent was obtained for all participants. Forty-five subjects were

enrolled in the study. Of these, 14 CN subjects, 13 amnestic MCI,

and 11 AD dementia patients were enrolled and followed in the

MCSA, a population-based epidemiologic study of normal ageing

and MCI in individuals aged 70–90 years in Olmsted County,

Minnesota [32] (Table 1). The remaining 2 amnestic MCI

subjects, 4 AD patients, and one CN individual were enrolled in

the ADRC. ADRC recruitment is drawn from individuals seeking

medical care at the Mayo Clinic. Both the MCSA and ADRC are

longitudinal studies that include serial clinical and cognitive

assessments. The clinical diagnosis at each visit was made at

weekly consensus conferences that include neurologists, neuropsy-

chologists, a neuropsychiatrist, and study coordinators. Control

subjects were asymptomatic CN volunteers. Demographic char-

acteristics and clinical diagnosis of studied subjects are summa-

rized in Table 1. Criteria for the diagnosis of amnestic MCI were

outlined in [33] and included: (i) memory complaint documented

by the patient and collateral source; (ii) impairment in 1 or more of

the 4 cognitive domains (memory, executive functioning/atten-

tion, visuospatial, or language); (iii) essentially normal functional

activities of daily living; and (iv) absence of dementia. In general,

the amnestic MCI determination is made when the memory

measures fall 1.0–1.5 SD below the means for age and education

appropriate individuals in our community; however, rigid cutoffs

on psychometric scores were not used to establish the diagnosis of

amnestic MCI which was made on clinical grounds. The diagnosis

of dementia was made using DSM-IV criteria [34], and the

diagnosis of AD was made using established criteria [35]. Subjects

were considered to be CN if they performed within the normative

range and did not meet criteria for MCI or dementia. CSF was

collected from individuals in the fasting state by a lumbar puncture

while lying on their side or in a seated position. Plasma was

collected in EDTA tubes from individuals after an overnight fast

using standard venipuncture procedures. Both CSF and plasma

were immediately centrifuged and aliquoted according to standard

procedure established at the clinical laboratories of Mayo Clinic.

CSF and plasma were stored in aliquots at280uC until the date of

analysis.

Sample Preparation for Metabolomic Profiling
The metabolite extraction method was performed as described

previously [36] with minor modifications in the method. Plasma

and CSF samples (100 mL) were thawed on ice at 4uC followed by

deproteinization with methanol (1:4 ratio of plasma to methanol)

and vortexed for 10 s, followed by incubation at 220uC for 2 h.

Prior to deproteinization, 4 mL of an internal standard solution of
13C6-Phenylalanine (247 ng/mL) was added to each plasma, CSF,

and quality control (QC) samples to monitor the recovery of

extracted metabolites. The samples were centrifuged at 18000 g

for 20 min at 4uC. The supernatants were lyophilized (Savant,

Holbrook, NY) and stored at 220uC prior to analysis. The

samples were reconstituted in running buffer and analyzed within

24 hrs. Metabolite separation in plasma and CSF was achieved

Table 1. Characteristics of Study Participants.

Characteristics MCI AD CN

n 15 15 15

Age (years)1 80.464.2 82.764.2 78.663.5

Race2 White (n = 15) White (n = 14) White (n = 14)

Asian (n = 1) Asian (n = 1)

Male, % 73 80 67

Education (years)1 14.163.3 13.963.2 14.863.0

Family History of AD 0 positive 4 positive 3 positive

2 unknown 3 unknown

Family History of

Dementia3
2 positive 8 positive 7 positive

1Data are mean 6 SD for all participants.
2All participants except of one (unknown ethnicity) were non-Hispanic or
Latino.
3Family history of dementia including AD.
doi:10.1371/journal.pone.0063644.t001

Altered Metabolic Pathways in CSF and Plasma
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using an Acquity UPLC system (Waters, Milford, MA) with both

hydrophilic interaction chromatography (HILIC) (ethylene-

bridged hybrid 2.16150 mm, 1.7 mm; Waters) and reversed-

phase liquid chromatography C18 (RPLC) (high-strength silica

2.16150 mm, 1.8 mm; Waters). For each column, the run time

was 20 min at a flow rate of 400 mL/min. Reverse-phase

chromatography was performed using 99% solvent A (5 mmol/

L NH4 acetate, 0.1% formic acid, and 1% acetonitrile) to 100%

solvent B (95% acetonitrile with 0.1% formic acid). The gradient

was 0 min, 0% B; 1 min, 0% B; 3 min, 5% B; 13.0 min, 100% B;

16 min, 100% B; 16.5 min, 0% B; and 20 min, 0% B. The

hydrophilic interaction chromatography gradient was as follows:

0 min, 100% B; 1 min, 100% B; 5 min, 90% B; 13.0 min, 0% B;

16 min, 0% B; 16.5 min, 100% B; and 20 min, 100% B. The

injection volume of each sample was 5 mL and column was

maintained at 50uC. Each sample was injected and analyzed in

duplicate. QCs and standards were run at the beginning and the

end of each sequence to monitor shift in the retention time on the

column.

Mass Spectrometry
A 6220 ToF-MS (Agilent Technologies) was operated in both

positive and negative electrospray ionization (ESI) modes using a

scan range of 50–1,200 m/z. The mass accuracy and mass

resolution were 5 parts per million (ppm) and 20,000 ppm,

respectively. The instrument settings were as follows: nebulizer gas

temperature 325uC, capillary voltage 3.5 kV, capillary tempera-

ture 300uC, fragmentor voltage 150 V, skimmer voltage 58 V,

octapole voltage 250 V, cycle time 0.5 s, and run time 15.0 min.

Data Preprocessing
All ToF-MS raw data files were converted to compound

exchange File (CEF) format using Masshunter DA reprocessor

software (Agilent Technologies Inc). Chromatography and cen-

troided MS data were aligned to generate a single data matrix

consisting of retention time (RT), mass-to-charge (m/z), and

normalized ion intensity for each detected peak in individual

samples. Mass Profiler Professional (Agilent Technologies Inc) was

used for data alignment and to convert each metabolite feature

(m/z6intensity6time) into a matrix of detected peaks versus

compound identification [36]. Each sample was normalized to the

median of the baseline and log 2 transformed. Default settings

were used with the exception of signal-to-noise ratio threshold (3),

mass limit (0.0025 units), and time limit (9 s) [36]. The resulting

metabolites were identified against the METLIN metabolite

database using a detection window of #5 ppm. Putative

identification of each metabolite was made based on mass

accuracy (m/z) Chemical Abstracts Service (CAS), Kyoto Ency-

clopedia of Genes and Genomes (KEGG), Human Metabolome

Project (HMP) database, and LIPID MAPS identifiers [37,38].

Method performance was evaluated for the ten metabolite

standards with respect to limit of detection, linearity, reproduc-

ibility, and mass accuracy (,5 ppm); coefficient of variation was

#5% [36].

Statistical Analysis
The metabolites detected in at least$50% of the samples in any

of three study groups (AD, MCI, and CN) were selected for

differential expression analyses. Univariate statistical analysis, one-

way analysis of variance (ANOVA), was used to find the

differentially expressed metabolites across the three study groups.

Hierarchical cluster analysis of metabolites was performed to

reveal associations between replicate biological samples within a

group based on the similarity of their mass abundance profiles.

Hierarchical cluster analysis was performed on the log-2–
transformed, one-way ANOVA data set. A heat map was

generated wherein each column depicts a sample and each row

represents a metabolite, with the relative change color coded

(Fig. 1). Unpaired t-test analysis was performed for comparison of

two groups (e.g., AD vs. CN; MCI vs. CN, and AD vs. MCI) in

both plasma and CSF. To address false discovery rates (FDR) from

multiple comparisons, Benjamini–Hocherberg correction (0.05)

was applied on each pair of analysis. The mean-centered,

paretoscaled and log2 transformed data were then introduced

into the SIMCA-P 11.5 software (Umetrics, Umeå, Sweden) for

multivariate statistical analysis. Principal components analysis

(PCA) using Pareto-scaled data was performed to reduce the

dimensionality of the data and to reveal any clustering of the three

study groups (AD, MCI and CN) in an unsupervised manner

(Fig. 2). Three PCA analyses were conducted comparing two

groups at a time (AD vs. CN; MCI vs. CN; AD vs. MCI) for

plasma and CSF separately (Fig. 3). Orthogonal projections to

latent structures discriminant analysis (O2PLS-DA), a supervised

pattern recognition approach, was utilized to construct a

predictive model to compare and evaluate between plasma or

CSF depicting disease condition and/or progression based on the

differential metabolites accountable for AD. To avoid the over

fitting of the models, the OPLS-DA model was validated by an

iterative 7-round cross-validation with one seventh of the samples

being excluded from the model and blind prediction test in which

the data set was randomly divided into training set (70%) and test

set (30%). The model built on the training set was applied to build

the classification model to predict the class membership of the test

set.

Pathway Analysis
The differentially expressed metabolites (p,0.05 with FDR of

0.05) were analyzed for pathway enrichment using MetaCore

(Genego, St. Joseph, MI) [39]. Metabolite identifiers (CAS and

KEGG) were used for each metabolite including name and

molecular weight in addition to fold change and differential P

value. The P value from the hypergeometric test, generated by

Metacore, represents the enrichment of certain metabolites in a

pathway. A P value #0.05 is indicative of significant enrichment.

The ratio of significantly changed metabolites in the pathway to

total number of metabolites in a pathway was also calculated. A

FDR of 0.15 was also applied for pathway enrichment [36].

Results

Metabolomics Profiling in Plasma and CSF by UPLC-ToF-
MS in AD, MCI and CN Groups
For analysis of the individual metabolite fingerprints, we

employed non-targeted UPLC-ToF-MS –based comprehensive

metabolomic profiling to determine changes in metabolites

associated with AD severity in the CSF and plasma samples from

the same patients diagnosed with amnestic MCI or AD and CN

individuals. For each sample, reversed-phased and hydrophilic

interaction chromatography (HILIC) UPLC-ToF-MS analyses

were applied both in the positive and negative electron spray

ionization (ESI) modes to increase the number of detected

metabolite ions. Metabolic profiling detected a total of 342 and

351 (P#0.05) metabolites in the plasma and CSF, respectively, of

which 22% were identified (Tables S1 and S2). There were 65

plasma and 74 CSF metabolites (P#0.05) detected and identified

in three study groups (Table S1 and S2, top metabolites in bold

font). Metabolites detected in plasma and CSF were confirmed

based on a comparison with known standards and retention time

Altered Metabolic Pathways in CSF and Plasma
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Figure 1. Heat map analysis of metabolites in plasma and CSF samples from CN, MCI and AD patients. Metabolite perturbations were
calculated based on the median for each metabolite level of three independent biological replicates of plasma and CSF samples from each study
participant. Each row represents a metabolite, and each column depicts a subject. The study groups are color-coded as follows: AD is denoted in red,
MCI is denoted in blue, and CN is denoted in maroon. The fold change in metabolite levels is color-coded: red pixels, up regulation; blue, down
regulation; yellow, no significant change.
doi:10.1371/journal.pone.0063644.g001

Figure 2. Plasma and CSF samples have distinct metabolomic profiles between AD, MCI and CN groups. Two-dimensional score plots of
unsupervised principal component analysis (PCA) of the plasma (A) and CSF (B) samples, and orthogonal two partial least squares-discriminant
analysis (O2PLS-DA) of plasma (C) and CSF (D) samples from AD (red), MCI (blue) and CN (green) patients. Each sample is labeled with a triangle.
doi:10.1371/journal.pone.0063644.g002

Altered Metabolic Pathways in CSF and Plasma
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listed in Table S3. The identification of the other metabolites was

based on accurate mass in database searches with the METLIN

metabolite database using a detection window of #5 ppm. A heat

map, generated based on the identified and unidentified metab-

olites for plasma and CSF (Fig. 1), revealed considerable

differences between CN, MCI and AD groups. The metabolites

shown in red color are up regulated and those in blue are down

regulated (Fig. 1).

The heat map of plasma and CSF demonstrated that CN

group is predominantly clustered separately from AD and MCI

due to their inherent differences in metabolic changes. Some

overlap in MCI and AD individuals is anticipated based on the

Figure 3. Unsupervised Principal Component Analysis (PCA) of plasma and CSF samples from CN, AD and MCI subjects. Each dot
corresponds to an individual sample. (A, B): AD – red; CN – blue; (C, D): MCI – red; CN – blue; (E, F): AD – red; MCI- blue.
doi:10.1371/journal.pone.0063644.g003

Altered Metabolic Pathways in CSF and Plasma
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disease progression and is reflected in Fig. 1. Plasma metabolites

with significantly elevated levels in AD individuals in compar-

ison to MCI and CN included assymmetric dimethylarginine,

glycerophosphoethanolamine, 2b,3b-dihydroxy-6-oxo-5a-chol-7-
en-24-oic acid, 5-octadecylenic acid, hippuric acid, 5,7-non-

adienoic acid, vitamin-D derivatives, propionylglycine methyl

ester, glucopyranoside, 1-methyladenosine glycoursodeoxycholic

acid. In contrast, levels of indoleacrylic acid, succinic anhydride,

tryptophan, 3E,13Z-octadecadien-1-ol, 2-oxo-4-hydroxy-hexa-

noic acid, biliverdin IX, phenylalanine, bilirubin, 2-methylbu-

tyrylglycine, and aminocyclohexanecarboxylic acid were signif-

icantly reduced (Table S1). Metabolomic analysis in CSF

samples revealed similar changes in many of the metabolites

along with identification of new compounds that were not

detected in plasma such as pyruvic acid, glutamic acid dibutyl

ester, N-acetyl-a-neuraminic acid, methyl-L-lysine, and bile acid

derivatives (Table S2). Levels of multiple amino acids and

metabolites of TCA (Krebs) cycle in addition to methylglyoxal,

pyrimethamine, pyroglutamic acid, L-aspartic acid b-semialde-

hyde, fumaric acid, 3-methyl-2-oxobutanoate, hydroxy-L-threo-

nine, and oxaloglutarate were specifically decreased in CSF

suggesting altered metabolism in comparison to CN individuals

(Table S2).

Multivariate Analysis of AD, MCI and CN Study Groups
To determine whether the metabolite fingerprints in fasting

plasma and CSF differed between CN, MCI and AD subjects in

our metabolomics approach, we first evaluated separation between

experimental groups using unsupervised principal component

analysis (PCA) (Fig. 2 A, B). Strong group separation was achieved

in both plasma and CSF between all three groups (Fig. 2 A, B),

and in two-group comparison: AD vs. CN; MCI vs. CN, and MCI

vs. AD (Fig. 3). Further analysis using orthogonal two component

PLS-DA (O2PLS-DA) models demonstrated robust group sepa-

ration between all three groups (AD, MCI and CN) for both

plasma (Fig. 2C) and CSF (Fig. 2D). To ensure that the calculated

models were reliable and the observed clustering was not due to

chance, we performed an internal validation using 7-fold cross-

validation [40]. The calculated goodness of fit (R2Y) was 0.639 for

plasma, and 0.791 for CSF, and the goodness of prediction (Q2Y)

0.499 for plasma and 0.717 for CSF, respectively, which

emphasizes the robustness of the model. Despite clear group

separation for both fluids, separation in CSF was more robust

(Fig. 2A–D).

Altered Metabolites and Canonical Pathways in CSF and
Plasma of MCI Subjects vs. CN
We identified 109 (P#0.05) metabolites in plasma (Table S4)

and 111 (P#0.05) metabolites in CSF (Table S5) that were

significantly affected in MCI patients vs. CN. Among metabolites

that had 2–5 fold increase in plasma of MCI group were multiple

derivatives of vitamin D3, phophatidylethanolamine, N-acetylca-

daverine, hippuric acid, a-hydroxyisovalerate, and hydroxyhydro-

quinone (Table S4). Metabolites that were 2–3 fold reduced

included 6-hydroxy-2-hexynoic acid, 8R-hydroxy-9Z-octadece-

noic acid, 1-aminocyclohexanecarboxylic acid, guaifenesin, 5,7-

nonadienoic acid, biliverdin IX, 2-methylbutyrylglycine, bilirubin,

propionylglycine methyl ester, multiple derivatives of vitamin D3,

and glycerophospholipids (Table S4).

Metabolites with 2–6 fold increase in CSF of MCI patients vs.

CN group included succinic anhydride, citraconic acid, 2-furoic

acid, threo-Isocitric acid, pyruvic acid, methionine, ethosuximide,

and p-aminobenzoic acid (Table S5). CSF metabolites reduced 2–

16 fold in MCI vs. CN included: acetoacetic acid, fumaric acid,

gualenate, lorazepam, a-ketoglutarate, 2-methylbutyrylglycine,

multiple derivatives of vitamin D3, tranexamic acid, and diallyl

sulfide (Table S5). Notably, 2-methylbutyrylglycine and different

analogs of vitamin D3 were decreased to a similar extent in both

the plasma and CSF (Tables S4 and S5).

Additional analysis of the identified altered metabolites

showed that 23 canonical pathways (P#0.05) in plasma and

20 (P#0.05) in CSF were perturbed in MCI patients (Fig. 4)

with FDR ,0.05. About 30% of the pathways significantly

altered in CSF were also altered in plasma (Fig. 4, red).

Common pathways that were affected in both fluids were

related to the amino acid metabolism, neurotransmitter metab-

olism, mitochondrial function and Krebs cycle, fatty acid

biosynthesis, and lipid biosynthesis and metabolism. Lysine

metabolism (P#0.00001) in plasma and TCA cycle (P#0.00001)

in CSF were affected to the greatest extent.

Altered Metabolites and Canonical Pathways in CSF and
Plasma from AD Subjects vs. CN
We have identified 154 (P#0.05) metabolites in plasma (Table

S6) and 150 (P#0.05) in CSF (Table S7) with significant changes

in AD vs. CN subjects. In plasma, the following metabolites were

increased 2–5 fold: 8-amino-7-oxononanoate, phosphatidyletha-

nolamine, ethosuximide, 2-methylbutyrylglycine, 1,3-dipropyl-8-

cyclopentylxanthine, dihydrofissinolide, methionine, histidine,

lysine, L-urobilin, p-hydroxyaniline, and 2-oxo-4-hydroxy-hexa-

noic acid (Table S8). Levels of the following metabolites were 2–3

fold decreased: 6-a-hydroxycastasterone, a-hydroxyisobutyrate,

norcodeine, valeryl salycilate, biliverdin IX, hypoxanthine, and

vitamin D3 derivatives (Table S6). In CSF, 2–3 fold increase was

observed in the levels of succinic anhydride, arecoline, N-methyl-

L-lysine, dehydroascorbic acid, citraconic acid, and pyruvic acid;

while levels of 7-hydroxy tetranor iloprost (Ventavis), prostaglan-

din E2-a dimethyl amine, 2-octenedioic acid, acetoacetic acid,

methyl 7-deshydroxypyrogallin-4-carboxylate, 2-hydroxy-3-(4-

methoxyethylphenoxy)-propanoic acid, anthracene, pyrogallin, 1-

hydroxy-2-naphthoic acid, vitamin D3 derivatives, and methox-

salen metabolites were 2–3 fold decreased (Table S7). Levels of

amino acids were similarly increased in both plasma and CSF,

while levels of vitamin D3 derivatives were equally reduced in both

fluids (Tables S6, S7).

Canonical pathways altered in plasma and CSF of AD vs. CN

subjects are presented in Fig. 5. There were 40 pathways (P#0.05)

in plasma and 30 (P#0.05) in CSF that were significantly affected;

60% of the pathways were perturbed in both CSF and plasma

(Fig. 5, red). Pathways affected to the highest extent in plasma

included cholesterol and sphingolipids transport, vitamin D2

(ergocalciferol) metabolism, polyamine metabolism, and urea

cycle. Cholesterol and sphingolipids transport, prostaglandin 2

(PGE2) biosynthesis and metabolism, TCA cycle, and aspartate

and asparagine metabolism were among the most affected in CSF

of AD subjects (Fig. 5). Pathways that were equally affected in CSF

and plasma were related to lipid and cortisone biosynthesis and

metabolism, mitochondrial function and energy production, urea

cycle, bile acid metabolism, and amino acid biosynthesis and

metabolism.

Altered Metabolites and Canonical Pathways in CSF and
Plasma of AD Subjects vs. MCI
Comparison of metabolites in biofluids from AD vs. MCI

subjects identified differences in 44 (P#0.05) plasma and 31

(P#0.05) CSF metabolites (Tables S8 and S9, respectively).

Among metabolites affected to the same extent in plasma and

Altered Metabolic Pathways in CSF and Plasma
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CSF were 2-methylbutyrylglycine and amino acids tyrosine,

alanine and leucine (Tables S8 and S9). Based on the changes in

metabolites, we identified 25 (P#0.05) pathways in plasma and 10

(P#0.05) in CSF that significantly differed between MCI and AD

(Fig. 6). The ten altered pathways in CSF were related to

neurotransmitter, lipids, and sterol metabolism, with prostaglandin

2 (PGE2) and cortisone biosynthesis and metabolism were the

most affected (Fig. 6). The major metabolites altered in these

pathways were prostaglandins (PG G2, PG J2), hydrocortisone,

and tetrahydrocortisone. Significantly larger amount of pathways

was affected in plasma compared to CSF of AD vs. MCI patients

(Fig. 6). These pathways were related to amino acid, cholesterol,

lipids, neurotransmitter, and mitochondrial biosynthesis and

metabolism.

A Venn diagram depicts the specific pathways in plasma and

CSF, which cross-sectionally differentiate the three diagnostic

groups with respect to the disease severity (Fig. 7). Four common

pathways affected in plasma include polyamine metabolism, lysine

metabolism, aminoacyl-tRNA biosynthesis in the cytoplasm, and

tryptophan metabolism. Two pathways affected in CSF are related

to cortisone and PGE2 biosynthesis and metabolism (Fig. 7).

Discussion

Metabolomics is a rapidly emerging ‘‘omics’’ that establishes

disease-specific signatures of perturbations in hundreds of metab-

olites, reflecting alterations in multiple networks affected in the

disease. Application of metabolomics for the diagnosis of AD is

very attractive. Profiling in plasma and CSF could be used to

establish metabolic signatures for the purposes of an accurate

diagnosis, including the early clinical (e.g., MCI) or preclinical

stages, or within individuals to monitor disease progression and

therapeutic efficacy. Metabolomics can be conducted in biofluids,

such as plasma or CSF, with high throughput and relatively low

cost. Recently, metabolomic profiling was used to assess cross-

sectional alterations in either CSF or plasma samples from

individuals with different clinical severity of AD [17,18,26,28–

31]. However, these studies used diverse metabolomics platforms,

biofluids (CSF or plasma), and differed in the range of identified

metabolites, thus limiting efforts of comparing the results. In the

present study, we applied a non-targeted mass spectrometry–based

metabolomic profiling to determine global changes in metabolites

and various putative metabolic pathways in CSF and plasma from

the same individuals in relationship to AD progression. To our

knowledge, this is the first study that (1) evaluates progressive

Figure 4. Altered metabolic pathways and process networks in plasma and CSF of MCI vs. CN subjects. The significance of the pathways
was evaluated using P values and false discovery rate,0.05. Pathways that are affected in both fluids are colored in red. The ratio depicts the number
of affected metabolites to the total number of metabolites in the pathway. TCA – tricarboxylic acid (Krebs) cycle; GABA - c-Aminobutyric acid; MB –
metabolism.
doi:10.1371/journal.pone.0063644.g004
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metabolic changes in CN, MCI and AD subjects in both CSF and

plasma, (2) establishes to what extent metabolic changes in lumbar

CSF are reflected in plasma, (3) identifies unique and common

metabolic pathways specifically affected by AD severity in plasma

and CSF, and (4) validates plasma as a reliable biofluid for

metabolic studies of brain-related disorders. We found that

approximately 30% of the metabolic pathways altered in the

CSF in MCI patients vs. CN, and ,60% in AD patients vs. CN,

were also affected in plasma from the same individuals (Fig. 4, 5).

The number of affected pathways in CSF and plasma increased

with disease severity. Thus, in AD patients the total of affected

pathways increased by 50% in CSF and doubled in plasma

compared to MCI patients (Fig. 4, 5). However, in MCI and AD

individuals the number of affected pathways was always greater in

plasma, thus reflecting changes in organs other than brain that are

associated with AD (Fig. 4–7). Our data demonstrate that

signatures in CSF and plasma have significant overlap, and most

of the pathways affected early in MCI continue to be altered in

AD subjects. In both CSF and plasma in MCI and AD groups the

perturbed canonical pathways included those related to energy

metabolism and mitochondrial function; lipid biosynthesis, traf-

ficking and metabolism; amino acid biosynthesis and metabolism;

neurotransmitter biosynthesis and metabolism; and hormone

biosynthesis and metabolism (Fig. 4–7). However, we also

identified pathways that were specifically affected in either plasma

or CSF (Fig. 4–7).

One of the prominent dysfunctions in AD is a progressive failure

of neuronal networks and neurotransmitter systems. Results of the

extensive studies in multiple animal and cellular models of AD

suggest that synaptic malfunction and synaptic loss occur prior to

the development of Ab plaques and neurofibrillary tangles [41].

These synaptic alterations are directly associated with deteriorated

synaptic strength and synaptic plasticity, including long-term

potentiation [41]. Acetylcholine, noradrenalin, dopamine and

serotonin neurotransmitter systems are primarily affected in AD

with subsequent loss of associated neurons [42]. Consistent with

that, we have found prominent, early changes in tryptophan

biosynthesis in both CSF and plasma of MCI and AD patients

(Fig. 4–6). Tryptophan is a precursor for serotonin, melatonin, and

niacin synthesis [43–45]. Therefore, not surprisingly, we found

alterations in the serotonin/melatonin pathway in CSF of both

MCI and AD patients, and in plasma of MCI individuals (Fig. 4,

5). These data are in agreement with recent studies indicating that

loss of serotonergic neurons correlates with AD severity, memory

Figure 5. Canonical pathways and process networks affected in plasma and CSF of AD vs. CN subjects. The significance of the pathways
was evaluated using P values and false discovery rate,0.05. Pathways that are affected in both fluids are colored in red. The ratio depicts the number
of affected metabolites to the total number of metabolites in each pathway. FXR - farnesoid X receptor; CFTR - cystic fibrosis transmembrane
conductance regulator; VDR - vitamin D receptor; DGAT1 - diacylglycerol acyltransferase 1; nNOS – neuronal nitric oxide synthase; UMP - Uridine
monophosphate; HETE - hydroxyeicosatetraenoic acid; HPETE - hydroperoxyeicosatetraenoic acid; BS – biosynthesis.
doi:10.1371/journal.pone.0063644.g005
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impairment, and neuropsychiatric symptoms [42,46], and that

melatonin protects against Ab toxicity in cellular and animals

models of AD [47,48]. Additional significant changes in neuro-

transmitter metabolism were observed in the acetylcholine

pathway in CSF from AD individuals and in gamma amino

butyric acid (GABA) pathway in plasma from MCI patients (Fig. 4,

5). This is in agreement with the previously reported changes

detected in post-mortem CSF samples from patients with

confirmed AD using targeted metabolomics [26]. We also found

that in addition to tryptophan, multiple amino acid metabolic

pathways were progressively affected in CSF and plasma in AD

and MCI patients compared to CN (Fig. 4, 5). While only L-

arginine and tryptophan pathways were altered in both plasma

and CSF of MCI patients (Fig. 4), the number of pathways equally

affected in CSF and plasma of AD patients considerably increased

and included beta-alanine, aspartate and aspargine, alanine, L-

cysteine, L-methionine, methionine-cysteine-glutamate along with

L-arginine and lysine metabolism (Fig. 5). Our findings are in a

good agreement with alterations in amino acids measured in CSF

of AD patients using variety of methods [26,28,30,31,49]. It is

important to note that pattern of alterations in amino acid

pathways in plasma was very similar to the observed in CSF in

both MCI and AD cohorts (Fig. 4, 5). However, significant

alterations in the lysine pathway were detected only in the plasma

in MCI and AD individuals (Fig. 4, 5). It is known that lysine being

a strictly ketogenic amino acid, is also required for the synthesis of

L-carnitine. L-Carnitine is the only transporter of fatty acids to

mitochondria to be metabolized with production of energy.

Indeed, previous study demonstrated that levels of carnitine were

lower in CSF from MIC-AD and AD patients than in CSF from

non-AD subjects [28]. In our study, perturbations of the lysine

metabolic pathway most accurately differentiated CN from the

MCI and AD groups in plasma (Fig. 7).

Previous metabolomics studies detected changes in the levels of

the neurotransmitter norepinephrine (NE) and its major metab-

olite 3-methoxy-4-hydroxy phenylglycol (MHPG) involved in

noradrenalin neurotransmitter system [50]. Loss of NE would be

expected as a result of neuronal loss in locus coeruleus established

in AD patients [51]. Interestingly, Czech et al reported increased

levels of NE in CSF of AD subjects suggesting a compensatory

mechanism where surviving neurons have higher secretion of NE

[30]. However, another study reported the opposite – a decrease

in NE levels and an increase in MHPG in the CSF of AD subjects

[26]. We were able to identify both metabolites in the CSF of CN,

MCI and AD subjects; however, levels of these metabolites were

not significantly changed between our study groups. It will be

interesting to determine whether the discrepancy between the

results could partially be explained by the impact of the post

mortem changes or the origin of the CSF samples – ventricular

post-mortem CSF [26] vs. lumbar, as in our study and [30], or the

different metabolomics platforms utilized in all of the above-

mentioned studies.

Figure 6. Altered metabolic pathways and process networks specifically affected either in plasma or in CSF of AD vs. MCI subjects.
The significance of the pathways was evaluated using P values and false discovery rate ,0.05. GABA - c-Aminobutyric acid; nNOS – neuronal nitric
oxide synthase; CFTR - cystic fibrosis transmembrane conductance regulator; VDR - vitamin D receptor; HETE - hydroxyeicosatetraenoic acid; HPETE -
hydroperoxyeicosatetraenoic acid.
doi:10.1371/journal.pone.0063644.g006
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Two additional pathways that were significantly and specifically

affected in plasma by AD severity included polyamine metabolism

and aminoacyl-tRNA biosynthesis in the cytoplasm (Fig. 7).

Alterations in the levels of polyamines found in the brain tissue of

AD patients have been linked to the abnormal regulation of

calcium flux, glutamate receptor function, and excitotoxicity [52].

The major metabolites affected in that pathway in plasma of MCI

and AD individuals included, but were not limited to, arginine,

tryptophan, proline, lysine, glutamine, GABA, and urea. Ami-

noacyl-tRNA synthetases (AARS) and translation factors are key

enzymes required for protein biosynthesis. The exact mechanisms

associated with altered AARS pathway in AD remain unknown.

However, recently AARS was linked to the biosynthesis of the

dinucleotide polyphosphates [53], which play an important role as

neurotransmitters, stimulate GABA release in peripheral and

central nervous system, and are involved in the response to

oxidative stress and metabolic changes [54–56].

A number of studies have proposed the role for mitochondrial

dysfunction in the early pathogenesis of AD [25,57–61]. We have

previously demonstrated the presence of metabolic signatures of

energetic stress and mitochondrial dysfunction in brain tissue from

three transgenic mouse models of familial AD (FAD) [25].

Consistent with our previous findings, the current study also

identified multiple pathways related to energy metabolism and

mitochondrial function that were already significantly affected in

MCI cohort. The TCA (Krebs) cycle was most affected in both the

CSF and plasma of MCI and AD patients (Fig. 4, 5). We also

found significant alterations in saturated fatty acid metabolism in

the plasma of MCI patients and in the CSF of AD patients, and

fatty acid omega oxidation in the plasma of AD patients (Fig. 4–6).

Additional pathways related to altered brain energetics included

pyruvate, mitochondrial ketone bodies, glycolysis and gluconeo-

genesis, and were affected in CSF and/or plasma from MCI and

AD patients supporting the role for mitochondrial dysfunction in

early AD. Among additional pathways correlated with AD

progression was the urea cycle [49]. We have found that

alterations in urea cycle were detected only in the CSF of MCI

subjects but in both, CSF and plasma of AD patients (Fig. 4–7).

Changes in the urea cycle correlate well with previously reported

changes in body fluids of AD patients [49] and could be used to

discriminate between those MCI patients who do and do not

progress to AD (Fig. 7).

An additional strength of our study is the application of UPLC-

ToF-MS – based metabolomics, which allows for the detection of

relative changes in multiple metabolites associated with AD

clinical severity, including lipids [36,62]. Utilization of MS in

conjunction with gas chromatography (GC) and high performance

liquid chromatography (HPLC) systems has recently become very

popular. However, application of UPLC-MS has an advantage in

that it does not require deconjugation and derivatization steps

before analysis [63,64]. Moreover, samples are processed at low

temperatures relatively to the temperatures used with GC-MS,

which allows for the detection of labile sterols that at high

temperatures could be unstable [65]. Previous studies identified

perturbations in the levels of phosphatidylcholine, plasmalogens,

sphingomyelins and sterols in plasma of subjects with AD [16–

19,31,66–68]. A decrease in desmosterol and the desmosterol/

cholesterol plasma ratio measured using metabolomics technology

was also proposed as a sensitive marker for AD [29]. However, it is

well known that AD patients lose weight, which results in lower

lipid levels. Therefore, it is important to determine the specificity

of lipid subclasses affected with AD severity rather than an overall

lipid flux. In agreement with the previous studies, we have found

that pathways related to cholesterol biosynthesis and metabolism,

cholesterol and sphingolipids transport, lipid metabolism and

other phospholipid and plasmalogen pathways were significantly

Figure 7. Venn diagram illustrating shared and uniquely affected pathways in plasma and CSF of MCI, AD and CN individuals.
Common pathways are defined.
doi:10.1371/journal.pone.0063644.g007
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altered in both CSF and plasma fromMCI and AD patients (Fig. 4,

5). The number of altered pathways related to lipid biosynthesis

and metabolism was progressively increased in AD patients

relative to MCI (Fig. 5). Discrimination between MCI and AD

patients demonstrates that metabolic signature of altered choles-

terol metabolism was prevalent in plasma samples and of altered

phosphatidylinositol metabolism in CSF (Fig. 6). Moreover, our

study identified CSF PGE2 biosynthesis and metabolism as one of

the key pathways that varied with AD severity (Fig. 7). Implication

of PGE2 in neural injury in AD is well documented, and includes

modulation of protein-lipid interactions, trans-membrane and

trans-synaptic signaling [69]. It was shown that levels of PGE2

measured in the CSF of control, MCI and AD patients enrolled in

the longitudinal study inversely correlate with AD severity: PGE2

was higher in patients with mild memory impairment, but lower in

those with more advanced AD [70].

Disorder in the hypothalamic-pituitary-adrenal (HPA) axis with

increased cortisol levels in CSF and plasma is also well established

for AD patients; and increased cortisol levels in CSF from AD

patients have been recently demonstrated using metabolomic

profiling [30]. Our data confirmed that the pathway related to the

cortisol biosynthesis from cholesterol was significantly affected in

both CSF and plasma from AD patients (Fig. 5). However, we also

found that cortisone biosynthesis and metabolism was among the

pathways that, along with PGE2, most accurately separated the

clinical groups in CSF (Fig. 6). Among pathways that were

uniquely affected in plasma of AD patients were those related to

obesity and type II diabetes mellitus (Fig. 5). This is an important

observation taking in consideration the data demonstrating that

type II diabetes mellitus is associated with an increased risk of

cognitive dysfunction and dementia, and needs to be explored in

future studies [71].

Together, the present results, utilizing comprehensive metabolic

profiling, in AD and MCI subjects confirmed previously reported

observations and identified novel metabolic signatures in CSF and

plasma that vary with the clinical severity of AD. Interestingly, the

fact that patients were on multiple medications did not impact our

ability to obtain data with significant differences between groups

(Table S10). This could partially be explained by the overlap of the

medication among all three groups (Table S10, bold font depicts

same medication) or the fact that medication does not significantly

affect the disease progression. Further, current metabolomics

approaches, in addition to measuring metabolites originated from

endogenous cellular metabolism, also detect those derived

exogenously from drugs, food, and cosmetics. However, we were

still able to observe robust group separation supporting high

sensitivity of the approach. A strength of the study is in utilizing

UPLC-ToF-MS to detect changes in broad variety of metabolites

that reflect the complexity of metabolic networks altered in AD.

The accuracy of our findings was also enhanced by the precise and

consistent selection of participants in order to closely match

experimental groups on demographic factors. However, limita-

tions of the study also warrant consideration. One limitation was

the small sample size of 15 participants per clinical group. While

we still achieved robust group separation, additional studies are

necessary to validate our findings in larger cohorts. It will also be

important to examine the effect of sex, as the participants included

in this analysis were primarily men. Lastly, future studies will need

to assess the specific changes in identified pathways to shed light

on disease mechanisms along with assaying the longitudinal

changes in the pathways and metabolites as indicators of disease

progression, especially at the early pre-clinical stages.

Taken together, our studies demonstrate that overlapping

alterations in several known and unknown metabolites and various

putative metabolic pathways could be detected using non-targeted

mass spectrometry–based comprehensive metabolic profiling in

CSF and plasma in MCI and AD individuals in respect to AD

severity. The agreement of our data with previously reported

changes in metabolites and metabolic pathways associated with

AD or MCI and identified using multiple analytical approaches

offers further support for metabolomics analysis of plasma and

CSF samples for AD diagnosis. Our results suggest that additional

studies with targeted metabolomics could identify specific panels of

metabolites. Furthermore, the significant similarity of affected

pathways based on changes in plasma and CSF metabolites and

canonical pathways supports the notion that plasma closely depicts

biochemical fingerprints of brain changes in AD and MCI

individuals. Our data validate plasma as reliable source for

metabolomic profiling and suggest that metabolomics is a valuable

tool for the identification of molecular mechanisms involved in the

etiology of AD and novel therapeutic targets.

Supporting Information

Table S1 Altered metabolites in plasma of AD, MCI and

CN patients. Data was generated using 1 way ANOVA

(p,0.05). FC – fold change between indicated groups; MCI –

mild cognitive impairment; AD – Alzheimer’s Disease; CN –

cognitively normal. Metabolites detected and identified in all three

study groups are highlighted in bold font. Compound identifica-

tion codes: CAS- Chemical Abstracts Service; KEGG- Kyoto

Encyclopedia of Genes and Genomes; HMP- Human Metabo-

lome Project; LMP ID- nonpolar lipid metabolite IDs.

(XLSX)

Table S2 Altered metabolites in CSF in AD, MCI and

CN patients. Data was generated using 1 way ANOVA

(p,0.05). FC – fold change between indicated groups; MCI –

mild cognitive impairment; AD – Alzheimer’s Disease; CN –

cognitively normal. Metabolites detected and identified in all three

study groups are highlighted in bold font. Compound identifica-

tion codes: CAS- Chemical Abstracts Service; KEGG- Kyoto

Encyclopedia of Genes and Genomes; HMP- Human Metabo-

lome Project; LMP ID- nonpolar lipid metabolite IDs.

(XLSX)

Table S3 Identification and validation of plasma and

CSF metabolite standards using UPLC-ToF MS. Com-

pound identification codes: CAS- Chemical Abstracts Service;

KEGG- Kyoto Encyclopedia of Genes and Genomes.

(XLSX)

Table S4 Metabolites altered in plasma of MCI vs. CN.

Data was generated using unpaired t-test. FC – fold change

between indicated groups; MCI – mild cognitive impairment; CN

– cognitively normal. Compound identification codes: CAS-

Chemical Abstracts Service; KEGG- Kyoto Encyclopedia of

Genes and Genomes; HMP- Human Metabolome Project; LMP

ID- nonpolar lipid metabolite IDs.

(XLSX)

Table S5 Metabolites altered in CSF of MCI vs. CN.

Data was generated using unpaired t-test. FC – fold change

between indicated groups; MCI – mild cognitive impairment; CN

– cognitively normal. Compound identification codes: CAS-

Chemical Abstracts Service; KEGG- Kyoto Encyclopedia of

Genes and Genomes; HMP- Human Metabolome Project; LMP

ID- nonpolar lipid metabolite IDs.

(XLSX)
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Table S6 Metabolites altered in plasma of AD vs. CN.
Data was generated using unpaired t-test. FC – fold

change between indicated groups; AD – Alzheimer’s Dsiease; CN

– cognitively normal. Compound identification codes: CAS-

Chemical Abstracts Service; KEGG- Kyoto Encyclopedia of

Genes and Genomes; HMP- Human Metabolome Project; LMP

ID- nonpolar lipid metabolite IDs.

(XLSX)

Table S7 Metabolites altered in CSF of AD vs. CN. Data

was generated using unpaired t-test. FC – fold change between

indicated groups; AD – Alzheimer’s Dsiease; CN – cognitively

normal. Compound identification codes: CAS- Chemical Ab-

stracts Service; KEGG- Kyoto Encyclopedia of Genes and

Genomes; HMP- Human Metabolome Project; LMP ID-

nonpolar lipid metabolite IDs.

(XLSX)

Table S8 Altered metabolites in plasma of AD vs. MCI.
Data was generated using unpaired t-test. FC – fold change

between indicated groups; AD – Alzheimer’s Dsiease; MCI – mild

cognitive impairment. Compound identification codes: CAS-

Chemical Abstracts Service; KEGG- Kyoto Encyclopedia of

Genes and Genomes; HMP- Human Metabolome Project; LMP

ID- nonpolar lipid metabolite IDs.

(XLSX)

Table S9 Altered metabolites in CSF of AD vs. MCI.
Data was generated using unpaired t-test. FC – fold change

between indicated groups; AD – Alzheimer’s Dsiease; MCI – mild

cognitive impairment. Compound identification codes: CAS-

Chemical Abstracts Service; KEGG- Kyoto Encyclopedia of

Genes and Genomes; HMP- Human Metabolome Project; LMP

ID- nonpolar lipid metabolite IDs.

(XLSX)

Table S10 List of medication for participants in CN,

MCI and AD groups. Table represents medications used by

each study participant at the time of sample collection. Similar

medication is highlighted in bold. MCI – mild cognitive

impairment; CN – cognitively normal, AD – Alzheimer’s Disease.

(XLSX)
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