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Abstract

Chromosome conformation capture experiments have led to the discovery of dense, contiguous, megabase-sized

topological domains that are similar across cell types and conserved across species. These domains are strongly

correlated with a number of chromatin markers and have since been included in a number of analyses. However,

functionally-relevant domains may exist at multiple length scales. We introduce a new and efficient algorithm that is

able to capture persistent domains across various resolutions by adjusting a single scale parameter. The ensemble of

domains we identify allows us to quantify the degree to which the domain structure is hierarchical as opposed to

overlapping, and our analysis reveals a pronounced hierarchical structure in which larger stable domains tend to

completely contain smaller domains. The identified novel domains are substantially different from domains reported

previously and are highly enriched for insulating factor CTCF binding and histone marks at the boundaries.
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Background
Chromatin interactions obtained from a variety of recent

experimental techniques in chromosome conformation

capture (3C) [1] have significantly advanced our under-

standing of the geometry of chromatin structure [2], its

relation to the regulation of gene expression, nuclear

organization, cancer translocations [3], and copy num-

ber alterations in cancer [4]. Recently, dense, contiguous

regions of chromatin termed topological domains have

been discovered in both mammals [5] and in fruit flies [6].

Topological domains have since been incorporated into

many subsequent analyses [7-9] due to the fact that they

are persistent across cell types, conserved across species,

and serve as a skeleton for the placement of many func-

tional elements of the genome [10,11].

3C experiments result in matrices of counts that rep-

resent the frequency of cross-linking between restriction

fragments of DNA that are spatially near one another.

The identification of domains in Dixon et al. [5] employed

a Hidden Markov Model (HMM) on these interac-

tion matrices to identify regions initiated by significant
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downstream chromatin interactions and terminated by a

sequence of significant upstream interactions. A defining

characteristic of the domains from their analysis is that

higher frequency 3C interactions tend to occur within

domains as opposed to across domains. This aspect of

domains is also reflected in the block-diagonal structure

of 3C interaction matrices as shown in Figure 1. In this

sense, domains can be interpreted as contiguous genomic

regions that self-interact frequently and are more spatially

compact than their surrounding regions.

However, the single collection of megabase-sized

domains may not be the only topologically and func-

tionally relevant collection of domains. On closer inspec-

tion of the block-diagonal matrix structure in Figure 1,

it becomes clear that there are alternative contiguous

regions of the chromosome that self-interact frequently

and are likely more spatially compact than their surround-

ing regions (dotted lines). Some of these regions appear

to be completely nested within others, suggesting a hier-

archy of compact regions along the chromosome, while

others appear to overlap each other. These observations

suggest that functionally-relevant chromosomal domains

may exist at multiple scales potentially contributing to

a hierarchy of domains or a more complex relationship

between domains.
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Figure 1 Interaction matrix for a portion of human chromosome 1 from a recent Hi-C experiment by Dixon et al. [5]. Each axis represents a

location on the chromosome with a step of 40kbp. Densely interacting domains identified by the method of Dixon et al. are shown in red.

Alternative domains are shown as dotted black lines on the upper triangular portion of the matrix. Visual inspection of the lower triangular portion

suggests domains could be completely nested within another and highly overlapping when compared to Dixon et al.’s domains. This motivates the

problem of identifying alternative domains across length scales.

We introduce a new algorithm to efficiently identify

topological domains in 3C interaction matrices for a given

domain-length scaling factor γ . Our formulation of this

problem as a dynamic program allows for an efficient

traversal of the solution space to obtain alternative opti-

mal and near-optimal domain sets. Our results suggest

that there exist a handful of characteristic resolutions

across which domains are similar. Based on this find-

ing, we identify a consensus set of domains that persists

across various resolutions. We find that domains discov-

ered by our algorithm are dense and cover interactions

of higher frequency than inter-domain interactions. Addi-

tionally, we show that inter-domain regions within the

consensus domain set are highly enriched with insulator

factor CTCF and histone modification marks. We analyze

a set of domains frommultiple optimal domain sets across

scales and establish that the organization of domains is

highly hierarchical, suggesting that the generated domains

can be used as the basis for understanding the hierar-

chical organization of the genome and its role in gene

regulation. We argue that our straightforward approach

retains the essence of the more complex multi-parameter

HMM introduced in [5] while allowing for the flexibility to

identify biologically relevant domain structures at various

scales.

Problem definitions
Given the resolution of the 3C experiment (say, 40kbp),

the chromosome is broken into n evenly sized fragments.

3C contact maps record interactions between different

sections of the chromosome in the form of a weighted

adjacency matrix A where two fragments i and j interact

with frequency Aij.

Problem 1 (Resolution-specific domains). Given a n×n

weighted adjacency matrix A and a resolution parameter

γ ≥ 0, we wish to identify a set of domains Dγ where

each domain is represented as an interval di = [ai, bi],

1 ≤ ai < bi ≤ n such that no two di and dj overlap

for any i �= j. Additionally, each domain should have a

larger interaction frequency within the domain than to its

surrounding regions.

Specifically, we seek to identify a set of non-overlapping

domains Dγ that optimizes the following objective:

max
∑

[ai,bi]∈Dγ

q(ai, bi, γ ), (1)

where Dγ chosen from the set of all possible domains,

and q is a function that quantifies the quality of a domain

[ ai, bi] at resolution γ . Here, the parameter γ is inversely

related to the average domain size in Dγ : lower γ results
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in sets of larger domains and higher γ corresponds to sets

of smaller domains. Since domains are required to contain

consecutive fragments of the chromosome, this problem

differs from the problem of clustering the graph of 3C

interactions induced by A, since such a clustering may

place non-contiguous fragments of the chromosome into

a single cluster. In fact, this additional requirement allows

for an efficient optimal algorithm.

Problem 2 (Consensus domains across resolutions).

Given A and a set of resolutions Ŵ = {γ1, γ2, . . .}, iden-

tify a set of non-overlapping domains Dc that are most

persistent across resolutions in Ŵ:

max
∑

[ai,bi]∈Dc

p(ai, bi,Ŵ), (2)

where Dc is the set of non-overlapping persistent domains

across resolutions, and p(ai, bi,Ŵ) is the persistence of

domain [ai, bi] corresponding to how often it appears

across resolutions.

Algorithms
Domain identification at a particular resolution

Since each row and corresponding column in a 3C inter-

action matrix encodes a genomic position on the chro-

mosome, we can write the solution to objective (1) as a

dynamic program:

OPT1(l) = max
k<l

{OPT1(k − 1) + max{q(k, l, γ ), 0}}, (3)

where OPT1(l) is the optimal solution for objective (1)

for the sub-matrix defined by the first l positions on the

chromosome (OPT1(0) = 0). The choice of k encodes the

size of the domain immediately preceding location l. We

define negative-scoring domains as non-domains and, as

such, only domains with q > 0 in the max term in (3) are

retained.

Our quality function q is:

q(k, l, γ ) = s(k, l, γ ) − μs(l − k), (4)

where

s(k, l, γ ) =

∑l
g=k

∑l
h=g+1 Agh

(l − k)γ
(5)

is a scaled density of the subgraph induced by the inter-

actions Agh between genomic loci k and l. When γ = 1,

the scaled density is the weighted subgraph density [12]

for the subgraph induced by the fragments between k and

l, which is the upper-triangular portion of the subma-

trix defined by the domain in the interval [k, l] divided

by the scaled length (l − k)γ of the domain. When

γ = 2, the scaled density is half the internal den-

sity of a graph cluster [13]. For larger values of γ , the

length of a domain in the denominator is amplified, hence,

smaller domains would produce larger objective values

than bigger domains with similar interaction frequencies.

Equation (4) is the zero-centered sum of (5).μs(l−k) is the

mean value of (5) over all sub-matrices of length l−k along

the diagonal of A, and can be pre-computed for a given A.

We disallow domains where there are fewer than 100 sub-

matrices available to compute the mean. By doing this, we

are only excluding domains of size larger than n − 100

fragments, which in practice means that we are disallow-

ing domains that are hundreds of megabases long. Values

for the numerator in (5) are also pre-computed using an

efficient algorithm [14], resulting in an overall run-time of

O(n2) to compute OPT1(n).

Enumerating multiple optimal and near-optimal solutions

The set of domains found by the dynamic program in

Equation 3 may not be the only set obtaining the max-

imum value of OPT1(·). In fact, there may be multiple

optimal solutions and solutions which are near optimal.

The domain structures that appear in alternative optimal

or near optimal solutions are of interest, especially if they

are significantly different, since they represent a poten-

tially diverse array of alternative domains that are only

precluded from the initially computed optimal solution as

a result of the arbitrary breaking of ties that takes place in

the dynamic program. We wish to be able to account for

such alternative solutions by enumerating them efficiently

and in order of a decreasing solution score.

Since Equation 3 will allow ‘non-domains’ (i.e. intervals

on the chromosome with q(k, l, γ ) ≤ 0) to be split arbi-

trarily without affecting the optimal score, we modified

the procedure as shown in Equation 6 to explicitly disallow

adjacent non-domains:

OPT′
1(l) = max

{

maxk<l{OPTD(k − 1)}

OPTD(l),
(6)

where the optimal score of l ending a domain is

OPTD(l) = max
k<l

{OPT′
1(k − 1) + q′(k, l, γ )}, (7)

and the quality function for the domain is

q′(k, l, γ ) =

{

q(k, l, γ ) if q(k, l, γ ) > 0

− ∞ otherwise.
(8)

OPTD(l) = OPT′
1(l) = 0 for l ∈ {0, 1}. In Equation 6,

maxk<l OPTD(k − 1) represents the optimal score at l

where l ends a non-domain region. This solution to Prob-

lem 1 produces a set of domains with the same opti-

mal score as Equation 3, but guarantees that alternative

optimal and near-optimal domain sets do not contain

non-domains that are adjacent.

To efficiently identify alternative optimal and near-

optimal solutions, we use the fact that the dynamic pro-

gram in Equation (6) can be conceptually represented as a

directed acyclic graph G where each OPT′
1(l) and OPTD(l)



Filippova et al. Algorithms for Molecular Biology 2014, 9:14 Page 4 of 11

http://www.almob.org/content/9/1/14

is connected by an edge to every other term it depends on:

{OPT′
1(k)}k<l and {OPTD(k)}k<l. For each edge e = (k, l)

in G, the weight of e is q′(k, l, γ ). Thus, finding a set of

domains with an optimal score is equivalent to finding

a highest-weight path in G starting from the node rep-

resenting OPT′
1(n). To find the top-K solutions, we then

find the K highest weight paths in G using a standard

procedure [15].

Obtaining a consensus set of persistent domains across

resolutions

For objective (2), we use the procedure above to con-

struct a set D =
⋃

γ∈Ŵ Dγ . D is a set of overlapping

intervals or domains, each with a quality score defined

by its persistence p across resolutions. To extract a set

of highly persistent, non-overlapping domains from D,

we reduce problem 2 to the weighted interval schedul-

ing problem [16], where competing requests to reserve

a resource in time are resolved by finding the highest-

priority set of non-conflicting requests. To find a consen-

sus set of domains, we map a request associated with an

interval of time to a domain and its corresponding inter-

val on the chromosome. The priority of a request maps to

a domain’s persistence p across length scales.

The algorithm to solve problem 2 is then:

OPT2(j) = max{OPT2(j − 1),

OPT2(c(j)) + p(aj, bj,Ŵ)}
(9)

where OPT2(j) is the optimal non-overlapping set of

domains for the jth domain in a list of domains sorted

by their endpoints (OPT2(0) = 0), and c(j) is the clos-

est domain before j that does not overlap with j. The first

and second terms in (9) correspond to either choosing

or not choosing domain j respectively. We pre-compute a

domain’s persistence p as:

p(ai, bi,Ŵ) =
∑

γ∈Ŵ

δi where δi =

{

1 if [ai, bi]∈ Dγ

0 otherwise.

(10)

Equation (10) is therefore a count of how often domain

i appears across all resolutions in Ŵ for domain sets iden-

tified by the dynamic program at a single resolution. It

may be desirable to treatmultiple highly overlapping, non-

equivalent domains as a single domain, however, we con-

servatively identify exact repetitions of a domain across

resolutions since this setting serves as a lower bound

on the persistence of the domain. If m = |D|, then

pre-computing persistence takes O(m|Ŵ|) time, and c(j)

is precomputed after sorting the intervals by their end-

points. The limiting factor when computing OPT2(m) is

the time to compute c(j), which is of orderm logm. Thus,

the overall algorithm runs in O(m logm + (n2 + m)|Ŵ|)

time taking into account an additional O(n2|Ŵ|) time for

computing D.

Results
We used chromatin conformation capture data from

Dixon et al. [5] for human fibroblast and mouse embry-

onic cells. The 3C contact matrices were already aggre-

gated at fragment size 40kb and were corrected for exper-

imental bias according to [17]. We compared our mul-

tiscale domains and consensus sets against the domains

generated by Dixon et al. for the corresponding cell type

and species. For human fibroblast cells, we used CTCF

binding sites from [18]. For mouse embryonic cell CTCF

binding sites and chromatin modification marks, we used

data by Shen et al. [19].

Ability to identify densely interacting domains across

scales

Multiresolution domains successfully capture high fre-

quency interactions and leave interactions of lower mean

frequency outside of the domains. We compute the mean

interaction frequency for all intra- and inter-domain inter-

actions at various genomic lengths and plot the distribu-

tion of means for multiple resolutions (Figure 2(a)). The

mean intra-domain interaction frequency (blue) is consis-

tently higher (up to two times) than the mean frequency

for interactions that cross domains (red). Compared to

the domains reported by Dixon et al., our domains tend

to aggregate interactions of higher mean frequency, espe-

cially at larger γ . The distribution of mean intra-domain

frequencies for Dixon et al. is skewed more to the left

than that of the multiscale domains (Figure 2(b)). This

difference can be partially explained by the fact that multi-

scale domains on average are smaller in size (μ = 0.2Mb,

σ = 1.2Mb) than domains reported by Dixon et al. (μ =

1.2Mb, σ = 0.9Mb).

Domain persistence across scales

Domain sets across resolutions share significant similar-

ities, even as the distribution of domains and their sizes

begin to change (Figure 3). The patterns of similarity are

particularly obvious if we plot the domains at various res-

olutions (Figure 4(a)): many domains identified by our

algorithm persist at several resolutions and are aggregated

into larger domains at smaller γ , suggesting a hierarchical

domain structure. The stability of these domains across

resolutions indicates that the underlying chromosomal

structure is dense within these domains and that these

domains interact with the rest of the chromosome at a

much lower frequency.

A pairwise comparison of domain configurations dis-

plays regions of stability across multiple resolutions

(Figure 4(b)). We use the variation of information

(VI) [20], a metric for comparing two sets of clusters, to
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Figure 2 Our approach identifies densely interacting domains

across scales. (a) Our algorithm discovers domains with mean

frequency value for inter- and intra-domain interactions (solid lines) at

or better than that of Dixon et al. domains (dotted lines). Each solid

line represents domains at different resolution γ in human fibroblast

cells. (b)Multiscale domains identified in human fibroblast cells by

our dynamic program tend to have higher mean frequency than

those of Dixon et al. (distributions are plotted after outliers > μ + 4σ

were removed).

compute the distance between two sets of domains. To

capture the similarities between two domain sets D and

D′ and the inter-domain regions induced by the domains,

we construct new derivate sets C and C′ where C con-

tains all domains d ∈ D as well as non-domain regions

(C′ is computed similarly). To compute entropy H(C) =
∑

ci∈C
pi log pi, we define the probability of seeing each

interval ci = [ai, bi] in C as pi = (bi − ai)/L where L is the

length of the chromosome. When computing the mutual

information I(C,C′) =
∑

ci∈C

∑

c′j∈C
′ pij log[pij/(pipj)]

between two sets of intervals C and C′, we define the joint

probability pij to be |[ai, bi]∩[aj, bj] |/L.

Figure 3 Domain sizes and count across resolutions. The domain

sizes increase and the domain count decreases as the resolution

parameter drops. Above: plotted are maximum (red), average (blue),

and minimum (green) domain size averaged over all chromosomes

for the domains on human fibroblast cells (IMR90). The magenta line

shows the average domain size for domains reported by Dixon et al.

Below: the number of domains increases for higher values of

resolution parameter. The magenta line displays domain count for

Dixon et al.

We then compute variation of information on these two

new sets: VI(C,C′) = H(C) + H(C′) − 2I(C,C′). Chro-

mosome 1, for example, has three visually pronounced

groups of resolutions within which domain sets tend to be

more similar than across (γ = [0.00-0.20], [0.25-0.70], and

[0.75-1.00] — see Figure 4(b)).

Comparison with the previously identified set of domains

in Dixon et al.

At higher resolutions, domains identified by our algorithm

are smaller than those reported by Dixon et al. (Figure 3).

As the resolution parameter decreases to 0.0, the aver-

age size of the domains increases. The composition of the

domains we identify is different from that of Dixon et al.

as illustrated in Figure 4(a) and captured by the variation

of information in Figure 4(b).

We use the consensus domains algorithm to obtain a

consensus set of domainsDc persistent across resolutions.

We construct the set Ŵ by defining the range of our scale

parameter to be [ 0, γmax] and incrementing γ in steps

of 0.05. In order to more directly compare with previous

results, we set γmax = 0.5 for human and 0.25 for mouse

since these are the scales at which the maximum domain

sizes in Dixon et al.’s sets match the maximum domain

sizes in our sets.

Our consensus domain set agrees with the Dixon et al.

domains better than with a randomized set of domains

adhering to the same domain and non-domain length

distributions (Figure 5 and [21]). Comparing to a set of
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Figure 4 Domain persistence across scales. (a) Domains identified by our algorithm (black) are smaller at higher resolutions and merge to form

larger domains at γ close to 0. Visual inspection shows qualitative differences between consensus domains (red) and domains reported by Dixon et

al. (green). Data shown for the first 4Mb of chromosome 1. (b) Variation of information for domains identified by our algorithm across different

resolutions for chromosome 1 in human fibroblast cells.

random domains also helps to verify that our observa-

tions are due to the observed sequence of domains and

not the distribution of domain lengths. To shuffle Dixon’s

domains, we record the length of every domain and non-

domain region, and then shuffle these lengths to obtain

a randomized order of domains and non-domains across

the chromosome. The fact that variation of information is

lower between consensus domains and domains reported

by Dixon et al. demonstrates that, though the approaches

find substantially different sets of topological domains,

they still agree significantly more than one would expect

by chance.

Enrichment of CTCF and histonemodifications near

boundaries

We assess the enrichment of transcription factor CTCF

and histone modifications H3K4me3 and H3K27AC

within the inter-domain regions induced by the consensus

domains. These enrichments provide evidence that the

boundary regions between topological domains correlate

Figure 5 Comparison of Dixon et al.’s domain set with the multiscale consensus set for chromosomes 1–22 (x-axis).We used the variation

of information (VI) (y-axis) to compute distances between domain sets for the multiscale consensus set vs. Dixon et al. (blue dots) and the multiscale

consensus vs. randomly shuffled domains (red diamonds).
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with genomic regions that act as insulators and barriers,

suggesting that the topological domains may play a role in

controlling transcription in mammalian genomes [5].

Figure 6 illustrates the enrichment of insulator or

barrier-like elements in domain boundaries in both the

human fibroblast (IMR90) andmouse embryonic stem cell

(mESC) lines. Specifically, we observe that the boundaries

between consensus domains are significantly enriched

for all of the transcription factors and histone marks we

consider. In certain cases — specifically in the case of

CTCF — we notice that the CTCF binding signals peak

more sharply in the boundaries between the domains we

discover than in the boundaries between the domains of

Dixon et al.

We also observe that, when compared with the domain

boundaries predicted by Dixon et al., our boundaries

more often contain insulator or barrier-like elements (see

Table 1). Specifically, we normalize for the fact that we

identify approximately twice as many domains as Dixon

et al., and generally observe a two-fold enrichment in the

fraction of boundaries containing peaks for CTCF mark-

ers. This suggests that structural boundaries identified

by our method are more closely tied to functional sites

which serve as barriers to long-range regulation. We also

observe a depletion of insulator CTCF elements within

our domains when compared to the domains of Dixon

et al. This observation is consistent with the assumption

that transcriptional regulation is more active within spa-

tially proximate domains since there are fewer elements

blocking regulation within these domains. Table 1 also

shows similar patterns for histone modifications which

suggests that our domain boundaries are enriched for

functional markers of gene regulation.

Multiple optimal solutions across scales reveal the

hierarchical organization of topological domains

It has been recently hypothesized that chromatin is

packed into the nucleus in a hierarchical manner sug-

gesting that smaller, spatially compact domains combine

to form larger superdomains that may be functionally

similar [2,3,6]. This hypothesis is partially motivated by

the fact that the distribution of 3C interaction frequen-

cies better matches a fractal globule model of chromatin

organization than an essentially random equilibrium orga-

nization of chromatin in the nucleus [22] and by an

initial exploration of the hierarchical organization of the

Drosophilla genome [6]. By combining alternative optimal

and near-optimal domains across scales, we quantitatively

determine the extent to which domains at different γ con-

form to a hierarchical structure empirically identifiable in

Figures 4(a) and 7.

We determine the extent to which all identified opti-

mal and near-optimal topological domains are hierar-

chically organized by combining alternative optimal and

near-optimal domains and computing a score character-

izing the hierarchy. Specifically, we combine all near-

optimal domains across all resolutions into a single set:

DK =
⋃

γ∈Ŵ

⋃

i∈ [1,K ] D
i
γ where Di

γ is the ith opti-

mal solution at resolution γ and K total solutions are

found at each resolution. We quantify the extent to

which domains in this set are nested by determining

the fraction of sufficiently different domain pairs {di, dj}

where either di or dj is completely contained in the

other:

h(DK
α ) =

1

|DK
α |

∑

{di,dj}∈DK
α

δ(di, dj), (11)

δ(di, dj) =

{

1, if di ⊂ dj or dj ⊂ di

0, otherwise,
(12)

andDK
α contains all pairs of domains {di, dj} from domains

in DK such that α = |di�dj|/|di ∪ dj| — a fraction of

genomic fragments different between two domains di and

dj in relation to the union of all fragments comprising the

two domains — is greater than a user-specified value. For

our tests, we define two domains to be different if more

than 10% of their fragments differ (α = 0.1). If no domain

is contained fully in any other domain the score h(·) = 0.

If, for every pair of domains, one of the domains is fully

contained in the other, the score attains its maximum

value h(·) = 1. We empirically observe that randomly

generated domains result in h(·) ≈ 0.5.

To determine whether the set of all identified domains

we observe is significantly more hierarchical than

expected by chance, we randomly shuffle domains while

maintaining the same domain and non-domain length dis-

tributions as the sets of domains we find [21]. At each

resolution, we identify the K = 10 optimal and near-

optimal solutions for all chromosomes in human fibrob-

last cell line (IMR90) as well as mouse embryonic cells

(mESC). The choice of K = 10 is computationally benefi-

cial given that even for such low K , the score for the next

optimal solution drops off fast at lower γ , but for γ = 0.5

the optimal score only changes by 0.02% (from 16774.7

to 16771.2) after 50000 solutions are considered. Alter-

natively, a weaker null hypothesis could be constructed

that uses randomly shuffled Hi-C matrix. However, this

approach does not control for the distribution of domain

lengths — a previously established property of topologi-

cal domains [5,6]. In addition, it has recently been shown

that randomly shuffled Hi-C matrices lack a clear domain

structure since they exhibit significantly depleted insu-

lation scores [24]. This weaker null hypothesis is thus

not appropriate for determining the significance of hier-

archical domain structure. For both organisms, we find

that h(·) for the identified set of domains is significantly

larger than h(·) for the randomized domains (Benjamini-

Hochberg corrected P < 0.001 over all chromosomes).
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Figure 6 Enrichment for chromatin marks and histone modifications in domain boundaries. Enrichment of CTCF binding (a) in IMR90 and

(b) in mESC and histone modifications (c), (d) in mESC around domain boundaries for our consensus set of persistent domains (left, blue), and for

those identified by Dixon et al. (right, blue). Green lines represent the presence of CTCF at the midpoint of the topological domains.
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Table 1 Chromatin marks and histonemodification enrichments within and between domains

Signal Domains ([5]) Domains (Here) Boundaries ([5]) Boundaries (Here)

CTCF (IMR90) 2050
2234 ≈ 0.92 3092

5365 ≈ 0.58 423
2136 ≈ 0.20 2126

4861 ≈ 0.44

CTCF (mESC) 2057
2066 ≈ 1.00 2500

3578 ≈ 0.70 654
2006 ≈ 0.33 2258

3122 ≈ 0.72

H3K4me3 (mESC) 2019
2066 ≈ 0.98 2362

3578 ≈ 0.66 600
2006 ≈ 0.30 1738

3122 ≈ 0.60

H3K27AC (mESC) 1922
2066 ≈ 0.93 2254

3578 ≈ 0.63 458
2006 ≈ 0.23 1342

3122 ≈ 0.43

Each table entry is of the form e

t
≈ r where e is the number of elements containing ≥ 1 of CTCF and histone modifications, t is the total number of elements and r is

the approximate ratio e/t. Our method produces more domains, and hence more boundaries, than that of Dixon et al. [5]. However, relative to Dixon et al., our

domains are depleted for peaks of interest, while our boundaries are significantly enriched for such peaks.

The mean value of the identified set of domains is ≈

0.95 as opposed to ≈ 0.70 for 1,000 randomized sets of

domains sampled from each resolution. Computing h(·)

on the combined set of domains is conservative since it

is likely that domains from multiple optimal and near-

optimal solutions can overlap but may not be completely

contained in one another within a length scale. This sug-

gests that the multiple optimal and near-optimal domains

across scales exhibit a hierarchical structure and that the

ensemble of domains can be used as the basis of a more

detailed analysis of the hierarchical organization of these

genomes.

Discussion and conclusions
In this paper, we introduce an algorithm to identify topo-

logical domains in chromatin using interaction matrices

from recent high-throughput chromosome conformation

capture experiments. Our algorithm produces domains

that display much higher interaction frequencies within

the domains than in-between domains (Figure 2) and for

which the boundaries between these domains exhibit sub-

stantial enrichment for several insulator and barrier-like

elements (Figure 6). To identify these domains, we use

a multiscale approach that finds domains at various size

scales and generates multiple optimal and near-optimal

solutions.

We define a consensus set to be a set of domains that

persist across multiple resolutions and give an efficient

algorithm that finds such a set optimally.

Ourmethod uses a score function that encodes the qual-

ity of putative domains in an intuitive manner based on

their local density of interactions. Variations of the scoring

1400000 1700000 2000000 2300000 2600000 2900000 3200000 3500000 3800000 4100000

p13
chr20

Dixon et al.

gamma 0.50

gamma 0.35

gamma 0.15

gamma 0.10

IMR90 Hi-C

H3K4me3 (repl)

H3K27ac 

H3K4me3 

Figure 7 Domain sets at various resolutions. 10 best optimal and near-optimal solutions for resolutions γ = 0.5, 0.35, 0.15, 0.10 for a portion of

human fibroblast chromosome 20 (IMR90). Variations in the domain assignments within a single γ and across resolutions correspond with visually

identifiable, hierarchical regions of dense Hi-C interactions. All histone mark tracks were obtained from IMR90 cells. Plotted with WashU EpiGenome

Browser [23].
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function in (4), for example, by median centering rather

than mean centering or by optimizing the homogene-

ity of interaction frequencies instead of total frequencies,

can be explored to test the robustness of the enrichments

described here.

Our method is particularly appealing in that it requires

only a single user-specified parameter γmax. For our exper-

iments, the parameter γmax was set based on the maxi-

mum domain sizes observed in Dixon et al.’s experiments

so that we could easily compare our domains to theirs.

This parameter can also be set intrinsically from prop-

erties of the Hi-C interaction matrices. For example, we

observe similar enrichments in both human and mouse

when we set γmax to be the smallest γ ∈ Ŵ such that

the median domain size is >80kbp (two consecutive Hi-C

fragments at a resolution of 40kbp). This is a reason-

able assumption since domains consisting of just one or

two fragments do not capture higher-order spatial rela-

tionships (e.g. triad closure) and interaction frequencies

between adjacent fragments are likely large by chance [22].

We compared the fraction of the genome covered

by domains identified by Dixon et al. vs. the domains

obtained from ourmethod at various resolutions. Dixon et

al.’s domains cover 85% of the genome while our sets tend

to cover less of the genome (≈ 65% for a resolution that

results in the same number of domains as those of Dixon

et al.). The fact that our domain boundaries are more

enriched for CTCF sites indicates that our smaller, more

dense domains may be more desirable from the perspec-

tive of genome function. The dense, functionally-enriched

domains discovered by our algorithm provide strong evi-

dence that alternative chromatin domains exist and that a

single length scale is insufficient to capture the hierarchi-

cal and overlapping domain structure visible in heat maps

of 3C interaction matrices.

We provided the first quantitative analysis testing the

hypothesis that the domain structure across scales is sig-

nificantly hierarchically organized, suggesting that the

domains we identify can be used as the basis for study-

ing the hierarchical organization of genomes and how this

structure impacts gene regulation. By incorporating mul-

tiple optimal and near optimal solutions into this analysis,

we provide evidence that the observed hierarchical struc-

ture persists not only across scales but across a variety

of plausible high-scoring domain sets. However, multi-

ple optimal solutions are not necessary to quantify the

hierarchical structure of the domains since single optimal

solutions across scales can already reveal a hierarchical

structure. There are many more near-optimal solutions

at higher values of γ since the domain sizes tend to be

smaller. For this special case, it would be desirable to

develop a method that more concisely characterizes these

larger solution spaces, and this is an interesting direc-

tion for future work. The quantitative evidence of the

hierarchical structure of topological domains also moti-

vates the development of novel methods for domain dis-

covery that directly account for such hierarchy in the

models they assume and the functions they optimize.

The method for discovering topological domains that

we have introduced is practical for existing datasets. Our

implementation is able to compute the consensus set of

domains for the human fibroblast cell line and extract

the consensus set in 24 minutes when run on a personal

computer with 2.3GHz Intel Core i5 processor and 8Gb

of RAM. Computing optimal and near-optimal solutions

adds only a small overhead to overall running time: when

computing 20 top optimal and near-optimal solutions per

each γ setting (with γ 0.0-0.9 with a step of 0.05) the

computation finishes in 25 minutes 34 seconds.

A preliminary version of this manuscript appeared

in the 2013 Workshop on Algorithms for Bioinformat-

ics [25].

Availability and requirements
A C++11 implementation of the algorithms and instruc-

tions for compilation and use are available at http://www.

cs.cmu.edu/~ckingsf/software/armatus/.
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