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Abstract

Background: Identification of amino acid propensities that are strong determinants of linear B-cell epitope is very important
to enrich our knowledge about epitopes. This can also help to obtain better epitope prediction. Typical linear B-cell epitope
prediction methods combine various propensities in different ways to improve prediction accuracies. However, fewer but
better features may yield better prediction. Moreover, for a propensity, when the sequence length is k, there will be k values,
which should be treated as a single unit for feature selection and hence usual feature selection method will not work. Here
we use a novel Group Feature Selecting Multilayered Perceptron, GFSMLP, which treats a group of related information as a
single entity and selects useful propensities related to linear B-cell epitopes, and uses them to predict epitopes.

Methodology/ Principal Findings: We use eight widely known propensities and four data sets. We use GFSMLP to rank
propensities by the frequency with which they are selected. We find that Chou’s beta-turn and Ponnuswamy’s polarity are
better features for prediction of linear B-cell epitope. We examine the individual and combined discriminating power of the
selected propensities and analyze the correlation between paired propensities. Our results show that the selected
propensities are indeed good features, which also cooperate with other propensities to enhance the discriminating power
for predicting epitopes. We find that individually polarity is not the best predictor, but it collaborates with others to yield
good prediction. Usual feature selection methods cannot provide such information.

Conclusions/ Significance: Our results confirm the effectiveness of active (group) feature selection by GFSMLP over the
traditional passive approaches of evaluating various combinations of propensities. The GFSMLP-based feature selection can
be extended to more than 500 remaining propensities to enhance our biological knowledge about epitopes and to obtain
better prediction. A graphical-user-interface version of GFSMLP is available at: http://bio.classcloud.org/GFSMLP/.
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Introduction

B-cell epitopes are antigenic determinants, which are recog-

nized and bound by B-cell receptors or antibodies [1]. Knowledge

of the locations of B-cell epitopes can help develop peptide

vaccines or can be used to induce the production of antibodies that

can be applied as diagnostic or therapeutic tools in the laboratory

or by pharmaceutical industry [2–4]. There are two kinds of B-cell

epitopes: Linear B-cell epitopes and conformational B-cell

epitopes. Linear B-cell epitopes are constructed from contiguous

residues from the amino acid sequence of a protein and the

conformational B-cell epitopes are formed by non-contiguous

residues which become adjacent as a result of folding of a protein

structure [5]. Many studies have reported success of sequence-

based prediction approaches for different biological problems,

such as prediction of protein pathway networks [6], protein

subcellular location [7,8], and drug-target interaction [9]. There

are other sequence-based methods for identification of membrane

proteins and their types [10], prediction of the metabolic stability

of proteins [11], identification of enzymes and their functional

classes [12], prediction of network of substrate-enzyme-product

triads [13], identification of GPCR and their types [14], and

identification of proteases along with their types [15]. These

sequence-based prediction methods as well as some of the user-

friendly web-servers for predicting various attributes of proteins

are recently summarized in [16]. In this study, we try to develop a

novel sequence-based method for identification of amino acid

propensities that are strong determinants of epitopes. We also

investigate the effectiveness of those selected propensities in

epitope prediction. Since in wet-lab operations contiguous peptide

sequences are more easily synthesized, many studies for B-cell

epitope identification have focused on prediction of linear B-cell

epitopes. Here we focus only on linear B-cell epitope prediction.

In the past three decades, many studies attempted to predict the

locations of linear B-cell epitopes in a protein sequence. Generally,

those studies can be classified as sliding-window-based or machine-
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learning-based approaches. The sliding-window-based approaches

assume that the locations of linear B-cell epitopes are highly

correlated to certain physico-chemical properties. Such a method

considers some propensity value (say hydrophilicity) of amino acids

and computes the average value of this propensity measure over a

window of fixed length in a protein sequence [17]. For example, if

the window length is w = 2k+1, then sliding of the window starts

from the left end. The first average value corresponds to the

residue location k+1. Then the window is shifted one position to

the right and again the average is computed which corresponds to

residue location k+2. The process is continued till the window

reaches the end of the sequence. Then residues with average value

greater than a threshold are labelled as possible linear epitopes.

Some methodologies use more than one propensity values which

are combined using different weighting factors. The literature is

quite rich in this area [18–27]. However, Blythe and Flower

demonstrated after exhaustive testing that a single amino acid

propensity scale may not be effective to predict epitope location

reliably [28]. And they suggested that artificial intelligence

techniques would be better to improve the prediction perfor-

mance. Furthermore, the weak predictive performance, irrespec-

tive of whether we use single or multiple propensities, could result

from the fact that these average values may be above the threshold

in one segment and less than the threshold in the next segment. In

this case the two segments will have (w21) common residues, but

one residue will be labelled as an epitope and the other will not be!

Hence, after the first B-cell epitope database [29] was carefully

curated for linear epitopes, there have been many attempts using

machine learning approaches to improve the prediction of the

locations of linear B-cell epitopes [30–35]. However, for machine

learning approaches, use of different combinations of features is

known to result in different prediction performance. More features

are not necessarily better. On the other hand, use of a smaller set

of useful features can enhance the prediction accuracy, particularly

for the test data. In addition use of less features leads to lesser

degrees of freedom of the trained system and hence chances of

memorization of data would be lower. Therefore, selection of an

appropriate set of features (could be propensities) without using an

exhaustive search for the prediction of linear B-cell epitopes is an

important problem to address.

Generally, feature selection methods fall into two broad groups,

namely, Filter method and Wrapper method [36,37]. The filter

method does not take any feedback from the classifier or the

predictor that will ultimately use the selected features. A wrapper

method, evaluates the effectiveness of the features using the

classifier (or prediction system) that will finally use the selected

features. The Wrapper method, thus, are likely to exhibit better

performance. For many learning problems, features may have

natural grouping and either a group as a whole should be selected

or discarded. As an example [38], consider an intelligent weld

inspection system for which the sources of information may be X-

ray images, radiographs, eddy current and so on. Here we cannot

use an X-ray image directly into a pattern recognition system, but

first a set of features has to be computed from it and then that set

of features can be used. The same is true for radiographs. Thus,

for a real-time intelligent weld inspection system, we need to

minimize the number of sensors, which will reduce the size, design

cost and processing cost associated with the system. So either we

discard entirely an X-ray image or accept it. Similarly, in

bioinformatics, we may compute a set of features from a

propensity measure. So discarding a propensity measure results

in discarding the set of features computed from the propensity

measure. This is selection of subsets of features and it is a

generalized form of feature selection. To address this problem, in

our earlier study we have proposed two integrated methods, the

Group Feature Selecting Multilayered Perceptron (GFSMLP) and

the Group Feature Selection RBF (GFSRBF) network, which can

select/discard subsets of features [38] – to our knowledge this is

the first work in this area. Here we shall use only the GFSMLP

network to find useful amino acid propensities for linear B-cell

epitope prediction. Note that, in previous linear B-cell epitope

prediction studies, researchers have only focused on how to

achieve a better epitope prediction using various combinations of

amino acid propensities as input features to a classifier, without

actually performing the feature selection.

In this study we use GFSMLP technique on four data sets

considering eight widely used amino acid propensities, to

determine which, and to what extent, certain amino acid

propensities are better at working together to solve the linear B-

cell epitope prediction problem. In addition, we also perform some

validation experiments to examine whether the selected amino

acid propensities are reasonable with respect to all four data sets.

Also, in order to offer a user-friendly solution, we provide a

graphical user interface (GUI) version of our GFSMLP program

(http://bio.classcloud.org/GFSMLP/) so that users with no

proficiency in programming can simply go all the way from

uploading their data set to selecting useful features and obtaining

relevant results.

Results and Discussion

In this study we use GFSMLP to identify amino acid

propensities that are good determinants of linear B-cell epitopes

or non-B-cell epitopes. Our approach can find the propensities

that interact linearly or non-linearly to determine the location of

linear B-cell epitopes. Here we have performed two experiments

on four data sets to show that our approach not only identifies

amino acid propensities which are good discriminators individu-

ally but also groups of propensities that cooperate for better

prediction of epitopes. In particular, we have identified some

specific pair of propensities that are good determinants of epitopes.

In addition, two classification procedures, GFSMLP and a two-

level 10-fold cross-validation scheme with Support Vector

Machine (SVM) classifier [39] are utilized to assess the

discriminating power of a selected propensity or pair of

propensities. Finally, for each data set we also examine the

correlations of paired propensities to further understand why two

specific propensities cooperate well. Our results are divided into

three subsections: ranking of amino acid propensities, understand-

ing cooperation between propensities to determine linear B-cell

epitopes, and correlations of paired propensities.

Ranking of Amino Acid Propensities
The main objective here is to rank some of the amino acid

propensities [19,20,22–24,40–42] in terms of its relevance for

prediction of linear B-cell epitopes. We want to find if one or more

of the amino acid propensities tends to cooperate with other amino

acid propensities in solving the linear B-cell epitope prediction

problem well. Thus, in our first experiment, we conduct 1,000

runs of GFSMLP to get the ranking by the frequency with which

amino acid propensities are selected (i.e., a propensity with a

higher frequency is considered a better candidate). GFSMLP

learning needs four parameters to be specified. For each run, in

this experiment, we use the following values for the parameters:

learning coefficients m = 0.1 and g = 0.2, number of hidden units,

n = 15, and number of iterations = 2,000. All issues relating to the

optimal choice of parameters are ignored here as our goal is not to

design the best classifier here. The training starts assuming all

Identify Useful Propensities for B-cell Epitope
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propensities as bad (assume that a gate is associated with every

propensity and every gate is almost closed, see Materials and

Methods). Table 1 summarizes the results. Table 1 reveals that

Chou’s beta-turn (propensity #8) [42] and Ponnuswamy’s polarity

(propensity #5) [41] are the most frequently selected propensities

over 1,000 runs in all four data sets. Beta-turn is selected 629, 553,

554, and 643 times over the 1,000 runs for data sets AAP872,

ABCpred, BCPred, and Combo, respectively. Polarity is selected

397, 307, 402, and 498 times over 1,000 runs in the same four data

sets, respectively. On the other hand, Pellequer’s turns (propensity

#6) [24] and Janin’s surface exposed scales (propensity #4) [40]

are the least selected propensities for most of these four data sets.

This suggests that Chou’s beta-turn and Ponnuswamy’s polarity,

individually or together, are probably the most important

discriminators while Pellequer’s turns and Janin’s surface exposed

scales are the least important attributes contributing to the location

of linear B-cell epitopes. We say, probably because features can

interact between themselves and a feature, when working alone,

may not be a good discriminator but it can do a great job in

cooperation with some other features. Hence, we further use two

evaluation strategies to determine classification performance based

on the selected propensities. We use two classifiers, GFSMLP and

SVM. In addition to GFSMLP, we use SVM because it has been

found to be very effective in predicting membrane protein type,

protein subcellular location, HIV protease cleavage sites in protein

etc. [43–49].

In the first evaluation experiment we use GFSMLP to verify the

utility of the selected propensities. Here we proceed as follows. We

use all of the data to construct and test the classifier (GFSMLP) to

determine which propensity is better for the linear B-cell epitope

prediction. Note that, our intention is not to design a classifier but

to find which propensities are more useful for this problem of

linear B-cell epitope prediction. For this set of experiments, the

parameters for GFSMLP are set as m = 0, g = 0.2, n = 15, number

of iterations = 2,000 and the gate associated with the selected

propensity is kept completely open while for all other propensities

the gates are completely closed. Since, m = 0, so no training of the

attenuators will be done. We repeat such experiments 100 times.

In Table 2 we report the average misclassification rates and

standard deviations. These are training errors and not to be

confused with test error. The first column shows the propensity

whose gate is kept open (i.e., the propensity that is used). Table 2

brings out a few interesting points: (a) GFSMLP suggested Chou’s

beta-turn (propensity #8) as the most useful predictor for linear B-

cell epitopes and Table 2 reveals that it is indeed the case. It

demonstrates that this propensity has the best discrimination

power by itself in solving the linear B-cell epitope prediction

problem in all four data sets. Thus, as of this point in our analysis,

we can infer that Chou’s beta-turn propensity is the best choice to

serve as one of the input features for linear B-cell epitope

prediction. It also has the best tendency to cooperate with other

propensities. (b) Previously we have found that Ponnuswamy’s

polarity is the second most frequently selected propensity by

GFSMLP. But here we find that, this propensity alone is not the

second best predictor; in fact, it is the second worst predictor when

considered alone. Hence, this propensity alone may not be a good

feature for a classifier but it may play a good supporting role to

obtain a better linear B-cell epitope prediction performance when

cooperating with other propensities. We shall demonstrate this

later. (c) When we look at the performance of Pellequer’s turns

(Propensity #6) and Janin’s surface exposed scales (Propensity

#4), we find that none of them alone has good prediction ability.

Both of them have quite poor discrimination power by themselves.

The propensity #6 is the worst in all cases but ABCPred data set,

where it was the second worst. The propensity #4 is the third worst

for every data set in the linear B-cell epitope prediction. It suggests

that none of these propensities, when used alone, is a good feature

for the classification of linear B-cell epitopes. (d) The other

propensities appear to have reasonable discriminating power when

used individually, but may not easily cooperate with other

propensities for linear B-cell epitope prediction. For example,

Emini’s accessibility (Propensity #2), although exhibits a good

discriminating power alone (the second best), considering Table 1

we find that it does not easily cooperate with other propensities as

it is selected less than 25% times in conjunction with other

propensities. However, these identified poor propensities may

perform well when used in conjunction with some other

propensities not considered in this study. This is left as a subject

for future study.

In the previous experiments we have evaluated propensities

using a neural network (GFSMLP) and the ranking of propensities

is also done using the same tool, GFSMLP. If Chou’s beta-turn is

indeed a good predictor of B-cell epitopes, then it should also do a

good job of prediction using other classifiers such as SVM. This is

what we test here. To get a reliable estimate of the prediction

accuracy, here we adopt a two-level 10-fold cross-validation

scheme with SVM. We use only one of the propensities as the

feature. The resultant test accuracies are shown in Table 3, which

also reveal several interesting phenomena: (a) here also we obtain

similar accuracy (no more than 60%) as reported in previous

studies using the cross-validation framework with any one of those

eight propensities as input to the classifier [30,31]. Although our

results again demonstrate that the classification performance using

an individual propensity is not as good as that using the

frequencies of amino acid pairs in epitope/non-epitope peptides

(about 10% improvement in accuracy) [31], our study opens up

the possibility of using GFSMLP to identify other good features/

propensities from the huge list of available propensities (currently

544 amino acid propensities can be obtained from http://www.

genome.ad.jp/aaindex) [50] or from other characteristics of

epitope/non-epitope peptides. (b) We obtain the same conclusions

as in (a)–(d) of the previous paragraph, despite some minor

deviations. For example, the identified good propensity, Chou’s

beta-turn, also has the best discrimination power by itself in solving

the linear B-cell epitope prediction problem in most of the four

data sets (e.g., in the data set AAP872, Chou’s beta-turn has the

third highest accuracy, but within a difference of a mere 0.29%

from the best prediction accuracy). For specific results, see Table 3.

Table 1. The frequency with which each propensity is
selected in 1,000 runs of GFSMLP (g = 0.2, m = 0.1, n = 15,
number of iterations = 2,000).

Data Sets

Propensities AAP872 ABCpred BCPred Combo

1. Hydrophilicity (Parker) 315 178 295 386

2. Accessibility (Emini) 232 214 251 315

3. Flexibility (Karplus) 239 162 216 305

4. Surface Exposed Scale (Janin) 149 183 186 250

5. Polarity (Ponnuswamy) 397 307 402 498

6. Turns (Pellequer) 186 147 91 209

7. Antigenicity (Kolaskar) 240 206 140 309

8. Beta-turn (Chou) 629 553 554 643

doi:10.1371/journal.pone.0030617.t001

Identify Useful Propensities for B-cell Epitope
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Do propensities interact to identify Epitopes?
In the previous experiments, we have considered only one

property of amino acids. Here we want to check if pairs of

propensities can interact to yield better prediction. We found

Chou’s beta-turn (propensity #8) as a good propensity for linear

B-cell epitope prediction. Does it mean that beta-turn in

conjunction with other propensity can produce better prediction.

To answer this, we follow a similar (not same) approach as we did

in the previous experiments. First we use GFSMLP and initially we

make the gate completely open for a particular propensity and set

the remaining gates almost closed. And then we train the network

along with the gate modulators. The other parameters for

GFSMLP remain the same as with the previous experiments.

This GFSMLP experiment, with a particular gate open at the

onset of training, is run 100 times and in each time we record the

incidence of the selection of the remaining seven propensities.

In Table 4 we report the summary of these experiments. This

table has four parts for the four data sets. First, it is interesting to

note that the gate which is initialized to an open state continues to

remain open suggesting that none of the considered propensities is

a derogatory propensity for this problem. The last column in

Table 4 reports the total number of times different propensities is

selected when the gate corresponding to the propensity shown in

the first column is set open at the onset of training. This total

frequency is a good indicator of the ability of a specific propensity

to work (collaborate) with other propensities. A careful inspection

of Table 4 shows that propensity #5 (Ponnuswamy’s polarity) is

the most effective in collaborating with other propensities and it

interacts strongly with Hydrophilicity (propensity #1), Flexibility

(propensity #3), Turns (propensity #6), and Antigenicity

(propensity #7) to predict location of linear B-Cell epitopes.

Polarity also strongly cooperates with Beta-turn (propensity #8),

which is the next most active one in terms of collaboration with

other propensities. The propensity Beta-turn is most friendly with

Surface Exposed Scale (propensity #4). On the other hand,

Accessibility (propensity #2) interacts the least with other

attributes for epitope prediction (it never selects Surface Exposed

Scale for three of the data sets and is selected only twice for the

combined data set). But from Table 2 we find that this propensity

has a good discriminating power. Thus it suggest that Accessibility,

although is a good discriminator, unlike Beta-turn, it cannot

interact with others. Since Accessibility has a very strong

correlation with Surface Exposed Scale (shown in Table S1 and

explained in the next subsection), the behaviour of Surface

Exposed Scale should be similar to Accessibility. Table 4 indeed

reveals that Surface Exposed Scale does not collaborate with other

attributes. These observations are consistent with Table 1. These

observations about preferred propensities are quite consistent over

different data sets.

We also observe in Table 4 that Flexibility (propensity #3) and

Antigenicity (propensity #7) do not easily cooperate with

propensity Hydrophilicity in all four data sets. Thus considering

pairs of propensities we find that Ponnuswamy’s polarity and

Chou’s beta-turn are better candidates to cooperate with other

propensities in solving the B-cell epitope prediction problem. This

is also consistent with Table 1. Also, we observe that Polarity,

compared with Beta-turn, appears to be more versatile in its ability

to collaborate more often with other propensities. We can make

another interesting observation from Table 1 and Table 4. Table 1

suggests that propensity #6 (Pellequer’s Turns) is the worst

predictor of epitopes, but while considering its effect in

conjunction with others we find that it has a good ability to

interact with others in solving the epitope prediction problem.

These are biologically interesting observations, which suggest what

all attributes (properties of residues) determine the epitope/non-

epitope nature. Note that, normal feature selection methods

cannot provide this kind of biological insights.

Next we want to examine the discriminating power for every

pair of propensities using SVM. Here also we use the same 10-fold

cross validation mechanism. Table 5 records the performance

using pairs of propensities. From this table we can make few

Table 3. The accuracy of SVM using just single propensity by
the 2-level 10-fold cross validation scheme.

Data sets

Propensities AAP872 ABCpred BCPred Combo

1. Hydrophilicity (Parker) 56.99% 53.75% 58.00% 57.11%

2. Accessibility (Emini) 57 23% 56.10% 58.36% 57.52%

3. Flexibility (Karplus) 53.96% 54.23% 55.43% 56.10%

4. Surface Exposed Scale (Janin) 54.65% 55.29% 55.43% 57.48%

5. Polarity (Ponnuswamy) 52.76% 49.67% 52.86% 54.20%

6. Turns (Pellequer) 52.41% 52.59% 52.43% 52.67%

7. Antigenicity (Kolaskar) 55.50% 56.28% 55.29% 56.43%

8. Beta-turn (Chou) 56.94% 56.44% 58.64% 59.46%

doi:10.1371/journal.pone.0030617.t003

Table 2. Average of misclassification rates over 100 runs of GFSMLP using the selected propensity (g = 0.2, m = 0, n = 15, number of
iterations = 2,000).

Data sets

Propensities AAP872 ABCpred BCPred Combo

1. Hydrophilicity (Parker) 9.4360.79 5.4660.77 6.6360.60 14.0260.86

2. Accessibility (Emini) 8.8760.70 4.7960.48 6.0960.49 13.2460.74

3. Flexibility (Karplus) 10.0160.84 5.3460.66 6.9960.74 14.5061.03

4. Surface Exposed Scale (Janin) 15.8062.67 6.7261.05 8.6861.05 20.3161.93

5. Polarity (Ponnuswamy) 19.7861.75 16.5962.97 13.0761.84 24.1062.43

6. Turns (Pellequer) 23.4962.25 11.2462.08 16.2562.64 26.3762.06

7. Antigenicity (Kolaskar) 11.0061.28 5.8460.62 8.0660.96 16.9661.29

8. Beta-turn (Chou) 8.4060.60 4.5360.45 6.0560.52 12.6760.66

doi:10.1371/journal.pone.0030617.t002
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interesting observations: (a) For all but AAP872 data set, the best

as well as the second best performance are obtained using a pair

involving propensity #8 (Chou’s beta-turn). (b) In particular the

propensity pair involving #2 and #8 yields the best performance

for 2 of the four data sets. This reconfirms our inference that

Chou’s beta-turn is a better propensity to serve as one of the input

features for linear B-cell epitope prediction. Chou’s beta-turn has a

better tendency to cooperate with other propensities. (c) Although

Ponnuswamy’s polarity, when used alone, has quite a low

discriminating power, in conjunction with several other propen-

sities, it can yield a good discriminating power. For example, in all

data sets, propensity #1 when combined with propensity #5

produces better results than that using propensity #1 or

propensity #5 alone.

At this point, an interesting question may arise: What would

happen if instead of propensity we use amino acid identity

representation, i.e., binary encoding of amino acids? Will binary

encoding work equally well for B-cell epitope prediction? To assess

the prediction power for amino acid identity representation, we

have used binary coding for our data sets. In binary coding, each

residue is encoded by a binary vector of length 20. Here each

positive/negative sample with 20-mer is represented by a vector in

400 ( = 20620) dimension. Hypothetically, if we number the 20

residues as 1 to 20, then code for the ith residue is a 1 vector of

Table 4. The frequency with which each feature/propensity is selected in 100 runs of GFSMLP (g = 0.2, m = 0.1, n = 15, number of
iterations = 2,000).

Propensities [1] [2] [3] [4] [5] [6] [7] [8] Sum

AAP872

[1] Hydrophilicity (Parker) 100 12 1 16 25 16 12 11 193

[2] Accessibility (Emini) 11 100 13 0 7 15 5 12 163

[3] Flexibility (Karplus) 4 12 100 13 13 17 12 22 193

[4] Surface Exposed Scale (Janin) 19 1 16 100 1 11 11 13 172

[5] Polarity (Ponnuswamy) 51 29 40 23 100 41 45 38 367

[6] Turns (Pellequer) 11 22 15 21 17 100 17 7 210

[7] Antigenicity (Kolaskar) 6 9 9 16 9 9 100 13 171

[8] Beta-turn (Chou) 22 44 25 49 23 25 27 100 315

ABCpred

[1] Hydrophilicity (Parker) 100 4 0 14 10 11 4 1 144

[2] Accessibility (Emini) 2 100 2 0 1 10 3 4 122

[3] Flexibility (Karplus) 0 3 100 16 8 16 10 6 159

[4] Surface Exposed Scale (Janin) 8 0 5 100 0 11 6 9 139

[5] Polarity (Ponnuswamy) 30 18 27 13 100 31 33 20 272

[6] Turns (Pellequer) 15 9 8 16 4 100 12 2 166

[7] Antigenicity (Kolaskar) 4 2 2 5 2 19 100 3 137

[8] Beta-turn (Chou) 16 28 13 39 22 18 23 100 259

BCPred

[1] Hydrophilicity (Parker) 100 7 1 12 18 21 9 3 171

[2] Accessibility (Emini) 4 100 8 0 5 18 7 9 151

[3] Flexibility (Karplus) 0 6 100 8 16 14 7 10 161

[4] Surface Exposed Scale (Janin) 8 1 9 100 1 13 10 13 155

[5] Polarity (Ponnuswamy) 41 32 43 19 100 33 39 33 340

[6] Turns (Pellequer) 16 15 12 19 9 100 18 1 190

[7] Antigenicity (Kolaskar) 6 4 2 10 14 12 100 11 159

[8] Beta-turn (Chou) 15 27 20 34 25 21 27 100 269

Combo

[1] Hydrophilicity (Parker) 100 26 11 36 25 20 24 18 260

[2] Accessibility (Emini) 19 100 12 2 10 18 15 23 199

[3] Flexibility (Karplus) 4 12 100 22 30 19 18 16 221

[4] Surface Exposed Scale (Janin) 16 3 25 100 5 20 20 26 215

[5] Polarity (Ponnuswamy) 52 48 51 39 100 48 59 43 440

[6] Turns (Pellequer) 19 26 25 26 11 100 18 11 236

[7] Antigenicity (Kolaskar) 11 17 18 26 17 23 100 22 234

[8] Beta-turn (Chou) 35 53 29 52 39 34 47 100 389

doi:10.1371/journal.pone.0030617.t004
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length 20 where all but the ith position is 1. The best prediction

accuracies using a 2-level 10-fold cross validation scheme with

SVM are 49.12%, 53.47%, 53.88%, and 52.79% when using

amino acid identity representation (i.e., binary encoding) for data

sets AAP872, ABCpred, BCPred, and Combo, respectively.

Comparing these accuracies with those in Table 3, which are

obtained using just a single propensity, we can infer that

propensity-based encoding is far superior to binary encoding of

amino acids for the purpose of epitope prediction. Note that, the

dimension of binary-encoded data is 400, which is much higher

than the dimension of the propensity-encoded data, which is just

20.

Correlations of Paired Propensities
For both B-cell epitopes and non B-cell epitopes for each of four

data sets, we check the correlations of paired propensities, as

shown in the eight sub-tables of Table S1. To compute the

correlation on say epitope data, first we concatenate all epitope

fragments. Then to compute the correlation between the

propensity pair (#i, #j), we create two sequences of values, one

by replacing each residue by the corresponding value of propensity

#i and the other by replacing each residue by the corresponding

value of propensity #j. Then we compute the Pearson correlation

coefficient between the two sequences. The encoding of peptides

for computation of correlation is explained in Fig. 1. Table S1 also

provides us with several interesting observations: (a) Irrespective of

data sets and their types (B-cell or non B-cell epitopes), we

consistently obtain similar correlation between pairs of propensi-

ties. Since for each of four data sets there is not much difference

between correlation matrices for B-cell epitopes and non B-cell

epitopes, it might be taken as an explanation of why these eight

propensities do not contribute sufficient discriminating power for

the epitope prediction (as shown in Table 5). (b) Two strongly

correlated propensities together cannot add additional discrimi-

nating power, but two uncorrelated pair may. Table S1 shows that

only in a few cases the correlation is very low. On the other hand,

the very high correlation value between propensity #2 and

propensity #4 suggests that the behaviour of these two attributes

would be similar, together they may not add much and we have

already seen that these are true.

Conclusions
In this study, we have identified amino acid propensities that are

good determinants of epitopes. We have also investigated the

effectiveness of the important propensities in B-cell epitope

prediction. In this context, we have used a novel group-feature

selection neural network, GFSMLP, which exploits the interaction

between propensities/features to select groups of useful propensities

for improved linear B-cell epitope prediction. This system can also

be used in other bioinformatics applications.

We have found that Chou’s beta-turn (among the eight

propensities considered) is the strongest determinant of the linear

B-cell epitopes and that Chou’s beta-turn can best cooperate with

other propensities to yield better prediction performance, as well.

In addition, we have seen that Chou’s beta-turn collaborates

together with Emini’s Accessibility or Janin’s Surface Exposed

Scale to produce the best prediction results because each pair of

propensities has a relatively lower correlation, respectively.

Figure 1. Encoding scheme for the calculation of correlations of pair amino acid propensities.
doi:10.1371/journal.pone.0030617.g001

Table 5. The accuracy of SVM using pair of propensities by 2-
level 10-fold cross validation.

Data sets

Propensities AAP872 ABCpred BCPred Combo

Propensities: 1 & 2 58.49% 54.57% 59.93% 62.21%

Propensities: 1 & 3 56.42% 53.01% 56.43% 60.06%

Propensities: 1 & 4 57.05% 55.38% 59.57% 62.20%

Propensities: 1 & 5 58.43% 54.16% 59.07% 60.67%

Propensities: 1 & 6 57.28% 54.48% 57.57% 57.52%

Propensities: 1 & 7 56.94% 56.60% 57.50% 59.86%

Propensities: 1 & 8 57.86% 57.82% 59.79% 60.92%

Propensities: 2 & 3 56.60% 55.46% 60.29% 60.47%

Propensities: 2 & 4 55.45% 55.38% 56.71% 59.38%

Propensities: 2 & 5 55.22% 54.57% 55.64% 58.77%

Propensities: 2 & 6 57.12% 56.70% 58.21% 59.25%

Propensities: 2 & 7 56.76% 57.26% 56.14% 60.95%

Propensities: 2 & 8 57.28% 60.02% 61.71% 62.90%

Propensities: 3 & 4 55.34% 55.45% 58.50% 60.71%

Propensities: 3 & 5 56.26% 52.06% 57.50% 59.38%

Propensities: 3 & 6 54.82% 54.89% 56.57% 58.36%

Propensities: 3 & 7 53.84% 57.01% 56.64% 58.40%

Propensities: 3 & 8 57.57% 58.30% 59.21% 60.27%

Propensities: 4 & 5 52.64% 54.82% 53.71% 56.91%

Propensities: 4 & 6 54.36% 55.39% 57.07% 57.84%

Propensities: 4 & 7 56.71% 57.59% 55.29% 59.78%

Propensities: 4 & 8 58.03% 59.29% 62.07% 62.53%

Propensities: 5 & 6 53.33% 52.55% 54.14% 54.69%

Propensities: 5 & 7 55.85% 57.02% 57.50% 58.04%

Propensities: 5 & 8 58.32% 57.90% 60.29% 61.00%

Propensities: 6 & 7 57.11% 55.04% 56.14% 57.40%

Propensities: 6 & 8 56.99% 58.72% 58.07% 58.41%

Propensities: 7 & 8 57.39% 58.30% 60.29% 60.59%

doi:10.1371/journal.pone.0030617.t005
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Furthermore, we have observed that Emini’s Accessibility and

Janin’s Surface Exposed Scale as expected have a very strong

correlation and hence, as mentioned, they work well together with

Chou’s beta-turn in the same way. On the other hand, GFSMLP

has also shown that neither Emini’s Accessibility (a good

determinant of linear B-cell epitopes) nor Janin’s Surface Exposed

Scale (not a good determinant of linear B-cell epitopes) cooperates

with other propensities except with Chou’s beta-turn. Note that,

our primary objective is to find important determinants of epitopes

not prediction accuracy. For this we have considered only eight

propensities.

Our results confirm the utility of active feature selection,

actually performed by GFSMLP, as opposed to the traditional

passive approach of trying to use various combinations of amino

acid propensities as input features without actually doing feature

analysis. It opens up the possibility of applying GFSMLP to the

more than 500 remaining amino acid propensities, and combina-

tions thereof, and other features, to perform better B-cell epitope

prediction. Developing bioinformatics analysis tools as a web

service has become an inevitable trend nowadays [16]. Since the

feature analysis task using the GFSMLP tool is computation-

intensive, we do not provide a web server. But to help users with

efficient analysis and to serve more users at the same time, we have

developed the GFSMLP analysis tool as a stand-alone version with

a friendly graphical user interface (GUI). The GUI version

of GFSMLP program can be downloaded from: http://bio.

classcloud.org/GFSMLP/.

Methods

As suggested in [51], we first write the steps that one may follow

in order to develop a useful predictor for an application: (i)

Obtaining benchmark data sets to train and test the predictor; (ii)

Mathematical formulation of prediction problem either explicitly

(such as in regression) or implicitly (such as using neural networks)

so that the model can capture the intrinsic relation hidden in the

input-output data; (iii) Development of an efficient algorithm (or

inference engine) to solve the prediction problem formulated in (ii);

(iv) Performing cross-validation type tests to objectively evaluate

the accuracy of the predictor; (v) Developing a stand-alone version

with a friendly graphic user interface for the predictor and making

that freely accessible. Basically, we follow these steps as explained

in the subsequent section.

Data Set Collection and Pre-processing
We obtain three B-cell epitope data sets from published

literature, which are named as AAP872 [31], ABCpred [30] and

BCPred [34]. A fourth set, named Combo, is generated combining

these three sets. These data sets are subjected to some pre-

processing as follows: First, for each of the three data sets, we

remove redundant peptide sequences, respectively by our Perl

script. If there are two or more sequences having 100% sequence

identity, we just keep one of them. To remove the homologous

sequences from the benchmark data sets, a cutoff threshold of 25%

was imposed in [52] to exclude those proteins from the benchmark

data sets that have more than 25% sequence identity to any other

protein in the same subset. However, in this study we did not use

this criterion in order to have similar data sets/computational

protocol to compare prediction performance with other related

previous studies. Thus, we keep the number of sequences the same

as that in the original studies where possible. But the redundant

sequences (sequences which are repeated more than once) and the

problematic sequences (sequences with non-amino acid symbols or

alphabets) are removed.

Then, we combine these three data sets into a new

comprehensive data set named Combo. Again using our Perl

script we remove the redundant peptide sequences from the

Combo set. Note that, in each of the original three data sets, the

positive samples (B-cell epitopes) and negative samples (non B-cell

epitopes) are equal in number before the removal process. After

the removal of redundant peptide sequences, each of the four sets

may contain an unequal number of negative and positive samples.

In the present case, for each data set we had more negative

samples than positive ones. So we randomly remove negative

samples from each of the four data sets to equalize the negative

and positive samples. Also note that, the length of all the sequences

in all of the data sets are 20 (a combined 20 kinds of amino acids)

and finally for these four data sets, AAP872, ABCpred, BCPred,

and Combo, there are 1,744, 1,228, 1,400, and 2,474 entries,

respectively (Supplementary is also available at: http://bio.

classcloud.org/GFSMLP/).

Amino Acid Propensity and Sequence Encoding
Keeping consistency with previous studies [26,27,30,31,34,35],

we adopt eight widely used amino acid propensities as features for

doing machine learning with the GFSMLP network [38]. These

eight propensities are: (1) hydrophilicity [22], (2) accessibility [19],

(3) flexibility [20], (4) surface exposed scales [40], (5) polarity [41],

(6) turns [24], (7) antigenicity [23], and (8) beta-turn [42]. Each of

these eight physico-chemical properties has 20 values for the 20

amino acids. We normalize these values between 1 and 21 as:

Rinormalized
~2(

Ri{Rmin

Rmax{Rmin

){1 ð1Þ

where Rmax and Rmin represent the maximum and minimum values

of the propensity. Then a residue is represented by 8 values, one

for each of the 8 propensities. Since our sequence length is 20, the

length of each encoded vector is 160 (2068).

Group Feature Selecting Multilayered Perceptron
(GFSMLP)

For each of the four data sets, the epitope and non-epitope

sequences are represented by a feature vector in 160 dimension.

We can directly use these as a feature vector and design a machine

learning system to predict epitopes and non-epitopes. But before

that we want to raise a few questions. Are all of these propensities

necessary to predict epitope and non-epitope? Which propensity

has the strongest influence in determining epitope and non-

epitope? These are biologically interesting questions. Moreover, if

we can discard some propensity, this will also reduce the design

cost and complexity of the decision making system. For this we

cannot use usual feature selection mechanisms because the 160

features do not represent 160 different attributes, but they

represent 8 groups of attributes. Thus if we reject one attribute,

this will amount to rejecting 20 feature values relating to that

attribute. This is a more complex feature selection problem, as it

involves selection from among a set of groups of features. In

bioinformatics, there are other similar problems. To address these

issues, we use the GFSMLP network proposed in our previous

study [38].

In Fig. 2, GFSMLP is shown as a three-layer network, including

an input layer, hidden layer, and output layer. The GFSMLP can

have more than one hidden layer, but we shall restrict to just one

hidden layer. The input layer has 160 nodes, but the nodes are

grouped in eight sub-groups, where each group has 20 values

corresponding to a particular propensity. We associate an
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attenuator gate, Gi, to each of these eight groups (or propensities);

Gi[[0, 1]. Thus there will be eight gates. Each gate, Gi, is

mathematically modelled by a function with a tuneable parameter,

li, which controls the opening and closing of the gates depending

on its utility. Each feature xl of the ith group (Fi) gets multiplied by

the attenuator function Gi before it gets into the network. Note

that, Gi = 0 means that the gate is closed and no feature of the ith

group will get into the network. On the other hand, Gi = 1 suggests

that the associated gate is completely open and infers that every

feature of the ith group enters the network unaltered. The objective

of GFSMLP is to tune li of Gi(li) through the training process such

that Gi(li)R1, if the ith group of features is important and

Gi(li)R0, if the ith group is a bad group. At the beginning of

training, all lis are so set that all Gi values are nearly 0 (i.e., no

amino acid propensity is important). Then after the training

process, some of the Gi values associated with useful amino acid

propensities becomes close to 1. Details of the modelling and

training can be found in [38].

For training the network, four parameters should be provided:

the learning constant ‘‘m’’ for the attenuator, the learning constant

‘‘g’’ for network’s weights, the number of nodes ‘‘n’’ in the hidden

layer, and the maximum number of iterations for each training

process (here we refer to each training process as a run).

In this study, two kinds of experiments are performed to select

good amino acid propensities. First, we make 1,000 GFSMLP runs

and over these 1,000 runs we record the frequency with which

different amino acid propensities are selected. Frequently

occurring propensities are likely to be better discriminators of

epitopes and non-epitopes when used separately. In other words, a

propensity with a higher frequency suggests a better biological

property than those with a lower frequency for prediction of

epitope sites. As shown in Table 1, the eighth propensity ‘‘Beta-

turn’’ is selected with the highest frequency for all four data sets

and hence it can be considered the best biological property for the

linear B-cell epitope prediction. The second experiment is

designed to check whether any specific pair amino acid

propensities will cooperate well together or not. Here at the onset

of training, the gate corresponding to a particular amino acid

propensity is set open, i.e., G(l) = 1. If this is a bad attribute, then

training will close this gate. If this is a good attribute and can

cooperate with some other propensity, then the gate correspond-

ing to the other propensity will be opened by the training. We

repeat this experiment 100 times and count the frequency with

which other gates are opened.

A two-level 10-fold cross-validation scheme with SVM
Bootstrapping, Jackknifing and cross-validation are three similar

statistical techniques that involve reuse of a given data set [53].

But, the purposes of this reuse of the samples are different for these

three methods. Bootstrapping is used to evaluate the variance of an

estimator while Jackknifing is used to reduce the bias of an

estimator and to estimate the variance of an estimator. On the

other hand, cross-validation is used to estimate the error involved

in making predictions. It is also used for model selection. Yet

researchers use all three methods for estimation of prediction

error. Some authors prefer the Jackknifing method because the

outcome obtained by the Jackknife test is always unique for a given

benchmark data set as there is no randomness in selection of

Figure 2. FSMLP network structure. Eight amino acid propensities are used in the input layer. Each propensity results in 20 normalized amino
acid values. Thus the inputs are in 160-dimension. The 20 values corresponding to a particular propensity are treated as a group. The algorithm
selects one or more propensities to evaluate its or their performance. After the training is over, the GFSMLP reports the most useful propensity/
propensities to classify the input peptide sequence belonging to epitopes or non-epitopes in the output layer.
doi:10.1371/journal.pone.0030617.g002
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subsamples [54–60]. However, considering the present purposes,

which involve both model selection and estimation of prediction

error, we use here the cross-validation scheme.

We use the propensities selected by GFSMLP as the input

information for the Support Vector Machine classifier [39]. So, as

shown in Fig. 3, a two-level 10-fold cross-validation scheme with

SVM is adopted to obtain an un-biased classification performance

based on the selected propensities. Note that, in the outer level of

the cross-validation scheme, we divide each data set into 10 parts

(folds) of equal size (to the extent possible), and use 9 folds as a

training set for training SVM and the remaining fold is kept for

testing. In the inner level of the cross-validation scheme, the

training set from the outer level is further divided into 10 folds to

choose the optimal parameters for the SVM. The entire process is

repeated 10 times, once for each of the 10 folds in the outer level,

and the accuracy is recorded.

Supporting Information

Table S1 Correlation between each two propensities of
all eight propensities.
(DOC)
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