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Abstract

The use of human induced pluripotent stem cells (iPSCs), used as an alternative to human embryonic stem cells (ESCs), 

is a potential solution to challenges, such as immune rejection, and does not involve the ethical issues concerning the use 

of ESCs in regenerative medicine, thereby enabling developments in biological research. However, comparative analyses 

from previous studies have not indicated any specific feature that distinguishes iPSCs from ESCs. Therefore, in this study, 

we established a linear classification-based learning model to distinguish among ESCs, iPSCs, embryonal carcinoma cells 

(ECCs), and somatic cells on the basis of their DNA methylation profiles. The highest accuracy achieved by the learned 

models in identifying the cell type was 94.23%. In addition, the epigenetic signature of iPSCs, which is distinct from that of 

ESCs, was identified by component analysis of the learned models. The iPSC-specific regions with methylation fluctuations 

were abundant on chromosomes 7, 8, 12, and 22. The method developed in this study can be utilized with comprehensive 

data and widely applied to many aspects of molecular biology research.
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Introduction

The application of human induced pluripotent stem cells 

(iPSCs) in medicine requires prior assessment of the cells 

with respect to quality, including identity, equivalence, 

and safety. For evaluation of the iPSCs, comprehensive 

molecular analysis of characteristics, such as DNA meth-

ylation, rather than tests based on a few marker genes, is 

considered to be more useful. DNA methylation is an epige-

netic modification with important roles in normal develop-

ment and differentiation [1–6]. DNA methylation profiles 

vary depending on tissue types and cell lineage [5, 7]; there-

fore, the DNA methylation profile of a cell can be useful for 

the identification and validation of its cell type. Epigenetic 

reprogramming, which involves conversion of the DNA 

methylation profile from somatic to pluripotent cell type, 

is an essential for the transformation of somatic cells into 

iPSCs; the cells that acquire the DNA methylation profile of 

embryonic stem cells (ESCs) become iPSCs [8, 9].

Human iPSCs lower the rate of immune rejection and 

help in resolving ethical issues associated with the use of 

ESCs in regenerative medicine [10]. Since the success-

ful development of iPSCs [11–13], comparative analyses 

between iPSCs and ESCs have been performed by many 

researchers. Choi et al. [14] reported that there are no 

molecular or functional differences between genetically 

matched human ESCs and iPSCs. On the other hand, sev-

eral studies have identified differentially methylated DNA 

regions between human iPSCs and ESCs [8, 15–17]. 
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However, these studies only analyzed single point of pas-

sage of human iPSCs. In a previous study, we compara-

tively analyzed several points of passages of 22 human 

iPSC lines and the results indicated the presence of aber-

rant hypermethylated sites in iPSCs; however, aberrant 

hypermethylation in iPSCs occurs stochastically through-

out the genome and there is no iPSC-specific aberrant 

methylated site common to all iPSCs [9]. Despite the lack 

of DNA methylation hotspots in iPSCs, previous studies 

have suggested that there are fundamental differences 

between ESCs and iPSCs, raising questions regarding the 

extent of similarity between ESC-type epigenome and the 

reconstructed whole genome of iPSCs. For comparative 

analysis of cell types with no clear differences, machine 

learning technology may be useful.

Machine learning is a data analysis technique that 

attempts to train computers to learn through experience 

with datasets, in manner similar to natural learning in 

human. Supervised machine learning can be used to build 

models for evidence-based prediction, even when there 

is uncertainly. A supervised learning algorithm trains a 

machine learning model on a set of input data and the 

resultant responses (outputs), so that it can reasonably 

predict the response to new data. In supervised machine 

learning, classification or regression methods are used to 

construct predictive models. Classification models are 

trained to classify the data into categories. Regression 

models are used to estimate one variable based on the data.

If a model capable of discriminating between ESCs and 

iPSCs can be constructed using supervised machine learn-

ing, the difference between the two cell types could be 

elucidated. Such a model could help identify the factors 

underlying the differences between ESCs and iPSCs, as 

well as enable visualization of these differences, which 

cannot be distinguished by the naked human eyes.

In this study, we used classification method-based 

machine learning to create a model that can discriminate 

between iPSCs and ESCs on the basis of DNA methylation 

profiles. Further, we attempted to determine the difference 

between iPSCs and ESCs by analyzing the components of 

the learning model. Our machine learning-based analysis 

method and the identified epigenetic indices are useful for 

evaluating the therapeutic application of human iPSCs. We 

propose a new method for molecular analysis of the cells 

that combines comprehensive DNA methylation data and 

machine learning.

Materials and methods

Preparations of mouse embryonic fibroblasts 
(MEFs) and MEF feeder cells

MEFs were isolated from 13.5-dpc fetuses of pregnant 

CD1(ICR) mice (Charles River Japan, Inc., Yokohama, 

Japan) and cultured in Dulbecco’s modified Eagle’s/high-

glucose medium (DMEM) (Sigma-Aldrich, St Louis, MO, 

USA) containing 10% fetal bovine serum (FBS) (Thermo 

Fisher Scientific, Inc., Waltham, MA, USA, Cat. No. 

SH3091003), 55 μM 2-mercaptoethanol (Thermo Fisher 

Scientific), 1% penicillin and streptomycin (Thermo Fisher 

Scientific). MEFs were irradiated with 30 Gy of gamma 

irradiation to generate MEF feeder cells. All procedures 

were performed in accordance with the guidelines for 

animal care and use of laboratory animals, University of 

Miyazaki, and the experimental protocols were approved 

by the Animal Experiment Committee of University of 

Miyazaki (no. 2012-017, 2017-009).

Human cell culture

Human endometrium (UtE1104), amnion (AM936EP), 

placental artery endothelium (PAE551) and menstrual 

blood (Edom22) cell lines were independently estab-

lished [18, 19]. Fetal lung fibroblast cells (MRC-5) [20] 

were obtained from JCRB Cell Bank, Japan. UtE1104, 

AM936EP, MRC-5, and Edom22 were maintained in 

POWEREDBY10 medium (Glyco Technica Ltd., Sapporo, 

Japan). PAE551 were cultured in EGM-2MV BulletKit 

medium (Lonza, Walkersville, MD, USA) containing 5% 

FBS (Thermo Fisher Scientific). Human Retro-iPSCs 

were generated using the retroviral vector pMXs, which 

contains the cDNAs for human OCT3/4, SOX2, c-MYC, 

and KLF4 [8, 9, 19, 21, 22], according to previously 

described procedures [12] with slight modifications. Epi-

somal-iPSCs were established using the episomal vectors, 

pCXLE-hOCT3/4-shp53, pCXLE-hSK, and pCXLE-hUL 

[23], according to previously described procedures [24]. 

Sendai-iPSCs were produced using the Sendai viral vector 

SeVdp-iPS, which contains the polycistronic cDNAs for 

mouse Oct3/4, Sox2, c-Myc, and Klf4 [23], according to 

previously described procedures [25]. The SEES lines of 

human ESCs were generated in the Center for Regenera-

tive Medicine, National Research Institute for Child Health 

and Development, Tokyo, Japan [26]. Genomic DNA 

of the HUES lines of human ESCs [27, 28], was kindly 

gifted by Drs. C. Cowan and T. Tenzan (Harvard Stem 

Cell Institute, Harvard University, Cambridge, MA, USA). 

Human iPSCs were maintained on irradiated MEF feeder 
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cells in KnockOut™ Dulbecco’s modified Eagle medium 

(KO-DMEM) (Thermo Fisher Scientific) containing 20% 

knockout-serum replacement (Thermo Fisher Scientific), 

1% GlutaMAX (Thermo Fisher Scientific), 1% nones-

sential amino acids (Thermo Fisher Scientific), 55 μM 

2-mercaptoethanol (Thermo Fisher Scientific), 1% peni-

cillin and streptomycin (Thermo Fisher Scientific), and 

10 ng/ml recombinant human basic fibroblast growth fac-

tor (bFGF) (Wako Pure Chemical Industries, Ltd., Osaka, 

Japan). The human embryonal carcinoma cell lines NCR-

G2, NCR-G3 and NCR-G4, which were established in the 

National Research Institute for Child Health and Devel-

opment, Tokyo, Japan [29], were cultured in G031101 

medium [21]. The human embryonal carcinoma cell lines 

NCC-IT-A3 [30], PA-1 [31], NEC8, and NEC14 [32] were 

obtained from JCRB Cell Bank, Japan. NCC-IT-A3, NEC8 

and NEC14 were cultured in RPMI1640 medium (Sigma-

Aldrich) supplemented with 10% FBS (Thermo Fisher 

Scientific), and PA-1 was cultured in MEM supplemented 

with nonessential amino acids and 10% FBS (Thermo 

Fisher Scientific). The human ECC lines 1777N Rpmet 

[33] and NTERA-2 [34] were obtained from DS Pharma 

Biological Co. LTD, Japan, and were cultured in DMEM 

supplemented with 10% FBS (Thermo Fisher Scientific). 

All human cell lines used in this study are summarized in 

Supplemental Table 1.

DNA methylation analysis

DNA methylation profiles were obtained from each sample 

using the Illumina Infinium assay with the Infinium Human-

Methylation450K BeadChip and Infinium MethylationEPIC 

BeadChip (Illumina Inc., San Diego, CA, USA). Genomic 

DNA was extracted from the cells using the QIAamp DNA 

Mini Kit (Qiagen, Hilden, Germany). From each sample, 

1 µg of genomic DNA was subjected to bisulfite conversion 

using the EZ DNA Methylation kit (Zymo Research, Orange, 

CA, USA), according to the manufacturer’s recommenda-

tions. Following bisulfite conversion, the genomic DNA 

was hybridized with the Infinium HumanMethylation450K 

BeadChip and MethylationEPIC BeadChip, and each Bead-

Chip was scanned on an iScan (Illumina Inc.) according to 

the manufacturer’s instructions. GenomeStudio (Illumina 

Inc.) was used for background subtraction and normaliza-

tion of data. Methylated and unmethylated signals were used 

to compute the β value, a quantitative score of the DNA 

methylation rate that ranges from “0.00”, for completely 

unmethylated state to “1.00”, for completely methylated 

state. Additional DNA methylation data were obtained from 

the NCBI database. Detailed information of cell lines and 

accession numbers used in this study is mentioned in Sup-

plemental Table 1. Common probes between 450K and EPIC 

were selected. The probes with sequences that overlapped 

with variants showing minor allele frequency (MAF) ≥ 5% 

[35] and detection p value ≥ 0.05 (computed from the back-

ground based on negative controls) were eliminated from 

further analysis. A total of 385,683 CpG sites were analyzed 

in 104 samples including 27 ESC lines, 43 iPSC lines, 9 

ECC lines, and 25 somatic cell lines. Unsupervised hierar-

chical clustering (HCA) with Euclian distance and group 

average method and principal component analysis (PCA) 

were used for data analysis. A differentially methylated 

region (DMR) was characterized by a CpG site having a 

score that differed by ≥ 0.3 points with respect to the β val-

ues between two groups. For comparing the average number 

of DMRs between ESCs and iPSCs, 15 samples were ran-

domly selected from 27 ESC lines and 47 iPSC lines, and the 

number of DMRs was counted. This step was repeated 100 

times and the average number of DMRs was calculated. For 

comparing the average number of CpG sites within a certain 

range of standard deviation (SD) between ESCs and iPSCs, 

15 samples were randomly selected from 27 ESC lines and 

47 iPSC lines, and the number of CpG sites within a certain 

range of SD was counted. This step was repeated 100 times 

and the average number of CpG sites within a certain range 

of SD was calculated.

Machine learning

Jubatus, a machine learning analytical platform, is an online 

open-source software (https ://jubat .us/en/) developed by 

Preferred Infrastructure, Inc. (Tokyo, Japan) and NTT SIC 

(Tokyo, Japan). Multi-class classification (one-vs-others) of 

the cell types was performed using the classification module 

Jubaclassifier with Adaptive Regularization of Weight vec-

tors (AROW) [36], which is a linear classification model 

supported by Jubatus. To perform 4-fold cross-validation, 

each cell line was divided into four groups, A–D (Supple-

mental Table 1), and the following four learning series were 

used: Series-1 comprising training dataset, BCD and test 

dataset, A; Series-2 comprising training dataset, CDA and 

test dataset, B; Series-3 comprising training dataset, DAB 

and test dataset, C; and Series-4 comprising training dataset, 

ABC and test dataset, D. The training datasets were used for 

learning in constructing learning models, and test datasets 

as unknowns were used for validation of the learned models. 

The construction of learning models was entailed by the ran-

dom selection of one sample from the training dataset, fol-

lowed by the input of the DNA methylation rates of 385,683 

CpG sites and the cell type of the selected sample into 

Jubatus followed by learning, thereby updating the learning 

model. This process was repeated for all the samples in the 

training dataset, and learning once with all the samples in 

the training dataset was designated as 1 epoch. In total, 300 

epochs were performed and the learned model was assessed 

every 10 epochs. The adaptive regularization parameter 

https://jubat.us/en/
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was evaluated using variable regularization weight values 

of “0.10”, “0.25”, “0.50”, “0.90”, “1.00”, and “1.10”. The 

learned model was delineated using four classification mod-

els corresponding to the cell types (ESCs, iPSCs, ECCs and 

somatic cells). The source code is available on GitHub (https 

://githu b.com/aknis hino/20191 212_Jub). For evaluating 

the learned models, Precision, Recall and F-score, Macro-

average Precision  (PrecisionMacro), Macro-average Recall 

 (RecallMacro) and Macro-average F-score (F-scoreMacro) of 

the each learned model were calculated using the formulae 

shown in Table 1.

Sodium bisulfite sequencing

Sodium bisulfite treatment of genomic DNA was carried out 

using the EZ DNA Methylation-Gold kit (Zymo Research). 

PCR amplification was performed using BIOTAQ™ HS 

DNA polymerase (Bioline Ltd, London, UK) with spe-

cific primers for CSMD1, FZD10, DNAH9, FAM19A5, 

TMEM132C, and TMEM132D. The primers used in this 

study are summarized in Supplemental Table 2. To deter-

mine the methylation states of individual CpG sites, the PCR 

product was gel-extracted and subcloned into Eco RV cut-

pBluescriptII vector using NEBuilder HiFi DNA Assembly 

Master Mix (New England BioLabs, Ipswich, MA, USA), 

and then sequenced. Methylation sites were visualized and 

quality control was carried out using the web-based tool 

QUMA (https ://quma.cdb.riken .jp/) [37].

Accession numbers

NCBI GEO: Infinium HumanMethylation450K BeadChip 

and Infinium MethylationEPIC BeadChip data obtained in 

this study have been submitted under the accession num-

ber GSE141521. Additional DNA methylation data were 

obtained from the NCBI database. Accession numbers are 

given in Supplemental Table 1.

Results

Comparison of DNA methylation between ESCs 
and iPSCs

The DNA methylation profiles of 104 human samples, 

including 27 ESC lines, 43 iPSC lines, 9 ECC lines, and 25 

somatic cell lines, were obtained using the Illumina Infinium 

HumanMethylation array. The methylation rates of 385,683 

CpG sites were further analyzed (see details in “Materials 

and methods”). The promoter regions of the pluripotency-

associated genes POU5F1, NANOG, SALL4, RAB25, and 

EPHA1 showed low levels of methylation, whereas those of 

the somatic cell-associated genes GBP3, LYST, and SP100 

were highly methylated in ESC and iPSC lines (Supple-

mental Fig. 1a). Unsupervised hierarchical cluster analysis 

(HCA) (Fig. 1a and Supplemental Fig. 1b) and principal 

component analysis (PCA) (Supplemental Fig. 1c) revealed 

that iPSCs were clearly distinct from somatic cells and 

ECCs, but not from ESCs. Comparison between the two 

types of cells showed that there was no differentially meth-

ylated region (DMR) between ESCs and iPSCs (Fig. 1b). 

These results indicate that there was no clear difference 

between ESCs and iPSCs.

Construction of a machine learning model 
for the classification of cell types

The DNA methylation data of 385,683 CpG sites and 

information on the cell type of the training samples were 

used for machine learning (Fig. 2a). In this study, machine 

learning involved 4-fold cross-validation method, wherein 

each cell line was divided into four groups to create four 

datasets (training dataset and test dataset) (Supplemen-

tal Table 1) and six different regularization weight values 

were validated. With each training dataset and regulariza-

tion weight, 300 epochs were performed; thus, the total 

number of epochs performed was 7,200 (4 data sets × 6 

regularization weight values × 300 epochs). After every 10 

epochs, learning results were saved and thus, 720 learn-

ing results were obtained as learning models from each 

dataset. Each of the 720 learning models was used to dis-

criminate the training dataset and the unknowns (test data 

set) (Fig. 2b), and comparative analyses of the average 

of the F-scoreMacro rate were performed (Supplemental 

Fig. 2b). The learning models from the 250th epoch with 

AROW regularization weight value of “1.00” had the high-

est average of the F-scoreMacro rate from the four models 

for both training dataset and test dataset, and were there-

fore selected as the optimal learning models. The highest 

average of the F-scoreMacro rate of the test data set, which 

was achieved by the optimal learning model, was 94.36% 

(Supplemental Fig. 2a, b). The accuracy,  PrecisionMacro, 

 RecallMacro, and F-scoreMacro rates of the test data set in 

the mixed four models were 94.23%, 95.17%, 93.63% 

and 94.39%, respectively (Table  1). The accuracy, 

 PrecisionMacro, and  RecallMacro rates of the test data set in 

each four models were shown in Supplemental Fig. 3. The 

learning model distinguished ESCs from iPSCs with an 

accuracy of ≥ 81.82% (Supplemental Fig. 3). These results 

indicated that the learning model generated in the 250th 

epoch, with a regularization weight value of 1.00, is able 

to distinguish iPSCs from ESCs with a high efficiency.

https://github.com/aknishino/20191212_Jub
https://github.com/aknishino/20191212_Jub
https://quma.cdb.riken.jp/
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Analysis of components of the learned models

Analysis of components of the learned models in the 

250th epoch with a regularization weight value of 1.00 

was required for better understanding of its capacity to 

recognize ESCs and iPSCs, as well as distinguish between 

them. The learned model was delineated by four classifica-

tion models, each corresponding to one of the following 

cell types: ESCs, iPSCs, ECCs, and somatic cells; each 

classification model comprised a list of determination 

weights for the 385,683 CpG sites (Fig. 2a). Since the 

determination weights in the various classification mod-

els for the same learned model can be compared directly 

(Fig. 2c), we selected highly weighted CpG sites for each 

learned model. The classification models for ESCs and 

iPSCs in each learned model were combined and the top 

2,000 highest-weight CpG sites with positive and negative 

values were selected from four learned models (Fig. 2d). 

Using comparative analysis, we found that the average 

number of highly weighted sites was 2.3 times higher in 

iPSCs than in ESCs. Interestingly, the average number 

of negative highly weighted sites was higher than that 

of the positive highly weighted sites in ESCs, whereas 

the average number of positive highly weighted sites was 

higher in iPSCs (Fig. 3a). These results suggest that the 

machine learned model detected more characteristic CpG 

sites in iPSCs than in ESCs. By extracting common highly 

weighted sites, 61 and 479 positive high weight sites and 

93 and 181 negative high weight sites were identified in 

ESCs and iPSCs, respectively (Fig. 3b). By comparing 
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Fig. 1  Comparison of DNA methylation between ESCs and iPSCs. a Unsupervised HCA based on DNA methylation. Green—ESCs, orange—

iPSCs, purple—ECCs and blue—somatic cells. b The number of Differentially methylated regions (DMRs) between two types of cell lines

Table 1  Prediction accuracy, 

precision, recall and F-score in 

test samples

a This prediction was obtained from the learned model at the 250-th epoch with regularization weight 

“1.00”

Class predicted ESC iPSC ECC Somatic cells Precision Recall

ESCs (n = 27) 25 (a1) 2 (b1) 0 (c1) 0 (d1) 89.29% (e1) 92.59% (f1)

iPSCs (n = 43) 3 (a2) 40 (b2) 0 (c2) 0 (d2) 95.24% (e2) 93.02% (f2)

ECCs (n = 9) 0 (a3) 0 (b3) 8 (c3) 1 (d3) 100.00% (e3) 88.89% (f3)

Somatic cells (n = 25) 0 (a4) 0 (b4) 0 (c4) 25 (d4) 96.15% (e4) 100.00% (f4)

Precision (e1) = a1/(a1 + a2 + a3 + a4) Recall (f1) = a1/(a1 + b1 + c1 + d1)

Precision (e2) = b2/(b1 + b2 + b3 + b4) Recall (f2) = b2/(a2 + b2 + c2 + d2)

Precision (e3) = c3/(c1 + c2 + c3 + c4) Recall (f3) = c3/(a3 + b3 + c3 + d3)

Precision (e4) = d4/(d1 + d2 + d3 + d4) Recall (f4) = d4/(a4 + b4 + c4 + d4)

PrecisionMacro = (e1 + e2 + e3 + e4)/4 Recall Macro = (f1 + f2 + f3 + f4)/4

F-scoreMacro = 2 ×  PrecisionMacro ×  RecallMacro/(PrecisionMacro + Recall-

Macro)

Accuracy = (a1 + b2 + c3 + d4)/(27 + 43 + 9 + 25)

PrecisionMacro RecallMacro

95.17% 93.63%

Accuracy F-scoreMacro

94.23% 94.39%
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1 3

the common highly weighted sites in ESCs with those in 

iPSCs, we found 13 sites common to ESC positive high 

weight sites and iPSC negative high weight sites (desig-

nated as ESC Pos-iPSC Neg), and 117 sites common to 

iPSC positive high weight sites and ESC negative high 

weight sites (designated as iPSC Pos-ESC Neg) (Fig. 3b 

and Supplemental Table 3). The iPSC Pos-ESC Neg sites 

were found to be abundant around the transcription start 
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Fig. 2  Scheme for machine learning. a Constructing a machine 

learned model. The DNA methylation data and cell type information 

in the training data set were used as input for the Jubatus classifier 

program. The four-class classification model was composed of four 

sets of determination weights corresponding to each cell type. Each 

classification model comprised a list of determination weights for 

each CpG sites. TargetID: ID assigned to each CpG site in Illumina 

HumanMethylation Array. b Prediction of the cell type of a sample. 

The cell type of a sample data was predicted by the learned model 

using the DNA methylation data. The four-class classification model 

calculated the integrated quantity obtained by multiplying the DNA 

methylation rate and the determination weight, and the cell type cor-

responding to the classification model that produced the largest value 

was predicted as the cell type of the test data set. For example, if the 

decision score shows the highest value in iPSC in the learned model, 

as shown in the figure, the cell type is determined to be iPSC. c 

Boxplots of the determination weight. Dots indicate outliers in each 

boxplot. d Selection of high positive and negative weight sites. The 

determination files for ESCs and iPSCs in the learned models were 

combined. Top 2,000 and bottom 2,000 probes were selected as posi-

tive and negative high weight sites, respectively
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1 3

site (TSS), first exon and gene body (Fig. 3c), and CpG 

island (Fig. 3d).

Distribution of the iPSC Pos-ESC Neg high weight 
sites on chromosome

The iPSC Pos-ESC Neg sites were found to be abundant on 

chromosomes 7, 8, 12, and 22 (Fig. 4a). Next, we focused 

on the DNA methylation rate of high weighted sites. We 

compared the DNA methylation rates of iPSC Pos-ESC 

Neg sites in ESCs and iPSCs, and identified five regions 

in which the DNA methylation fluctuated only in iPSCs 

(Fig. 4b); these regions were found in the following genes: 

CUB And Sushi Multiple Domains 1 (CSMD1), Transmem-

brane Protein 132C (TMEM132C), Transmembrane Protein 

132D (TMEM132D), Frizzled 10 (FZD10), dynein axone-

mal heavy chain 9 (DNAH9), and TAFA chemokine like 

family member 5 (FAM19A5). The fluctuating regions in 

these genes were located around the TSS (Fig. 4c, d and 

Supplemental Fig. 4). To confirm variable methylation at 

those regions, sodium bisulfite sequencing analysis was per-

formed. Consistent with the results of Infinium HumanMeth-

ylation assay, these reasons showed variable methylation in 

iPSCs (Fig. 4c, d and Supplemental Fig. 4). However, these 

genes are rarely expressed in ESCs and iPSCs.

Analysis of the high weight sites

The top ten highly weighted sites were selected and the DNA 

methylation rates in these sites were compared. The DNA 

methylation rates of the iPSC Pos-ESC Neg sites in an indi-

vidual line of iPSCs were found to be widely distributed, 

whereas ESCs generally had a low methylation rate (Fig. 5a 

and Supplemental Fig. 5a). On the contrary, the ESC Pos-

iPSC Neg sites had varied methylation rates in both ESCs and 

iPSCs (Fig. 5b and Supplemental Fig. 5b). Variations in the 

DNA methylation of the high weight sites in iPSCs were not 

due to the differences in the methods of iPSC generation or the 

types of the parental cells (Fig. 6a and Supplemental Fig. 5c). 

Interestingly, the ESCs showed a larger number of variably 
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Fig. 3  Analysis of determination weights of the learned models. a 

The average number of high weight CpG sites in iPSCs and ESCs. 

Data are represented as mean ± SEM. b Venn-like diagram showing 
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graph) and proportion (right graph) of the overlapping high weight 
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methylated regions (Fig. 6b) and CpG sites with high standard 

deviation compared to the iPSCs (Fig. 6c) in the analysis of all 

CpG sites, indicating that ESCs have more variability in DNA 

methylation rates than iPSCs. However, in the high weight 

sites, iPSCs had more CpG sites with high standard deviation 

compared to ESCs, indicating high variability in iPSCs with 

respect to methylation levels at the high weight sites (Fig. 6d). 

These results suggest that the machine learning method was 

able to determine CpG sites with DNA methylation diversity 

specific to iPSCs, which can be considered as a characteristic 

for distinguishing iPSCs from ESCs. 

Discussion

In this study, we developed a new method to distinguish 

between iPSCs and ESCs on the basis of their DNA meth-

ylation profiles. We constructed a learning model based on 

Fig. 4  Distribution of the iPSC 

Pos-ESC Neg high weight sites 

on chromosomes. a The number 

(upper graph) and proportion 

(lower graph) of the overlapping 

high weight CpG sites associ-

ated with chromosomes. b DNA 

methylation rate of the iPSC 

Pos-ESC Neg sites. Five regions 

(R1–R5) in which the DNA 

methylation fluctuations were 

seen only in iPSCs were identi-

fied. A red line indicates a cell 

line. c, d DNA methylation rate 

of CSMD1 (c) and FZD10 (d) 

genes loci and sodium bisulfite 

sequencing analysis. (Top) 

Upper and lower graphs shows 

DNA methylation rates in iPSCs 

and ESCs, respectively. A line 

indicates a cell line. (Bottom) 

Bisulfite sequencing results. 

Open and closed circles indicate 

unmethylated and methylated 

sites, respectively. Red arrow-

heads represent the position of 

CpG sites in the Infinium assay. 

See also Supplemental Fig. 4
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the linear model for multi-class classification using Jubatus, 

a machine learning platform. In recent years, deep learning 

methods have often been used for biological analysis; how-

ever, these methods usually require at least 10,000 samples. 

The availability of only 10–100 variants of human iPSC 

lines makes the linear model classification system ideal for 

the analysis of human iPSCs.

iPSCs are essentially an alternative to ESCs, with almost 

no difference between the two in terms of their properties. 

iPSC lines generated with non-genome integration methods, 

such as episomal vector or RNA transfection, are indistin-

guishable from ESCs in terms of morphology, differentia-

tion ability, gene expression, DNA methylation, etc. [24, 

38]. The results obtained in this study are in agreement 

with previous reports, as no epigenetic features that clearly 

distinguished iPSCs from ESCs were found. However, our 

analyses, using a collection of DNA methylation profiles 

from different types of cells, including 43 iPSC lines which 

contained Retro-, Lenti-, Sendai-, and Episomal-iPSCs, 27 

ESC lines, 9 ECC lines, and 25 somatic cell lines, demon-

strated that machine learning with AROW, a linear model for 

classification, is effective for the discrimination of cell types, 

especially iPSCs and ESCs. The learned models achieved 

high-accuracy prediction rates in distinguishing iPSCs from 

ESCs. In other words, our learned models recognized the 

differences between iPSCs and ESCs and were able to dis-

criminate between the cell types. Interestingly, the learned 

models recognized the iPSC lines as iPSCs, irrespective of 

the production methods used.

One of the advantages of a linear classification-based 

learning model is the ability to select and analyze com-

ponents, such as determination weights corresponding to 

each CpG site. The analysis of the high weight components 

revealed that the learned models searched for genomic 

regions that are characteristic of iPSCs and used them to 

distinguish iPSCs from ESCs. This resulted in the identifica-

tion of fluctuating iPSC-specific methylation regions, which 

are especially abundant on chromosomes 7, 8, 12, and 22. 

DNA methylation was more variable in each of the ESC 

lines than in iPSCs, indicating that the ESCs possessed more 

fluctuating methylation regions than the iPSCs. Despite the 

methylation variation in ESCs, the learned models selected 
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CpG sites with DNA methylation diversity specific to iPSCs 

as characteristics for distinguishing iPSCs from ESCs. Com-

parison of the DNA methylation rates of the iPSC Pos-ESC 

Neg sites led to the identification of fluctuating methyla-

tion regions in six genes, including CSMD1, TMEM132C, 

TMEM132D, FZD10, DNAH9, and FAM19A5. CSMD1 is 

known to be a tumor-suppressor gene under the control of 

DNA methylation in liver cancer and head and neck squa-

mous cell carcinoma [39–41]. TMEM132C has been reported 

to show differential methylation and is downregulated by 

DNA hypermethylation in breast tumors [42]. TMEM132D 

[43] and DNAH9 [44] are cancer-associated genes in small 

cell lung cancer, and FDZ10 has a role in cancer reactivation 

[45]. The expression of FAM19A5, also known as TAFA5, 

is influenced by the activation of β-catenin [46] and c-Myc 

promotes the Wnt/β-catenin activity in breast cancers [47]. 

These genes are involved in carcinogenesis, and the fluc-

tuating regions in these genes are located around the TSS; 

Fig. 6  Variations in the DNA 

methylation rates of the high 

weight sites. a DNA methyla-

tion rate of the representative 

iPSC Pos-ESC Neg sites 

associated with the methods 

of iPSC production or type of 

the parental cells. X in the plot 

indicates the DNA methyla-

tion rate of the parental cells. 

See also Supplemental Fig. 5c. 

b Comparison of the average 

number of variably methylated 

regions in the same cell type 

of ESCs and iPSCs. Data are 

represented as mean ± SEM. c, 

d Average number of CpG sites 

associated with the range of 

standard deviation (SD) of DNA 

methylation rates (left) and the 

average number of high SD 

CpG sites (right) in all probes 

(c) and the iPSC Pos-ESC Neg 

sites (d). Data are represented 

as mean ± SEM
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this suggests that variations in DNA methylation in these 

genes influence the risk of iPSCs. However, it is seen that 

these variations in DNA methylation do not affect the gene 

expression profiles in either ESCs or iPSCs, and also do 

not exert any influence on pluripotency. Nevertheless, it is 

possible that the fluctuations in methylation may affect the 

differentiation properties of iPSCs. The possible effects of 

such methylation fluctuations on the differentiation proper-

ties of iPSCs need to be evaluated through further detailed 

investigations.

Comparison of iPSCs obtained through different pro-

duction methods revealed that Sendai-iPSCs were the least 

diverse in terms of fluctuating methylation regions, and their 

DNA methylation pattern showed maximum similarity with 

that of the ESCs. The similarity observed between Sendai-

iPSCs and ESCs is consistent with the result of a previously 

reported comprehensive DNA methylation analysis [23]. 

However, no significant differences were detected in pluripo-

tency between the Sendai-iPSCs and the iPSCs derived from 

other production methods [23]. Aberrant DNA methylation 

at some imprinted gene loci in ESCs and iPSCs has been 

reported [9, 48, 49], and this abnormality was detected in 68 

imprinted genes [23], indicating that aberrant DNA methyla-

tion occurs widely in human ESCs and iPSCs. In this study, 

we identified 130 high weight sites, including 13 ESC Pos-

iPSC Neg and 117 iPSC Pos-ESC Neg CpG sites; however, 

there were no imprinted genes in the 130 high weight sites, 

suggesting that the abnormalities of imprinted genes are not 

specific to either iPSCs or ESCs.

In conclusion, we were able to distinguish human iPSCs 

from ESCs using machine learning methods, even when 

the cells lacked specific markers. The results of this study 

will have a significant effect on the use of these cell lines 

in various in vitro research studies for specific purposes. In 

addition, an epigenetic signature of iPSCs was identified by 

component analysis using our learned models. The learned 

models developed in this study contribute towards enhanc-

ing our understanding of the iPSCs at the gene level and 

hold potential for achieving remarkable advances in various 

fields of biology research, including computational biol-

ogy, molecular biology, cell biology, and cancer biology. 

The approach of the machine learning method used in this 

study is useful for comprehensive data analysis and can be 

widely applied to iPSC research as well as many other fields 

of research in life sciences.
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