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ABSTRACT

Background Accumulation of extracellular matrix in organs and tissues is a feature of both aging and dis-

ease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function,

which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural

patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular reso-

lution of abnormal matrix is lacking.

Methods Using mass spectrometry–based proteomics, we resolved matrix composition over age in mouse

models of kidney disease. We compared the changes in mice with a global characterization of human kid-

neymatrix during aging and to existing kidney disease datasets to identify common molecular features.

Results Ultrastructural changes in basement membranes are associated with altered cell adhesion and

metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in

mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII

collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephro-

nectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins

was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix

was also observed in human kidney disease datasets.

Conclusions This study provides deep molecular resolution of matrix accumulation in kidney aging and

disease, and identifies a common signature of proteins that provides insight into mechanisms of response

to kidney injury and repair.

JASN 32: 1713–1732, 2021. doi: https://doi.org/10.1681/ASN.2020101442

Extracellular matrix (ECM) is organized as base-

ment membranes (BMs), which support continuous

layers of cells, or as looser interstitial matrix.1 In ad-

dition to providing a scaffold, ECM directs organ

shape and sequesters growth factors and enzymes

for controlled, outside-in signaling.2 This extracellu-

lar environment is complex and dynamic, with

.1000 matrisome proteins annotated.3 Matrix syn-

thesis and turnover requires tight regulation for the

maintenance of organ function, and matrix accu-

mulation is associated with a wide spectrum of

human disease. In the Western world, 45% of
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deaths have been associated with organ fibrosis.4 Thus, under-
standing the drivers of matrix accumulation is key to identify-
ing strategies to prolong organ survival.

Excess matrix is seen across a wide spectrum of pathology
and is incorporated into the histologic and ultrastructural de-
scriptions of many diseases.5 In the kidney, glomerulosclerosis
is a feature of aging, and glomerular disease6 and tubulointersti-
tial (TI) fibrosis is seen with both primary tubular disease and
as a consequence of glomerular disease7,8; however, the compre-
hensive molecular definition of altered matrix is limited. Using
proteomics to define global protein composition has improved
the resolution of matrix complexity, and this includes the hu-
man glomerular matrisome, which contains .140 structural
and regulatory components.9,10 Proteomic studies in kidney dis-
ease have also revealed changes in matrix composition,11,12 but
these have been limited by sample volume and have not used
matrix-enrichment strategies, which improve resolution.13

Along the nephron, there is distinct matrix composition
within BMs and interstitial matrices.14 BMs underlie parietal
epithelial cells, separate endothelial cells from overlying podo-
cytes, provide a scaffold for tubular epithelial cells, and form
an integral component of blood vessel walls in the kidney. In-
terstitial matrices include the mesangial matrix and the loose
TI matrix. The glomerular and tubular segments of the neph-
ron have distinct functions, and their differential matrix com-
position is likely to reflect their underlying functions, including
filtration and reabsorption. One example of structure support-
ing function is the triple helix of type IV collagen protomers,
which may resist mechanical load15 and could explain the dis-
tinct localization of collagen IV isoforms along the nephron.

Here, we performed deep proteomic profiling to define
global changes in kidney matrix and to identify common
components and pathways. In mouse models of genetic de-
fects in collagen IV, we found distinct structural abnormali-
ties of the matrix, associated with altered cell adhesion and
metabolic processes, and a signature of abnormal matrix
composition. In young and aged human kidneys and exist-
ing kidney disease datasets, we identified a similar signature
of altered matrix. Broadly, we observed a reduction in BM
components and an increase in interstitial matrix proteins in
both mouse models and human tissue.

METHODS

Antibodies
Primary antibodies were diluted in a blocking buffer (1%
donkey serum, 2% BSA, 0.1% Triton X-100 in PBS). We
used primary antibodies against type VI collagen (ab6588;
Abcam) at a dilution of 1:100 and 1:500 for stochastic optical
reconstruction microscopy (STORM) imaging; the type IV
collagen chains a1, a2, a3, a4, a5, and a6 (7070, 7071,
7076, 7073, 7077, and 7074, respectively; Chondrex, Wood-
inville, WA) at a dilution of 1:200; type I collagen (OAR-
AO2579; Gentaur, Kapenhout, Belgium) at a dilution of

1:100; podocin (ab50339; Abcam) at a dilution of 1:400; fibu-

lin-1 (sc-25281; Santa Cruz Biotechnology, Dallas, TX) at a

dilution of 1:100; nidogen/entactin antibody (MAB1946,

ELM1; Merck, Darmstadt, Germany) at a dilution of 1:100;

laminin-b2 (ab210956; Abcam) at a dilution of 1:100; Tinag

(ab67614; abcam) at a dilution of 1:100; and integrin b1

(clone 9EG7; BD Pharmigen) at a dilution of 1:500. We used

secondary antibodies conjugated to Alexa Fluor 488 or 594

(Life Technologies) for immunofluorescence.

Mice

We used Col4a11/SVC mice, which carry a point mutation

causing an amino acid substitution (G1064D).16 These mice

were on a BL6/C57 background. We used littermate con-

trols, male mice for phenotypic consistency, and three mice

from each group for proteomic analysis. Col4a32/2 mice

were generated as described.17 In brief, the first three exons

of the carboxy-terminal (NC1) domain of collagen-a3(IV)

chain were deleted, causing absence of collagen-a3(IV) pro-

tein. Col4a52/2 mice were obtained from the International

Mouse Phenotyping Consortium.18 The line was generated

by deletion of the critical exon 36, resulting in the absence of

the collagen-a5(IV) protein, using the published allele

map.19 Col4a32/2 and Col4a52/2 mice were on a BL6/C57

background. We used littermate controls, male mice for

phenotypic consistency, and five mice from each group for

proteomic analysis. All experiments were performed in com-

pliance with the Animals (Scientific Procedures) Act 1986

regulations of the United Kingdom Home Office.

Glomerular Isolation from Mice

Cortical tissue was dissected from frozen-thawed kidney,

placed in a glass dish, and cut into small pieces (#1 mm3) as

previously described.9 Tissue pieces were washed three times

with PBS. Tissue pieces were transferred onto a 100-mm cell

strainer (Falcon) and mechanically disintegrated. We then

added PBS and collected the flow through. The resulting

tissue solution was filtered through a 70-mm cell strainer

(Falcon). Glomeruli were caught on the 70-mm cell strainer.

Significance Statement

Abnormal extracellular matrix is a histologic feature of kidney
aging and disease. However, a comprehensive molecular basis
for altered matrix is not well understood. Ultrastructural and pro-
teomic studies in mouse models of genetic kidney disease and
human tissue define a molecular basis for altered matrix, which
has common features across aging and disease progression.
Broadly, basement membrane components are reduced, intersti-
tial matrix proteins are increased, and this is coupled with al-
tered cell adhesion and metabolic processes. Furthermore, a
signature of altered matrix proteins appears before ultrastructur-
al defects and could have utility as biomarkers of kidney health.
Mechanistically, this altered kidney matrix may initiate abnormal
kidney cell–matrix and immune cell–matrix interactions, which
therapy could target.
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The cell strainer was inverted and caught glomeruli were

washed off the sieve and collected in a container.

Human Kidney

Human kidneys (n56) anatomically unsuitable for transplanta-

tion, and with no recorded comorbidities, were collected under

ethical approval (regional ethics committee approval identifiers

05/Q0508/6 [University College London] and 06/Q1406/38

[Manchester]). Samples were grouped into young (15, 29, 37

years) and aged (61, 67, 69 years) kidneys, with n53 per group.

Five of the six kidneys were from male donors, and the sex of

the kidney from the 67 year old was not recorded. We also used

kidney biopsy sections from a male patient presenting at age 14

years with CKD stage 3, due to autosomal recessive (COL4A3)

Alport syndrome, and control kidney tissue (nonaffected tissue

of tumor nephrectomy), with the ethical approval identifier 06/

Q1406/38 (Manchester).

Glomerular and TI Isolation from Human Kidney

Cortical tissue (2 g) was dissected from frozen-thawed kidney,

placed in a glass dish, and cut into small pieces (#1 mm3) as

previously described.9 Graded sieves of 250, 150, and 106 mm

were assembled, with the 250-mm sieve at the top, and placed

on a collection container. Tissue pieces were transferred onto

the largest sieve in 5 ml of ice-cold PBS (without calcium and

magnesium). We used the plunger from a 10-ml syringe to

press the sample through the sieves. Fragments were washed

through the sieves with 60–100 ml of ice-cold PBS. Glomeruli

were retained on 150- and 106-mm sieves, and were collected

by inverting the sieves and washing with 20 ml of ice-cold

PBS. Cortical TI fragments were retrieved from the collection

container. The glomeruli and TI samples were centrifuged at

30003 g for 3 minutes at 4�C, washed three times by centrifu-

gation, and then resuspended in 10 ml of ice-cold PBS. After

the final wash, samples were resuspended in 5 ml PBS and ali-

quoted into five 1-ml aliquots. One aliquot from each sample

was viewed under a light microscope to confirm the separation

of glomeruli and TI tissue. One aliquot was frozen at 220�C

for ECM enrichment, and the remainder was stored at280�C.

Matrix Enrichment

Samples stored at220�C were defrosted at room temperature,

homogenized using a 21G needle and 2-ml syringe, and cen-

trifuged at 14,000 3 g for 5 minutes at room temperature. We

added 500 ml of ice-cold buffer solution 1 (10 mM Tris, 150

mM sodium chloride, 25 mM EDTA, 1% vol/vol Triton X-

100, 25 mg/ml leupeptin, 25 mg/ml aprotinin, 0.5 mM 4-[2-

aminoethyl]benzenesulfonyl fluoride hydrochloride) to the

pellet and incubated the samples on ice for 1 hour. Samples

were centrifuged at 14,000 3 g for 10 minutes at 4�C, and the

supernatant was collected and mixed with 125 ml recovery

buffer (15% wt/vol SDS, 100 mM 1,4-dithiothreitol, 200 mM

Tris, 30% vol/vol glycerol, 0.01% bromophenol blue). This

sample was designated soluble fraction 1 (most of the cellular

compartment) and stored at 280�C. The pellet was resus-

pended in 500 ml ice-cold buffer solution 2 (20 mM ammoni-

um hydroxide, 0.5% vol/vol Triton X-100) and incubated on

ice for 1 hour. Samples were centrifuged at 14,000 3 g for 10

minutes at 4�C and the supernatant was collected and desig-

nated soluble fraction 2. The pellet was resuspended in 500

ml PBS with DNase I (25 mg/ml) and incubated for 30 minutes

at room temperature. Samples were centrifuged at 14,000 3 g

for 10 minutes at 4�C, and the collected supernatant was des-

ignated soluble fraction 3. The final pellet was resuspended in

a sample buffer and incubated for 10 minutes at 95�C to gen-

erate the ECM-enriched fraction.

Mass Spectrometry Data Acquisition

After SDS-PAGE, gel lanes were sliced and subjected to in-

gel digestion with trypsin,20 with modifications.21 Peptide

samples were analyzed by liquid chromatography–tandem

mass spectrometry using a nanoACQUITY UltraPerformance

LC system (Waters) coupled online to an LTQ Velos mass

spectrometer (Thermo Fisher Scientific), or an UltiMate 3000

Rapid Separation LC system (Thermo Fisher Scientific) cou-

pled online to an Orbitrap Elite mass spectrometer (Thermo

Fisher Scientific). Peptides were concentrated and desalted on

a Symmetry C18 preparative column (20 mm 3 180 mm,

5-mm particle size; Waters) and separated on a bridged ethyl-

ene hybrid C18 analytical column (250 mm3 75 mm, 1.7-mm

particle size; Waters), using a 45-minute linear gradient from

1%–25% or 8%–33% (vol/vol) acetonitrile in 0.1% (vol/vol)

formic acid at a flow rate of 200 nl/min. Peptides were selected

for fragmentation automatically by data-dependent analysis.

Mass Spectrometry Identifications

Tandem mass spectra were extracted using extract_msn

(Thermo Fisher Scientific) executed in Mascot Daemon

(version 2.5.1; Matrix Science). Peak list files were searched

against a modified version of the Uniprot mouse database

(April 2016 database selected for Mus musculus) for mouse

datasets, or Uniprot human database (November 2015 data-

base selected for Homo sapiens) for human datasets. We set

carbamidomethylation of cysteine as a fixed modification;

oxidation of methionine and hydroxylation of proline and

lysine were allowed as variable modifications. Only tryptic

peptides were considered, with up to one missed cleavage

permitted. Monoisotopic precursor mass values were used,

and only doubly and triply charged precursor ions were con-

sidered. The mass tolerances for precursor and fragment

ions were 5 ppm and 0.5 Da, respectively.

Mass Spectrometry Quantification
We used peptide intensity to calculate relative protein abun-

dance. Orbitrap mass spectrometry data were entered into

Progenesis LC-MS (Nonlinear Dynamics Ltd.) and automat-

ically aligned. Spectra were extracted using extract_msn exe-

cuted in Mascot Daemon (version 2.5.1) and imported back
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Figure 1. Identification of glomerular basement membrane and Bowman's capsule abnormalities in Col4a mutant mice. (A) Segmen-
tation and modeling of serial block-face scanning electron microscopy data. Glomerular structure is visualized in Alport (Col4a32/2

and Col4a52/2) and Col4a11/SVC mice. Col4a11/SVC mice demonstrated splitting of Bowman’s capsule with enclosed nuclei.
Col4a32/2 mice presented irregular GBM and progressive thickening of Bowman’s capsule, whereas Bowman’s capsule was con-
served in the Col4a52/2 Alport mouse model. GBM (yellow), podocyte cell body with foot processes (light blue), and Bowman’s cap-
sule BM (green) were reconstructed. Dark blue lines highlight the thickness of the Bowman’s capsule BM. Nuclei of cells intercalating
the BM in Col4a11/SVC are highlighted in pink. The analyzed Col4a11/SVC mice received treatment with 4-sodium phenyl butyric
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into Progenesis LC-MS to acquire intensity data. Chromato-
grams were aligned using the automatic alignment algo-
rithm, followed by manual validation and adjustment of the
aligned chromatograms. All features were used for peptide
identifications. Progenesis LC-MS created the peak list file
that was exported and searched in Mascot. Hi-N was used to
infer protein abundance, using the three most abundant
peptides.22 We then exported peptide and protein data from
Progenesis LC-MS as .csv files to be analyzed in Excel (Mi-
crosoft). Proteins identified by one unique peptide, and a
Mascot score indicating a ,5% false discovery rate, were
considered to be part of the definition of the human TI ma-
trisome. The data were further filtered to include only pro-
teins present in two out of three TI samples in a specific age
group. Proteins identified by three unique peptides and a Mas-
cot score indicating a ,5% false discovery rate were consid-

ered for quantitative analysis. We inferred protein abundance
from normalized peptide intensities, using the “three most
abundant unique Hi-N peptides” setting in Progenesis. Con-
flicts were resolved using protein grouping. To compare group
protein abundances across samples, we used ANOVA with
post hoc Bonferroni protein lists are shown in Supplemental
Tables 1 and 2. To enable Gene Ontology (GO) lists with suffi-
ciently large numbers of proteins in all comparisons, proteins
with P,0.1 and 1.4-fold increased or decreased abundance
were taken forward for further analysis.

Protein Interaction Network Analysis

Cytoscape (version 3.7.2) was used for protein interaction
network analysis. Matrisome proteins were selected from the
Matrisome Project,3 and proteins identified in at least two bi-
ologic replicates were mapped onto a merged human, mouse,
and rat interactome. This was built from the PICKLE 2.5 (re-
leased November 15, 2019; based on IntAct release 227/2019-
11-04, BioGRID release 3.5.178, DIP release 20170205, and
Human Protein Reference Database release 9) database
merged with a matrix protein–specific interactome from the
Protein Interaction Network Analysis platform; the H. sapiens
network (release date, December 10, 2012); M. musculus net-
work (release date, December 10, 2012); the Rattus norvegicus
network (release date, December 10, 2012); the ECM interac-
tions database MatrixDB (release date, April 20, 2012); and a lit-
erature-curated database of integrin-based, adhesion-associated
proteins.23 For networks where enrichment/fold change is pre-

sented, Progenesis LC-MS–normalized intensity data were used.
Networks were manually grouped.

Data Analysis

DAVID (version 6.7) was used for functional enrichment
analysis. Keywords with fold enrichment $ 1.5, Bonferroni-

corrected P,0.05, EASE score (modified Fisher exact test)
of,0.05, and at least two proteins per keyword were consid-

ered significantly over-represented. We generated enrich-
ment maps using all changed proteins detected, P,0.1, and
fold change at least .1.4. Enrichment maps were clustered

using the clusterMaker application with Markov clustering al-
gorithm tuning, and a granularity parameter of 2.5. Principal

component analysis (PCA) was performed using MATLAB
(version R2019a; MathWorks). Hierarchically clustered heat

maps were generated on the basis of uncentered, Euclidean
complete-linkage clustering in MultiExperiment Viewer (ver-
sion 4.8.1). For clustered heat maps where the z-score or fold

change is presented, we used Progenesis LC-MS–normalized
intensity data.

Nephroseq Analysis

We used Nephroseq version 5 for analysis. Signature matrix

proteins were searched for their fold change in gene expres-
sion in disease datasets compared with associated control
samples. The following filters were applied: tissue type, glo-

meruli and analysis type, disease versus control analyses. Mi-
croarray data were extracted with the P value selection “all”

and fold change “all.” The primary data are shown in
Supplemental Table 3. Data that met the following criteria:

P,0.05, fold change5 61.5 are highlighted in orange in
Supplemental Table 3 and taken forward for further analysis.

Data are shown as box-and-whisker plots displaying all data
points. The values below every plot indicate the number of
datasets in which a transcript was detected out of all analyzed

datasets (21 datasets). Data from the following datasets were
extracted: Berthier Lupus Glom (analysis of lupus nephritis

versus healthy living donor),24 Hodgin Diabetes Mouse Glom
(analyses of diabetic nephropathy versus nondiabetic kidney

[mouse model db/db C57BLKS], diabetic nephropathy versus
nondiabetic kidney [mouse model DBA/2], and diabetic
nephropathy versus nondiabetic kidney [mouse model eNOS-

deficient C57BLKS db/db]),25 Hodgin FSGS Glom (analyses of
collapsing FSGS versus normal kidney, FSGS versus normal

kidney, and minimal change disease versus normal kidney),26

Ju CKD Glom (analyses of arterial hypertension versus healthy

living donor, diabetic nephropathy versus healthy living donor,
FSGS versus healthy living donor, IgA nephropathy versus

healthy living donor, lupus nephritis versus healthy living

acid, as described previously, which did not affect the kidney phenotype.33 Quantification of (B) GBM thickness, (C) podocyte foot pro-
cess width, and (D) Bowman’s capsule BM (BCBM) thickness. Young (Y) mice were aged 6–8 weeks, adult (A) mice were 16–18 weeks
old, and aged (A1) mice were 28 weeks old. Box-and-whisker plots represent the median, where the box represents interquartile range
and whiskers represent the tenth to 90th percentile. n51 biologic sample per model. (E) GO enrichment map analysis was performed
on 719 proteins detected by mass spectrometry with altered abundance (.1.4-fold; P,0.1) in Col4a11/svc, Col4a32/2, and Col4a52/2

mice at all analyzed ages compared with aged-matched control mice. Over-represented biological processes are presented as nodes,
and color represents Bonferroni-corrected P value (the lower the P value, the more intense the node color). Edge weight represents the
overlap between the proteins in the connected nodes. n55 biologic samples per mouse model studied. WT, wild type.
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donor, minimal change disease versus healthy living donor,

membranous glomerulonephropathy versus healthy living do-

nor, tumor nephrectomy versus healthy living donor, thin BM

disease versus healthy living donor, and vasculitis versus

healthy living donor),27 Neusser Hypertension Glom (analysis

of nephrosclerosis versus tumor nephrectomy),28 Peterson

Lupus Glom (analysis of lupus nephritis versus normal kid-

ney),29 Reich IgAN Glom (analysis of IgA nephropathy ver-

sus healthy living donor),30 and Woroniecka Diabetes Glom

(analysis of diabetic nephropathy versus healthy living

donor).31

Electron Microscopy
Samples were prepared as previously described.32 Briefly,

mouse kidneys were harvested; immediately cut into 1 mm2

pieces; and fixed in 2.5% glutaraldehyde, 4% paraformalde-

hyde (PFA), and 0.1 M HEPES, pH 7.4. Samples were

stained in 1% osmium tetroxide and 1.5% potassium ferro-

cyanide in 0.1 M cacodylate buffer, followed by 1% thiocar-

bohydrazide. Samples were washed and stained further in

1% osmium tetroxide and incubated in 1% uranyl acetate

overnight. Samples were incubated in lead aspartate (pH

5.5) for 1 hour at 60�C, dehydrated, and finally embedded in

TAAB 812 hard resin. Samples were mounted onto an alumi-

num cryo pin. Block surfaces were trimmed using a glass knife

or diamond trimming tool. To create a conductive surface, a

gold coating was applied to the specimen. The samples were

analyzed using a Quanta 250 FEG (FEI Company) and Gatan

3View system. The analyzed Col4a11/SVC mice received treat-

ment with 4-sodium phenyl butyric acid, as described previ-

ously, which did not affect the kidney phenotype.33 Kidney

samples for transmission electron microscopy were fixed simi-

larly as for serial block-face scanning electron microscopy.

Sections (70–80 nm thick) were prepared and examined using

a FEI Tecnai 12G2 Biotwin transmission electron microscope.

Foot process width, glomerular BM (GBM) thickness, and

Bowman’s capsule BM thickness were measured using ImageJ

(version 2.0.0-rc-68/1.52e). The foot process width was mea-

sured at the basal side of podocytes from ten different fields of

view in the glomerulus. Measurements were taken from one

glomerulus per mouse genotype. GBM thickness was measured

radially from the endothelial side of the electron-dense GBM to

the basal membrane of podocyte foot processes. Bowman’s cap-

sule thickness was measured radially in different sections of the

acquired serial block-face scanning electron microscopy stack

from one glomerulus.

Light Microscopy

We used formaldehyde-fixed, paraffin-embedded kidney sec-

tions for immunofluorescence. Images were acquired using a

Zeiss Axioimager.D2 upright microscope, with a 203/0.50 EC

Plan-Neofluar objective, and captured using a Coolsnap HQ2

camera (Photometrics) through Micromanager software ver-

sion 1.4.23. Images of stained cryosections were acquired using

a Zeiss AxioObserver Z1 wide-field microscope equipped with

a 403/EC Plan-Neofluar 1.3 Oil objective and an Axiocam

MRm camera, controlled by Zeiss Axiovision software. Specific

band pass filter sets for 49,6-diamidino-2-phenylindole, FITC,

and Texas Red were used to prevent bleed through from one

channel to the next. Images were processed and analyzed using

ImageJ (versions 1.51j8 and 2.0.0-rc-68/1.52e). Total positive

antibody fluorescence was measured in glomeruli and the TI

separately and normalized to the total background in the same

area to generate corrected total fluorescence. Background was

subtracted using a rolling-ball algorithm in ImageJ in the im-

munofluorescence images.

Tissue Preparation and Staining for STORM Imaging
Tissue was fixed and stained as describedpreviously.34,35 In

brief, kidneys were fixed in 4% PFA in PBS. Samples were

washed in PBS incubated in a cryoprotectant solution of 2.3

M sucrose plus 10% polyvinylpyrrolidone in 0.1 M pipera-

zine-N,N9-bis(2-ethanesulfonic acid) at pH 7.2 at 4�C over-

night. Tissue pieces were mounted on a metal sectioning pin

and frozen in liquid nitrogen. Frozen tissue was sectioned

using an EM-FC6 ultracryomicrotome (Leica) and collected

on carbon-coated coverslips. Sections were fixed in 4% PFA

for 20 minutes, washed with PBS, and PFA was quenched

using 50 mM glycine in PBS. For immunofluorescence, sec-

tions were blocked in 2% BSA in PBS overnight, followed by

another overnight incubation with primary antibodies dilut-

ed in 2% BSA in PBS. After washing, sections were incubat-

ed with secondary antibodies diluted in 2% BSA in PBS for 2

hours at room temperature. Secondary antibodies for direct

STORM were purchased from Jackson ImmunoResearch

Laboratories and custom conjugated to Andy Fluor 488,

Cy3, or Cy5 reporter dyes, asdescribed previously.35 Sections

were washed again in PBS and postfixed in 3% PFA plus

0.05% glutaraldehyde in PBS. After a final washing series,

samples were imaged by Nikon N-STORM according to the

manufacturer’s instructions, as described previously. 35

Histology

Paraffin-embedded mouse tissue sections were stained using a

Shandon Linistain GLX stainer (Thermo Fisher) for hematox-

ylin and eosin. Samples were mounted using Histokitt solution

(Roth). For Picrosirius red staining, paraffin-embedded tissue

sections were dewaxed using a Leica ST5010 autostainer. Tis-

sue sections were stained by incubation of slides in Picrosirius

red solution (0.5 g sirius red and 500 ml saturated aqueous so-

lution of picric acid; Sigma) for 1 hour. Slides were washed in

acidified water. Slides were dehydrated and mounted using

Histokitt solution (Roth). Images were collected on an Olym-

pus BX63 upright microscope, using a 603/1.42 PlanApo N

objective, and captured and white-balanced using a DP80 cam-

era (Olympus) in color/polarized light mode through CellSens

Dimension version 1.16 (Olympus). For TriPAS staining, par-

affin sections were dewaxed and placed into 1% Periodic acid
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Figure 3. Imaging reveals altered matrix localization in Alport syndrome. Immunofluorescence demonstrated reduced BM proteins
and increased interstitial matrix proteins in Alport mouse glomeruli. (A) Kidney sections of 8-week-old Col4a52/2 and wild type (WT)
mice were immunolabeled for collagen I (Col I), collagen VI, laminin-b2 (Lamb2), Tinag, and nidogen (Nid). (B) Quantification of (A).
Mean fluorescence intensity was normalized to background and measured using ImageJ software. Images were acquired from n54 mice
per genotype and between ten and 15 glomeruli were analyzed per mouse, pooled data are shown. Background was subtracted from
immunofluorescence images using a rolling-ball algorithm in ImageJ. (C) STORM was performed for integrin b1 (green) and collagen VI
(purple) on Col4a31/2 and Col4a32/2 mouse sections. Region of interest (ROI) highlights collagen VI localization to the GBM in Col4a32/2

glomeruli, specifically to areas of tickened GBM (arrowhead). Scale bars, 20 mm. ***P,0.01***P,0.001, ****P,0.0001
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for 10 minutes, and washed with tap and distilled water. Nuclei

were stained with Gills No.2 hematoxylin for 1.5 minutes and

washed in tepid tap water. Sections were stained in 2% orange

G dissolved in 100 ml of 5% phosphotungstic acid for 1 mi-

nute. Sections were washed, dehydrated, and coverslips were

applied. For human and mouse sections, a specialist kidney pa-

thologist performed percentage glomerulosclerosis analysis and

percentage interstitial fibrosis and tubular atrophy scoring on

the TriPAS-stained tissue sections.

Urinary Albumin and Creatinine Analysis

Spot urine was collected at the same time of day for each

group of mice. Urinary albumin was measured using a mouse

albumin ELISA kit (E99-134; Bethyl Laboratories). Creatinine

was measured using a creatinine ELISA assay according to the

manufacturer’s instructions (KGE005; R&D Systems).

Statistical Analyses
Data are presented as bar charts (mean6SEM) or box-and-

whisker plots, and were analyzed using GraphPad Prism (ver-

sion 7; GraphPad Software, La Jolla, CA). Data were analyzed

using the Shapiro–Wilk test for normality and analyzed using

the Kruskal–Wallis test or ANOVA with post hoc Bonferroni

correction or t test, as appropriate. Statistical significance was

accepted at P,0.05. PCA was performed in MATLAB. Unsu-

pervised hierarchic clustering was performed in T4MeV using

a Euclidean, distance-based, complete-linkage matrix.

RESULTS

Structural and Compositional Change in Matrix
Type IV collagen is an essential component of BM in the kid-

ney and exists as three networks comprised of a1.a1.a2(IV),

a3.a4.a5(IV), and a5.a5.a6(IV) heterotrimers. We confirmed

the glomerular localization of these three networks with

a1.a1.a2(IV) in the mesangium, GBM, and Bowman’s cap-

sule; a3.a4.a5(IV) in the GBM; and a5.a5.a6(IV) in Bow-

man’s capsule (Supplemental Figure 1). To understand the

effect of glomerular disease on matrix, we investigated three

mouse models with defects in the different collagen IV hetero-

trimers. First, Col4a11/SVC mice that harbor a glycine to aspar-

tic acid variant (G1064D) and have phenotypic overlap with

human COL4A1 variants, including defects in Bowman’s cap-

sule, kidney cysts, and tubular dysfunction.33,36 Second,

Col4a32/2 mice (autosomal recessive Alport syndrome) that

have progressive glomerular disease associated with GBM

defects.17 Third, a new Col4a52/2 model of X-linked Alport

syndrome. We characterized the Col4a52/2 mice and demon-

strated abnormal GBM thickness, podocyte effacement, and

progressive albuminuria (Supplemental Figure 2). To investigate

the effect of Col4a defects on matrix ultrastructure, we per-

formed serial block-face scanning electron microscopy of young

(6–8 weeks), adult (16–18 weeks), and aged (28 weeks) mice

(Figure 1, A–D, and Supplemental Videos 1–4). GBM was simi-

lar to wild type in adult Col4a11/svc mice, but thickened in adult

Col4a32/2 and Col4a52/2mice. Podocyte foot process width

was preserved in Col4a11/svc mice, but increased with age in

Col4a32/2 and Col4a52/2 mice. Bowman’s capsule BM thick-

ness was increased in adult Col4a32/2 mice compared with

adult wild type and Col4a52/2 mice, and markedly thickened

in aged Col4a32/2 mice (Supplemental Video 3). The Bow-

man’s capsule BM of adult Col4a11/svc mice was of a normal

thickness, but there was infiltration of parietal epithelial cells.

Given these structural changes in the matrix, we analyzed ma-

trix composition using mass spectrometry–based proteomics.

To interrogate changes that precede—and also coincide with—

ultrastructural changes, we analyzed glomerular proteomes in

young and adult mice. We isolated glomeruli and separated cel-

lular and matrix fractions from three Col4a11/svc, five Col4a32/

2, and five Col4a52/2 mice, and their respective littermate con-

trols, as previously described.9 Proteins were taken forward if

identified by three unique peptides, with a Mascot score indicat-

ing a ,5% false discovery rate. GO enrichment analysis

highlighted increases in cell matrix and cell adhesion ontologies

and a reduction in mitochondrial and metabolic components in

all three Col4a models, compared with controls (Supplemental

Figure 1E). Equivalent analyses of individual Col4a datasets

highlighted similar cellular pathways (Supplemental Figure 3A),

and PCA demonstrated model and age segregation (Figure 2A).

Taken together, these findings highlight both structural and

compositional changes in matrix in models of glomerular

disease.

Evolution of Altered Matrix in Aging and Disease

To explore the altered glomerular matrix, we focused on

the matrix-enriched fractions in which 707 (Col4a11/svc),

334 (Col4a32/2), and 600 (Col4a52/2) proteins were de-

tected. Volcano plots revealed age- and genotype-specific

changes in protein identifications (Figure 2, B–E). In keep-

ing with predictions based on genotype, collagen-a1(IV)

and collagen-a2(IV) were reduced in Col4a11/svc glomeru-

li, but moderately increased in both Col4a32/2 and

Col4a52/2 glomeruli (Figure 2F and Supplemental Figure

4A). In addition, both collagen-a3.a4.a5(IV) and laminin

521 were reduced in Col4a32/2 and Col4a52/2 in contrast

to Col4a11/svc glomeruli (Figure 2F and Supplemental

Figure 4A), and immunofluorescence confirmed reduced

levels of collagen-a3(IV) and collagen-a4(IV) in Col4a52/2

mice (Supplemental Figure 4B). Although ultrastructure was

preserved in young Alport mice (Figure 1), we observed al-

tered matrix composition (Figure 2, B and D, and

Supplemental Figures 5A and 6A), with a broad reduction in

BM components and an increase in interstitial matrix. This

pattern was exaggerated in the older mice (Figure 2, C and E,

and Supplemental Figures 5B and 6B). Although less pro-

nounced, there were also changes during aging in wild type

mice, which showed reduced collagen IV and increased
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collagen VI (Supplemental Figure 3B). We performed immu-

nofluorescence on Col4a52/2 kidney sections and also ob-

served increased collagen VI and collagen I, and reduced lami-

nin-b2 and Tinag (Figure 3, A and B). For greater spatial

resolution, we used STORM to determine the localization of

increased collagen VI. Control, heterozygous Col4a31/2 mice

have normal kidney function,37 and we detected regular integ-

rin b1 fluorescence and no GBM collagen VI. However, in

Col4a32/2 mice, we detected collagen VI in expanded regions

of GBM (Figure 3C). Overall, we found altered matrix compo-

sition before overt ultrastructural changes, and these changes

increased in aging and disease progression.

Increased Cell-Matrix Adhesion in Disease

To connect the altered matrix with cell-matrix adhesion, we

used the consensus adhesome38 to select integrin adhesion

complex components from all three disease model datasets

(Figure 4). The consensus adhesome is centered around four

dominant signaling hubs: ILK-PINCH-kindlin, FAK-paxillin,

talin-vinculin, and a-actinin-zyxin-VASP. When examining

proteins detected in cellular and matrix fractions across these

hubs, we found a global increase in abundance of integrin ad-

hesion components and their respective ligands. In particular,

we found parallel increases in the collagen binding integrins

(a1b1, a2b1) with collagen VI, collagen I, and collagen III,

in addition to the parallel increase in a8b1 and its ligand,

nephronectin. The observed global increase in adhesion

components may reflect a greater receptor-ligand interaction

associated with podocyte effacement.

Altered Glomerular Matrix in Human Kidney Aging

Having observed altered matrix in aging and disease in

mice, we examined human tissue. Glomerulosclerosis, tubu-

lar atrophy, and interstitial fibrosis are observed in human

aging.39,40 Therefore, we investigated changes in matrix over

age in unused human donor kidneys. Sections of young (15,

29, 37 years) and older (61, 67, 69 years) human kidneys were

assessed blindly by a kidney pathologist, who reported occasional

focal glomerular and interstitial damage, consistent with age.

From these kidneys, glomeruli were isolated, subjected to matrix

fractionation, and analyzed by mass spectrometry. PCA of matri-

some proteins showed good separation by age (Figure 5A), and

GO enrichment analysis of all detected proteins highlighted

matrix and cell-matrix ontologies (Supplemental Figure 7A).

Volcano plots and hierarchical clustering highlighted glomerular

matrix proteins changing with age (Figure 5, B and C).

There was a skewed distribution with a greater number of

increased abundance proteins in aged samples, including
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collagen VI and TIMP3 (Figure 5B). Fewer proteins were

enriched in younger glomeruli, including filaggrin-2,

ECM1, and agrin. Protein-protein network mapping

highlighted a reduction in BM components, including

laminins and collagen IV, and an increase in interstitial

matrix proteins (Figure 5D). Overall, these findings high-

light altered composition of matrix during human glomer-

ular aging, with similarity to aging and disease in mice.

Defining the Human TI Matrisome

Together with altered glomerular matrix in kidney aging and

disease, there are changes in the tubulointerstitium.8 The matrix

in this kidney compartment has received far less research atten-

tion; therefore, we first defined the human TI matrisome. We

isolated TI matrix from six human kidneys (as above) for analy-

sis by mass spectrometry. We included proteins identified by

one unique peptide, a Mascot score indicating a ,5% false dis-

covery rate, and being present in two out of three samples in

each age group. We robustly identified 141 proteins

(Supplemental Figure 8, A and B, and Supplemental Table 2),

and 90% of all of the components were also found in the glo-

merular matrix from this study and our previous investigation.9

Comparison of human glomerular and TI matrix revealed dis-

tinct proteomes (Supplemental Figure 8C). Collagen-a3.a4.

a5(IV) was abundant in the glomerular matrix, but also de-

tected in the tubulointerstitium, which we validated by im-

munofluorescence (Supplemental Figure 9A). We screened

the Human Protein Atlas41 to confirm localization of 67 com-

ponents in the tubulointerstitium and 80 in both glomerular

and TI compartments (Supplemental Figure 9, B and C). By

combining the glomerular and TI datasets, we defined the com-

bined human kidney matrisome, dominated by proteoglycans,

collagens, and a wide variety of matrix regulators and secreted

factors (Supplemental Figure 10). Together, these data highlight

the complexity of the TI matrix and key compositional differ-

ences with the adjacent glomerular compartment.

Altered TI Matrix in Human Kidney Aging

After defining the human TI matrisome, we compared TI

matrices from young (15, 29, 37 years) and aged (61, 67, 69

years) human kidneys. GO enrichment map analysis of all

proteins highlighted increased matrix and cell-matrix adhesion

ontologies, and a reduction in mitochondrial components

(Figure 6A). We found age-associated increases in the struc-
tural components collagen VI, fibulin-1, and fibronectin, and
the matrix regulators TIMP3 and ADAMTS5 (Figure 6B). In-
deed, several fibulin isoforms were increased in our mouse
and human datasets, and immunofluorescence confirmed in-
creased fibulin-1 in the tubulointerstitium (Figure 6, C and
D). Furthermore, a number of age-related changes were found
in both glomerular and TI matrix, including fibulin-1, TIMP3,
and collagen VI (Figure 7, A and B). There were also distinct
compartment changes, with reduced BM components ob-
served in glomerular aging but not seen in the aged TI matrix,
suggesting tubular BMs are less exposed to damage during ag-
ing. When relating these molecular changes to histology, we
observed that aging was only accompanied by a small increase
in glomerulosclerosis and interstitial fibrosis and tubular atro-
phy scores (Figure 7, C and D), in keeping with our finding in
the mouse disease models that altered matrix composition pre-
cedes overt or widespread structural changes.

A Signature of Altered Kidney Matrix in Aging

and Disease

Across our aging and disease datasets, we observed consistent
increases in collagen VI, nephronectin, and fibrinogens, and
decreased BM components (Figure 8, A and B). To investigate
the relevance in human disease, we examined kidney biopsy
sections from a young male patient with autosomal recessive
Alport syndrome. Compared with control kidney sections, we
observed increased levels of collagen VI and decreased levels
of laminin-b2 in the glomerulus (Figure 8C). To determine
whether this signature applied to a wider spectrum of human
kidney disease, we searched for the signature proteins in pub-
lished proteomic datasets. In a study of IgA nephropathy,11 we
found concordant increases in collagen VI and fibrinogen
chains and, in diabetic kidney disease (DKD),12 there was in-
creased collagen VI and nephronectin (Figure 8D). Data from
a biopsy specimen study of human FSGS identified increased
interstitial collagen XV and Tgm2.42 We also observed re-
duced BM components in IgA nephropathy and FSGS, but
not in DKD (Figure 8D), which may reflect the overall matrix
expansion seen in DKD. To provide insight into the pathways
associated with the matrix signature proteins, we created a
one-hop interaction network by connecting upregulated signa-
ture proteins with their nearest neighbors identified in protein
interaction databases (Supplemental Figure 11). This

MATLAB was used for PCA of matrisome proteins. Components 1 and 2 are presented and the percentage variance explained by each
component is indicated on the relevant axis. (B) Volcano plots of proteins detected in matrix fractions demonstrate differential protein
abundance shown as the log2(fold change) of aged over young glomeruli on the x axis and 2log10(P value) on the y axis. (C) Unsuper-
vised hierarchical clustered heat map displaying ECM proteins detected in young and aged glomerular datasets. Data were standard-
ized by row z-score and grouped in MeV using Pearson correlation complete-linkage clustering. Inset line graph shows increased type
VI collagen protein abundance with age. (D) Protein-protein interaction network of altered human glomerular matrisome proteins. Mass
spectrometry data from matrix-enriched protein fractions were filtered for known matrisome proteins. These proteins were mapped
onto a merged human, mouse, and rat interactome. Nodes represent proteins and the edges represent reported protein-protein inter-
actions. Color represents fold enrichment to datasets, with increased abundance in aged human glomerular samples illustrated in red
and increased abundance in young human glomerular samples illustrated in blue. Proteins are grouped by function.
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and aged (61, 67, 69 years) human kidney samples. (A) Volcano plots of proteins detected in ECM fractions demonstrate differential
protein abundance shown as log2(fold change) of aged over young TI on the x axis and 2log10(P value) on the y axis. (B) Unsuper-
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creased collagen VI protein abundance with age. (C) Protein-protein interaction network of altered human TI matrisome proteins.
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highlighted biological processes associated with matrix and ad-

hesion but also with immune system processes. We also com-

pared the matrix signature proteins to RNA levels using the

Nephroseq database, and across a variety of phenotypes we

observed similar increases in the signature transcripts (Figure

8E and Supplemental Tables 3 and 4). Finally, we combined

all primary, processed data from this study to allow direct

evaluation (Supplemental Table 5).

DISCUSSION

In this study, we aimed to define altered matrix at the molecu-

lar level in kidney aging and disease. We (1) found ultrastruc-

tural change in matrix coupled with altered composition in

models of glomerular disease; (2) found similar patterns of al-

tered glomerular matrix in human aging, with a reduction in

BM proteins and an increase in interstitial matrix; (3) defined

the human TI matrix as a network of 141 components, with a

distinct pattern of altered matrix in aging; and (4) observed a

signature of altered matrix in kidney aging and disease, and

provide evidence for shared pathobiology.
The processes that drive abnormal matrix in tissues re-

main unclear, although this understanding could lead to tar-

geted therapies. In this study, we describe altered matrix

structure with evolution over age and disease progression.

The GBM of Col4a32/2 and Col4a5-/- mice at 6–8 weeks ap-

peared normal; however, proteomic analysis identified com-

positional change at this early stage. With age, these disease

models progressed with thickened GBM, and the separation

between control and disease matrix composition was more

apparent. One aspect of the altered matrix was a reduction

in BM components, including collagen IV and laminins. In

dynamic studies of endogenously tagged proteins in Caeno-

rhabditis elegans, laminin and collagen IV orthologs have

slower recovery after photobleaching compared with nido-

gens, agrin, and perlecan.43 With this in mind, the reduction

in BM components we observed could represent damage to

these structures and an inability to replenish. We also ob-

served increases of interstitial matrix components nephro-

nectin and collagen VI within the glomerular matrix. More-

over, we identified integration of collagen VI into the GBM

in Col4a32/2 mice. Genetic variants in COL6A1/2/3 cause

Bethlem and Ulrich myopathies,44 but no reported kidney

phenotype. However, collagen VI degradation has been as-

sociated with CKD,45 and its cleavage product, endotrophin,

triggers fibrosis and metabolic dysfunction.46

Glomerular capillaries are exposed to mechanical load

during filtration. Loss of a key BM component may affect

the mechanical properties of the GBM. Equally, loss of colla-

gen VI has been shown to alter stiffness in the pericellular

matrix of cartilage.40 Therefore, collagen VI deposition in

aging and disease may occur to restore the mechanical prop-

erties of the GBM. Furthermore, collagen VI is a prominent

downstream regulator of myofibroblast activity, with knock-

down reducing fibrosis.47 Our data show collagen VI in-

creasing early, where it may act to strengthen BM defects

while, paradoxically, promoting fibrosis (Figure 8E). Howev-

er, the role of increased collagen VI requires further investi-

gation, as does the potential for targeted inhibition.
In parallel with altered matrix, we observed changes in

cell adhesion components. The complex of proteins that as-

semble upon adhesion receptor and ligand engagement has

been described for interactions with fibronectin,21 in addi-

tion to the BM ligands collagen IV and laminin.48 The con-

sensus adhesome identified a series of four signaling hubs,38

and we found a global increase in components across all

four signaling hubs. In addition, we found increases in re-

ceptors and their paired matrix ligands, including integrin

a1b1, integrin a2b1 with increased fibrillar collagens (I and

III), and collagen VI and integrin a8b1 with nephronectin.

Nephronectin is predominantly localized to the mesangium

in the glomerulus and regulates mesangial cell adhesion49;

however, increased GBM localization of nephronectin is re-

ported in DKD.12 Our analysis of matrix receptors focused

on the integrin adhesion complexes because we did not de-

tect discoid domain receptors or syndecans. This could be

due to low abundance or due to factors limiting their detec-

tion by mass spectrometry. Overall, the changes we observed

in adhesion components could be explained by increased

cell-matrix adhesion, associated with podocyte effacement,

and increased interaction with the GBM.
To relate our findings in mice to human tissue, we in-

vestigated matrix isolated from young and older human

kidneys. We also found a reduction in BM components

and increased collagen VI and nephronectin in the aged

glomerular matrix. Indeed, these components were also in-

creased in proteomic studies of IgA nephropathy11 and

DKD,12 and collagen VI was also upregulated in aged hu-

man dentin.50(preprint) A Nephroseq analysis provided fur-

ther correlation between matrix signature proteins and

transcriptional change in a variety of glomerular pheno-

types. Kidney disease and aging is associated with altered

TI matrix and, therefore, we defined the human TI matrisome.

We confirmed localization of 70% of these proteins in

protein interactions. Color represents fold enrichment to datasets, with increased abundance in aged human TI samples illustrated in
red, and increased abundance in young human TI samples illustrated in blue. Proteins are grouped functionally. (D) Sections of nor-
mal human kidneys were stained with an antibody to fibulin-1 (FBLN1; red) and nuclei were stained with Hoechst 33342 (blue). Rep-
resentative images are shown. Original magnification, 340 in left panel; 320 in right panel. (E) The fluorescent signal in 20 fields per
kidney was quantified using ImageJ. ***P,0.001, ****P,0.0001.
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Figure 8. Holistic analysis reveals a signature of altered kidney matrix in aging and disease. (A–B) Bar graphs displaying protein fold
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different kidney matrix compartments, using the Human Pro-
tein Atlas, and thereby demonstrate the value of proteomics

for increasing the known composition of matrix compart-

ments as an adjunct to immunolocalization. We further exam-
ined the change in TI matrix in aging and defined a profile of

altered matrix. Interestingly, we did not observe the same re-

duction in stable BM components seen in the glomerular ma-

trix and hypothesize this is due to differential mechanical load
on glomerular and tubular BMs.51 However, this could also

depend on the pathological process, and a reduction of BM

components was recently described in a proteomic analysis of
transplant kidney rejection.52

In addition to resident kidney cells secreting abnormal

matrix, transiting or infiltrating immune cells may also con-

tribute. Macrophage to fibroblast crosstalk has been shown
to direct new matrix synthesis, and the direct contribution

of macrophages to collagen scar formation in the heart is de-

scribed in zebrafish.53 Starting with the matrix signature
proteins, we identified experimentally confirmed protein in-

teractors and demonstrated three clusters of enriched bio-

logical processes. Unsurprisingly, these included cell matrix
and cell adhesion, but also processes related to complement,

TNF, NF-kB, and immune response to infection. These find-

ings suggest the signature of an altered matrix has greater in-
teraction with immune system components than previously

recognized.
In conclusion, we describe a molecular basis for altered

matrix in the kidney, with common features across aging
and disease. Further investigations will focus on the cellular

origins of the altered matrix and on the role of mechanical

load on BM stability.
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