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Increasing studies have highlighted the effects of the tumor immune micro-environment

(TIM) on colon cancer (CC) tumorigenesis, prognosis, and metastasis. However, there

is no reliable molecular marker that can effectively estimate the immune infiltration and

predict the CC relapse risk. Here, we leveraged the gene expression profile and clinical

characteristics from 1430 samples, including four gene expression omnibus database

(GEO) databases and the cancer genome atlas (TCGA) database, to construct an

immune risk signature that could be used as a predictor of survival outcome and

immune activity. A risk model consisting of 10 immune-related genes were screened

out in the Lasso-Cox model and were then aggregated to generate the immune risk

signature based on the regression coefficients. The signature demonstrated robust

prognostic ability in discovery and validation datasets, and this association remained

significant in the multivariate analysis after controlling for age, gender, clinical stage,

or microsatellite instability status. Leukocyte subpopulation analysis indicated that the

low-risk signature was enriched with cytotoxic cells (activated CD4/CD8+ T cell and

NK cell) and depleted of myeloid-derived suppressor cells (MDSC) and regulatory T

cells. Further analysis indicated patients with a low-risk signature harbored higher tumor

mutation loads and lower mutational frequencies in significantly mutated genes of APC

and FBXW7. Together, our constructed signature could predict prognosis and represent

the TIM of CC, which promotes individualized treatment and provides a promising novel

molecular marker for immunotherapy.
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INTRODUCTION

Colon cancer (CC) is one of the most common cancers
and remains one of the leading causes of cancer death
worldwide (1). Despite continuous achievements in early CC
detection, treatment, and management leading to reductions
in the incidence and mortality, 30–50% of patients develop
recurrence or metastasis within five years of treatment (2).
Therefore, in addition to the current clinical and pathological
factors for determining the disease prognosis and patient
survival, reliable and robust new molecular markers are
urgently needed to improve the personalized therapy for
CC patients.

Numerous studies have recently highlighted the effects
of the immune microenvironment on cancer tumorigenesis,
development, and metastasis (3–5). Indeed, assessment of
the enrichment of tumor-infiltrating lymphocytes (TIL)
was demonstrated to be an important complement role
to the TNM staging system for relapse and mortality
prediction in CC (6–8). Besides, recent immunotherapies
targeting specific immune checkpoints such as PD-1/L1
have demonstrated a remarkably durable response in CC
treatment (9, 10). Patients with certain histopathologic
patterns, such as intratumoral infiltration by cytotoxic
lymphocytes and tumor neoepitope burden, have also
been reported with a better clinical prognosis (11–13).
Conventional methods for detecting the tumor immune
infiltrate, such as flow cytometry or immunohistochemistry
(IHC), cannot comprehensively evaluate the immune
effects due to the limitation of the number of immune
markers. As an alternative, continuously accumulating
transcriptomics data provides an ideal resource for large-
scale immune landscape analysis (14). However, there
has been no appropriate signature that can systematically
evaluate the tumor immune micro-environment (TIM)
based on immune-related genes and predict the patients’
survival or response to immunotherapies of CC patients.
Therefore, it’s essential to develop a reliable immune signature
on the basis of a comprehensive list of immune-related
genes to represent the immune status of TIM and have the
prognostic ability of CC.

In this study, we concentrated on constructing an immune
signature with survival prediction and lymphocyte infiltration
estimation ability based on the comprehensive list of immune-
related genes curated from The Immunology Database and
Analysis Portal (ImmPort) database (15). The microarray data
from the gene expression omnibus database (GEO) database and
RNA sequencing (RNA-seq) data from the cancer genome atlas
(TCGA) database were used for analysis and validation. We then
evaluated whether this signature was associated with survival
outcomes and clinicopathological factors in the CC subgroups.
Furthermore, we tried to figure out the relationship between
the signature and tumor immune-related indexes including
TIL and tumor mutation load (TML) in CC. And finally, we
evaluated the effects of this risk signature in identifying the
immune responders from immune check-point inhibitors (ICI)
therapy. Findings gleaned from this study may be valuable

for predicting patients’ prognosis and guiding immunotherapy
treatment for CC.

MATERIALS AND METHODS

Publicly Attainable Expression Datasets
and Immune-Related Genes
Gene expression data and clinical features of CC samples
were retrospectively collected from publicly available datasets
at the NCBI GEO database1 and at TCGA2. The selection
criteria of CC datasets were adopted from the workflow of the
Dai et.al study (16). A total of 1430 patients were enrolled
for analysis, including GSE39582 (N = 557) (17), GSE17538
(N = 200) (18), GSE37892 (N = 130) (19), and GSE33113
(N = 90) (20), and TCGA (N = 453). The GSE14333 (21)
dataset was excluded from this analysis owing to the fact that
its probe cell intensity (CEL) files overlapped extensively with
the GSE17538 series. Among these cohorts, GSE39582 was the
largest set consisting of 557 CC samples, and hence, it was
marked as a discovery series and used for constructing the gene
signature. Considering the small sample sizes of the GSE17538,
GSE33113, and GSE37892 cohorts, and the fact that they shared
the same microarray sequencing platform (Affymetrix HG-U133
plus 2.0), we integrated the three datasets into a combined large
cohort and regarded this as external validation. The ComBat
method from the SVA R package was used to remove the batch
effects among different GEO datasets (16). The clinical and
survival information of the included datasets was summarized
in Supplementary Table S1. An immunotherapeutic cohort of
advanced urothelial cancer (IMvigor210 cohort) treated with
atezolizumab (anti-PD-L1McAb) were utilized to further validate
the efficiency of the immune risk signature (22). The detailed
clinical annotations and complete gene expression profile of
the anti-PD-L1 cohort were obtained from http://research-pub.
gene.com/IMvigor210CoreBiologies. The comprehensive list of
immune-related genes, containing a total of 1508 genes, was
downloaded from the ImmPort database3 (15).

Tumor Mutational Load and Neoantigen
Analysis
The somatic mutational profile of colon adenocarcinoma
(COAD) in the Cancer Genome Atlas (TCGA) mutation
annotation format (MAF) were downloaded from Genomic Data
Commons (GDC)4. Non-synonymous mutations counts were
recognized as TML and used for investigating the relationship
with the immune signature. Non-synonymous mutations
included splice site mutation, missense mutation, nonsense
mutation, in-frame mutation, and frameshift mutation.
Neoantigens of COAD were collected from previously
published studies (23). The antigen peptides resulting from

1https://www.ncbi.nlm.nih.gov/geo/
2https://cancergenome.nih.gov/
3https://immport.niaid.nih.gov
4https://portal.gdc.cancer.gov/
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non-synonymous mutated HLA sequences with predicted
binding affinities below 500 nM are defined as neoantigens (24).

Gene Set Enrichment Analysis
The R packages limma (25) were used to evaluate differential
expression of more than 21,000 genes in samples with different
risk groups. To specify, the expression data were background
corrected and quantile normalized and probe sets were
summarized using RMA with the affy R package. Subsequently,
the normalized expression data were then fed into lmFit and
eBayes functions to calculate the differential statistics with the
limma package. The logFC produced by limma was used as
an input to perform gene set enrichment analysis (GSEA) (26)
against the REACTOME reference gene set (MSigDB database
v7.1). The fast GSEA algorithm implemented in the Bioconductor
R package fgsea was used.

Immune Cell Infiltration Estimation With
ssGSEA
The relative infiltration of 28 immune cell types in the CC tumor
microenvironment were quantified by the single sample gene set
enrichment analysis (ssGSEA) (27). Special feature gene panels
for each immune cell subset were curated from a recent research
(4, 28). The relative abundance of each immune cell type was
represented by an enrichment score in the ssGSEA analysis. The
ssGSEA score was normalized to unify distribution from 0 to 1
for each immune cell type. The bio-similarity of the immune cell
filtration was estimated by multidimensional scaling (MDS) and
a Gaussian fitting model.

Quantify the Immunotherapy Response
Predictor: Immunophenoscore
The superior immune response molecular marker,
Immunophenoscore (28), was used to characterize the
intratumoral immune landscapes and the cancer antigenomes.
The scoring scheme was created from a panel of immune-related
genes belonging to the four clusters: major histocompatibility
complex (MHC)-related molecules, checkpoints or
immunomodulators, effector cells, and suppressor cells. For
each class, a sample-wise Z score from gene expression data was
extracted and calculated. The weighted averaged Z score was
then calculated by averaging the Z scores within the respective
category leading to four values, and the sum of the weighted
averaged Z score of the four categories.

Significantly Mutated Genes
We identified significantly mutated genes (SMG) by using the
MutSigCV algorithm (29). MutSigCV measures the significant
enrichment of non-silent somatic mutations in a gene by
addressing mutational context-specific background mutation
rates. Candidate SMGs were required to meet these criteria:
statistically significant (q < 0.1) and expressed in the human
cancer cell lines Encyclopedia (CCLE) (30).

Deciphering Mutational Signature
Operative in the Genome
The R package Maftools proposed by Mayakonda et al. (31) was
used to extract mutational signatures from the TCGA genomic
data. The ExtractSignatures function based on Bayesian variant
non-negative matrix factorization, factorized the mutation
portrait matrix into two non-negative matrices “signatures”
and “contributions,” where “signatures” represented mutational
processes and “contributions” represented the corresponding
mutational activities. Specifically, the number of columns of
matrix “signatures” indicated the number of extracted signatures
and the rows indicated the 96 mutational contexts (i.e., C > G,
C > A, C > T, T > C, T > A, T > G and combined their
5′ and 3′ adjacent bases). The SignatureEnrichment function
can automatically determine the optimal number of extracted
mutational signatures and assign them to each sample based on
the mutational activities. The extracted mutational portrait of CC
was compared and annotated by cosine similarity analysis against
the Catalogue of Somatic Mutations in Cancer (COSMIC) (32).

Statistical Analysis
The statistical analysis in this study was generated by R-3.6.1. For
quantitative data, statistical significance for comparisons of two
groups or more than two groups was estimated by the Wilcoxon
rank-sum test or the Kruskal–Wallis H test, respectively. Fisher’s
exact test was employed for comparisons of qualitative variables.
Logistic regression analysis was used to test the association
between TML and risk signature. For the genes with prognostic
ability, the Cox proportional hazards model with a Lasso penalty
(iteration = 1000) was employed to find the best gene model
utilizing the R package “glmnet.” The immune signature was
based on the linear combination of the selectedmRNA expression
level and weighted by their Lasso-Cox regression coefficients.
The association between immune signature and prognosis were
analyzed by the Cox proportional hazards model and the Kaplan-
Meier survival analysis with the R survival package (Survminer
0.4.7). The receiver operating characteristic (ROC) curve was
used to assess the prognosis classification performance of the
immune risk signature and tumor stage, and the area under the
curve (AUC) was compared by DeLong’s test. All comparisons
were two-sided with an alpha level of 0.05, and multiple
hypothesis testing with the Benjamini-Hochberg method was
used to control false discovery rate (FDR) (33).

RESULTS

Construction of Immune Risk Signature
After removing samples without necessary clinicopathological
or follow-up data, a total of 1430 CC patients were included
for this analysis, including GSE39582 (N = 557), GSE17538
(N = 200), GSE37892 (N = 130), and GSE33113 (N = 90), and
TCGA (N = 453). Considering that the GSE39582 cohort from
the Marisa et al. contained the largest sample size (N = 557)
and included detailed clinical features, we therefore selected it
as the discovery dataset to identify the immune risk signature
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FIGURE 1 | Construction of the immune risk signature model. (A) Lasso coefficient profiles of the 161 prognosis-associated immune genes from the discovery

(GSE39582 microarray) dataset. (B) Partial likelihood deviance of variables revealed by the Lasso regression model. The red dots represented the partial likelihood of

deviance values, the gray lines represented the standard error (SE), the two vertical dotted lines on the left and right represented optimal values by minimum criteria

and 1-SE criteria, respectively. (C) Heatmap of the signature consisting of 10 immune-related genes and the risk score curve based on the Lasso coefficients.

Patients were divided into high-risk and low-risk groups and the median risk score was utilized as the cutoff value.

that is associated with CC patients’ prognosis. The univariate
analysis was performed in all of the 1508 immune-related genes
for the discovery dataset (GSE39582). Through the univariate
analysis and log-rank test, a total of 161 genes with prognostic
ability were identified (P < 0.05). The 161 immune-related
genes were then subjected to the Lasso-Cox proportional hazards
regression and tenfold cross-validation to generate the best gene
model. The Lasso coefficient profile plot was produced against
the log(k) sequence, and the minimize k method resulted in 10
optimal coefficients (Figures 1A,B). Finally, a genemodel with 10
immune-related genes reached the optimal regression efficiency
to speculate the prognostic ability.

The identified immune-related genes included antigen
processing and presentation related genes (LAG3, PSMD11,
TAP2), defense response to infection (CEBPB, CXCL9, IRF8,
RNASE7), epithelial cell migration (ITGB1, SPARC), and
MCFD2. Furthermore, we constructed an immune risk signature
to estimate the risk score of each patient based on the linear
combination of the 10 mRNA expression levels weighted
by their Lasso-Cox regression coefficients: Immune Risk
Score = (0.1979)×CEBPB+ (−0.2140)×CXCL9+ (−0.0927)×
IRF8 + (0.5896) × ITGB1 + (0.2108) × LAG3 + (0.2489) ×

MCFD2 + (−0.2909) × PSMD11 + (0.5255) × RNASE7 +

(0.0881) × SPARC + (−0.1490) × TAP2 (Figure 1C,
Supplementary Table S1). A heatmap of the identified 10-gene
expression level and the scatterplot of relapse-free survival (RFS)
with corresponding risk score were illustrated in Figure 1C.

The Prognostic Value of 10-mRNA
Immune Signature
To identify the immune signature responsible for CC survival
prediction, we divided the discovery cohort samples into a low-
risk group (N = 279) and a high-risk group (N = 278) by using the
median risk score as a cutoff point. Patients with low-risk were
significantly associated with better RFS compared with those of

high-risk (P < 0.001, log-rank test; Figure 2A). This association
remained markedly significant in the multivariate Cox model
after controlling for age, gender, clinical stage, and mismatch

repair (MMR) status (HR, 0.41 [95% CI: 0.30–0.57], P < 0.001;
Figure 2B).

To confirm that the 10-mRNA-based immune signature
classifier had similar prognostic value in different populations,
we further corroborate this association in the TCGA dataset

and another combined-GEO microarray dataset (including
GSE17538, GSE33113, and GSE37892; “Materials and Methods”
section). Heatmaps of the signature consisting of 10 immune-
related genes and the scatterplot of RFS time with corresponding
risk score in two external validation cohorts were shown
in Supplementary Figure S1. In the TCGA and combined-
GEO datasets, we also found that patients with low-risk
scores demonstrated a better prognosis than those with high-

risk scores (TCGA: P = 0.003, Figure 2C; Combined-GEO
cohort: P = 0.013, Figure 2E; log-rank test). Multivariate Cox
proportional hazards regression analysis further revealed that the
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FIGURE 2 | Immune risk signature was associated with CC survival. Kaplan-Meier curves of relapse-free survival according to immune signature groups in the

GSE39582 discovery cohort (A), TCGA cohort (C), and another combined-GEO validation cohort (E). Forest plot representation of the multivariate Cox regression

model delineated the association between immune risk signature and survival in the three cohorts (B,D,F). Age, gender, clinical stage, or dMMR were taken into

account.

signature could serve as an independent predictor of patients’
survival outcome after being adjusted for clinicopathologic
features in two validation cohorts (TCGA: HR, 0.57 [95%CI,
0.39–0.85], P = 0.005, Figure 2D; Combined-GEO cohort:
HR, 0.67 [95%CI, 0.45–0.98], P = 0.039. Figure 2F). Further
analysis confirmed that the higher immune risk signature score
was associated with significantly worse tumor staging in CC
cohorts (Kruskal–Wallis H test, GSE39582, and TCGA cohorts,
both P < 0.001, Supplementary Figures S2A,B). Moreover,
we found the risk scoring model could improve the accuracy
of predictions of survival when combined with the tumor
staging system (AUC of GSE39582: Stage vs Risk score + Stage,
67.44 vs 71.56, P = 0.002; Risk score vs Risk score + Stage,
67.63 vs 71.56, P = 0.071; AUC of TCGA: Stage vs Risk
score + Stage, 69.27 vs 72.26, P = 0.035; Risk score vs
Risk score + Stage, 64.65 vs 72.26, P = 0.004; DeLong’s test,
Supplementary Figures S2C,D).

Extracted Immune Risk Signature
Associated With Leukocytes Infiltration
and Tumor Immunogenicity
Since the prognosis-related risk signature was extracted from the
immune-related genes database, we speculated that its status may

regulate the leukocyte infiltration and gene pathways enrichment.
Therefore, we composed a heatmap with ssGSEA to visualize the
relative abundance of 28 immune infiltrating cell subpopulations
from the discovery dataset (Figure 3A). Anti-tumor lymphocyte
cell subpopulations, like activated CD4+/CD8+ T cells, effector
memory CD4+/CD8+ T cells, and natural killer T cells were
enriched in the low-risk signature group (P< 0.05). Nevertheless,
myeloid-derived suppressor cells (MDSC), immature dendritic
cells, neutrophils, and regulatory T cells, which belonged to pro-
tumor leukocytes, were elevated in the high-risk signature group
(P < 0.05). We also further characterized the immune infiltration
profile in TCGA and the combined-GEO validation cohort, and
a similar tendency was observed in these cohorts of such risk
signature stratification (Supplementary Figure S3).

Furthermore, GSEA on the CC gene expression profile
against REACTOME reference datasets revealed the risk
signature related biological signaling pathway. Genes
involved in antigen processing cross-presentation, B cell/T
cell receptor and immune cytokine signaling pathways
were significantly enriched in the low immune risk
signature group (Figure 3B, Supplementary Figure S4A).
However, chromatin organization and RNA processing and
modification were enriched in the high-risk group (Figure 3C,
Supplementary Figure S4B).
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FIGURE 3 | Immune risk signature was associated with the immune infiltration. (A) Single-sample gene set enrichment analysis identified the relative infiltration of 28

types of immune cell subpopulations with different risk signature subgroups. The relative infiltration of each cell type was normalized into a Z score. (B,C) Top

enriched gene pathways in distinct immune risk signature groups (low vs high, left panel; high vs low, right panel) from discovery cohort were assessed by using the

GSEA algorithm.

Immunophenoscore (IPS) was known to determine the tumor
immunogenicity and predict response to ICI therapy in multi-
types of tumors. Here, we utilized IPS to investigate the
relationship between the newly identified signature and immune
response. In the discovery cohort, the low-risk signature group
had a significantly higher IPS compared with the high-risk
group (Wilcoxon rank-sum test, P < 0.001, Figure 4A), and this
association was also verified in TCGA and the combined-GEO
cohort (TCGA, P < 0.001, combined-GEO cohort, P = 0.001;

Figures 4B,C). These findings indicated that CC patients with the
immune signature may be more sensitive to ICI treatment.

Immune Signature Determined the Colon
Cancer Genomic Landscape
Genomic characteristics, such as tumor non-synonymous
mutation load (TML) and mutational signatures (e.g., MMR,
POLE signature) have shown a strong correlation with clinical
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FIGURE 4 | Distribution of immunophenoscore (IPS) in high-risk versus low-risk colon cancer subtypes. Boxplot representation of IPS in the high-risk versus low-risk

groups in discovery cohort (A), TCGA cohort (B), and another combined-GEO cohort (C). P values as indicated (Wilcoxon rank-sum test).

response to ICI treatment (34). Therefore, we investigated the
association between the immune signature and the genomic
mutational landscape. Patients with a low-risk immune signature
exhibited a higher mutation load than those with a high-risk
signature in the TCGA dataset (P = 0.030, Figure 5A). We
further compared the tumor neoantigen counts and observed
similar results in the group classification (P = 0.005, Figure 5B).
As high microsatellite instability (MSI-H) tumors accumulated
substantial numbers of somatic mutations and significantly
affected the TML, we removed the samples with MSI-H and
obtained a significantly higher TML in the low-risk signature
(P < 0.001, Figure 5C).

To gain further insights into the mutational processes
operative in CC samples, we extracted the mutational signatures
(i.e., signatures 1, 6, 10, Supplementary Figure S5) against
the COSMIC database with varying numbers of somatic
mutations from the genomic data (Figure 5D). The extracted
mutational signatures included defects in DNA proofreading
owing to recurrent somatic mutations in POLE (signature
10, 79524 of 264763 [30.0%]), clock-like accumulation of
C > T at cytosine-phosphate-guanine dinucleotide (signature
1, 46,106 of 264,763 [17.4%]), and defective MMR (signature
6, 139,133 of 264,763 [52.6%]) (Figure 5E). Hence, mutational
counts attributed to signature 6 were significantly higher
than other signatures (Kruskal–Wallis H test, P = 0.019).
To rule out the possibility that associations between immune
signature and TML were affected by these confounding factors,
we included all mutational signatures and clinical factors
in the multivariate logistic regression model. Associations
between the immune risk signature and TML remained
statistically significant (OR, 0.15 [95% CI, 0.06–0.24], P < 0.001,
Figure 5F).

We also performed SMG analysis for CC samples in the
low-risk versus the high-risk subgroup. The SMG mutational
landscapes of these two subgroups (Figure 6) exhibited a distinct
mutation ratio in APC [138 of 200 (69.0%) vs 154 of 194
(79.4%); P = 0.021], TP53 [111 of 200 (55.5%) vs 83 of 194
(42.8%); P = 0.012], FBXW7 [19 of 200 (9.5%) vs 50 of 194
(25.7%); P < 0.001], and MSH6 [24 of 200 (12.7%) vs 9 of 194
(7%); P = 0.010]. The mutation plot of the four SMGs with
different immune signature status were shown in Supplementary

Figure S6. Besides, we also explored the mutational rate of
the aforementioned 10-immune genes, and observed RNASE7
mutation was enriched in the high-risk subgroup [1 of 200 (0.5%)
vs 3 of 194 (3.1%); P = 0.014].

The Immune Risk Signature in the Role
of ICI Treatment
Immune checkpoint inhibitors (ICI) therapy represented by anti-
PD-1/L1 agents have undoubtedly made a great breakthrough in
anti-tumor therapy. Therefore, we curated the gene expression
profile and clinical features from an immunotherapy cohort
(Imvigor210) of urothelial cancer (UC) treated by anti-PD-
L1 agent, so as to investigate the relationship between the
constructed risk signature and immune response. In this anti-
PD-L1 cohort, patients with a low-risk immune signature
score exhibited markedly clinical benefits and a significantly
prolonged survival rate (HR, 0.71 [95% CI: 0.55–0.92], P = 0.009,
Figure 7A). The significant therapeutic advantages and immune
response to PD-L1 blockades were observed in samples with
a low-risk score compared to those with a high-risk score
(Fisher extract test, P = 0.008, Figure 7B; Kruskal-Wallis H
test, P < 0.001, Figure 7C). Further analysis revealed that TML
and neoantigen burden were significantly elevated in tumors
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FIGURE 5 | Immune signature was associated with the TML in colon cancer. Tumor mutation load (A) and neoantigen counts (B) in colon cancer samples were

compared with the immune risk signature group. (C) Distribution of mutational load in non-MSI samples were also assessed between high-risk and low-risk

subtypes. (D) Mutational exposures (number of mutations) were attributed to each mutation signature. (E) The mutational activities of corresponding extracted

mutational signatures (signature 1, 6, and 10, named as COSMIC database). (F) Multivariate Logistic regression analysis of TML with respect to immune signature

was adjusted by taking into account age, gender, stage, and mutational signatures. P values as indicated (Wilcoxon rank-sum test).
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FIGURE 6 | Mutational landscape of SMGs and immune-genes in TCGA COAD cohort stratified by high-risk and low-risk signature groups. The middle panel

depicts the mutation relation of SMGs across analyzed cases with mutation types color-coded differently. SMGs with significantly different mutation rates between

subgroups were highlighted in upper left asterisk.

with low-risk score, which closely linked to immunotherapeutic
efficacy (Figures 7D,E). Besides, the association between immune
risk score and immunotherapy survival remained statistically
significant after taking into account gender, smoking, ECOG
score, immunophenotype and, TML status (HR, 0.60 [95%CI,
0.40–0.90], P = 0.015; Figure 7F).

DISCUSSION

Although it has long been recognized that immune contexture
plays a vital role in tumor initiation and development (35),
these insights have not formed a significant impact on routine
clinical application. This highlights the important role of TIM
estimation in predicting clinical development and progression
of CC patients. In this investigation, we established a reliable
prognostic risk signature based on 10 immune-related genes
in an independent microarray dataset and proved its efficacy

in the TCGA and combined GEO datasets across different
platforms. This signature stratified the patients into subgroups
with different immune risk, representing distinct tumor immune
infiltration level and neoantigen burden. Therefore, the newly
identified immune risk signature presumably represented the
status of TIM for CC patients and served as a potential biomarker
for prognosis estimation and clinical response prediction
to immunotherapy.

This study confirmed that the immune risk signature
was significantly associated with CC patients’ RFS, and this
association remained significant after controlling for clinical-
pathological features. More importantly, our signature was based
on immune-related genes and revealed a correlation with non-
synonymous mutation load and neoantigen counts. Considering
the importance of mutational load in predicting the response
to anti-PD-1/L1 treatment (12, 36), we speculated that patients
with a low-risk immune signature may be more sensitive to ICI
therapy. Actually, the IPS and neoantigen load, which determined
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FIGURE 7 | The immune risk signature in the role of ICI treatment. (A) Survival analysis of the high versus low immune risk subgroup in the anti-PD-L1 cohort

(IMvigor210 cohort) was created using Kaplan-Meier curves. (B) The proportion of immune response to anti-PD-L1 treatment in high versus low immune risk score

subgroups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. (C) Distribution of immune risk score in different immune

response statuses. Tumor mutation load (D) and neoantigen burden (E) in the immunotherapy cohort were compared among distinct immune risk signature

subgroups. (F) Multivariate Cox regression analysis of immune risk signature with gender, smoking, ECOG score, immunophenotype, and TML status were taken

into account. P values as indicated (Kruskal–Wallis H test).

the tumor immunogenicity and antitumor immune response,
also demonstrated a strong connection with this signature. To
clarify the effects of this immune signature, we took TML
and IPS as the confounding factors into the multivariate Cox
regression models, and identified that the immune risk score
remained statistically significant in the TCGA cohort (HR, 0.59
[95%CI, 0.39–0.87], P = 0.008; Supplementary Figure S7).
These findings further indicated its practical implication in
precision immunotherapy.

In recent years, numerous studies focused on the immune
landscape have brought attention to biological and clinical
cancer research. Individual immune cell markers such as CD3+

and CD8+ T cells have shown prognostic impacts in patients

suffering from CC (6). The immune cell subpopulations
estimation algorithm (e.g., ssGSEA, CIBERSORT) was
frequently utilized to characterize the immune infiltration
profiles and analyze the association with clinical therapy
(37). Our research also leveraged the aforementioned method
and demonstrated enhanced effector T-cells (CD4/CD8+ T
cell, NK cells), reduced suppressive regulatory T-cells, and
MDSC infiltration in low immune risk signature. Meanwhile,
signaling pathways involved in the antigen processing and
presentation, B cell/T cell receptor and immune cytokine were
significantly altered in different risk subgroups, suggested that
our signature was a superior prediction determinant of tumor
immune infiltration.
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Comprehensive knowledge of the mutated driver genes
underlying human cancers is a critical foundation for cancer
diagnostics, therapeutics, and selection of rational therapies.
Here, we used MutSigCV algorithms followed by further filter
criteria and identified that SMGs of APC and FBXW7 mutations
were enriched in high-risk groups, TP53 and MSH6 were
enriched in low-risk groups. APC was the most common
mutational gene in colorectal cancer, and its mutation has
indicated a highly significant association with immune resistance
(38). FBXW7 is a critical tumor suppressor of human cancers,
missense mutations in this gene show a shorter overall survival
rate when compared with wild-type patients in CC (39). TP53
and MSH6 mutations may lead to a higher TML owing to
the dysregulation of DNA damage repair function (40). Recent
research suggested that TP53 mutations significantly induced
the expression of immune checkpoint molecules and activated
T-effector and interferon-γ signatures, indicating TP53mutation
patients would be more sensitive to checkpoint blockade (41).

Nevertheless, there were several limitations in our
investigation. The main limitation stemmed from using a
public dataset for different cohorts which can be somewhat
heterogeneous in data processing and patient population. The
risk signature was identified by using retrospective datasets,
therefore, the expression profiles of the 10 genes combined with
clinical validation in the patients of CC prospective cohort are
needed to prove its efficacy. Besides, mutational results derived
from the TCGA COAD genomic landscape were not validated
in independent datasets owing to the unavailability of mutation
data. Finally, due to a lack of CC cohorts being treated by ICIs,
we are unable to verify the association between the signature
and the immunotherapeutic responsiveness and believe further
research is needed.

To summarize, this study identified a new immune risk
signature that can not only predict CC patients’ survival
outcomes but also represent the immune infiltration status. This
signature can be clinically utilized for the improvement of CC
patients’ survival, personalize therapy methods based on the
risk score, and provide new clues for enrolling CC patients in
ICI treatment. However, further randomized control trials are
required to validate the significance of the generated signature.
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FIGURE S1 | Heatmap of the signature consisting of 10 immune related genes

and the risk score curve in the TCGA and combined-GEO colon cancer cohort.

FIGURE S2 | Immune risk score associated with tumor stage. Distribution of

immune risk score with respect to clinical tumor stage was shown in the

GSE39582 (A) and TCGA (B) cohort. A receiver operating characteristic (ROC)

curve was used to assess the prognosis classification performance of the immune

risk signature vs tumor stage vs risk signature plus stage in the GSE39582 (C)

and TCGA (D) cohort. The area under the curve (AUC) in different subgroups was

calculated by DeLong’s test.

FIGURE S3 | Estimation of the relative infiltration of 28 types of immune cell

subpopulations with different immune signature groups in the external TCGA and

combined-GEO cohort.

FIGURE S4 | GSEA enrichment plots show enriched gene sets against

REACTOME datasets in low-risk vs high-risk (A) and high-risk vs low-risk (B).

NES, Normalized Enrichment Score.

FIGURE S5 | Mutational signatures extracted from the TCGA COAD genomic

dataset. (A) The progress of automatically determining the optimal number of

mutational signatures (N = 3). (B) Cosine similarity analysis of extracted mutational

signatures against the 30 identified signatures in the Catalog of Somatic Mutations

in Cancer (COSMIC, v2) with heatmap illustration.

FIGURE S6 | Lollipop plot showing the protein change of four novel SMGs with

respect to risk signature in the COAD cohort.

FIGURE S7 | Multivariate Cox regression analysis of immune risk signature by

taking into account confounding factors, such as age, gender, stage, MSI

status, TML, and IPS.

TABLE S1 | Lasso Cox regression coefficients of the 10 immune signature genes.

TABLE S2 | Clinical characteristics of patients with colon cancer in five datasets.
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