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Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode
proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1
(ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mim-
iviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in
the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three
enzymes responsible for the synthesis of the sugar L-rhamnose: two UDP-D-glucose 4,6-dehydratases (UGDs)
encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-D-glucose epimerase/reductase
(UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a
recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the
complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While
ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER
are expressed as late genes, which is consistent with their role in posttranslational modification of capsid
proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe
mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan
structures essential for virus replication and infection.

The nucleocytoplasmic large DNA viruses (NCLDVs) are a
heterogeneous group of viruses that infect several eukaryotic
organisms (25, 49). They have large genomes that often encode
genes not commonly found in viruses. For example, several
lines of evidence indicate that Paramecium bursaria chlorella
virus 1 (PBCV-1) and other chlorovirus members, such as
Acanthocystis turfacea chlorella virus 1 (ATCV-1), encode at
least part, if not all, of the machinery required to glycosylate
their structural proteins, including glycosyltransferases (13, 21,
30, 33, 41–43). Furthermore, glycosylation occurs indepen-
dently of the host endoplasmic reticulum (ER)-Golgi system
(33, 42–44). The PBCV-1 major capsid protein located on the
viral surface is glycosylated, and the glycan moieties contribute
to virus protease resistance and antigenicity. We have previ-
ously reported that PBCV-1 and ATCV-1 encode both GDP-
D-mannose 4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-
D-mannose epimerase/reductase (GMER), which are involved
in “de novo” GDP-L-fucose synthesis (14, 40). Because fucose
is a component of the glycan portion of the PBCV-1 major
capsid protein (43), the viral GMD and GMER enzymes may
be necessary to provide the virus with the nucleotide sugar.

The aim of the present study was to identify and analyze
additional virus-encoded enzymes involved in glycan produc-

tion. We included chlorella virus ATCV-1, and we extended
our study to Acanthamoeba polyphaga mimivirus. Mimivirus is
a giant DNA virus that infects members of the genus Acanth-

amoeba (6–9, 35). Its 1.2-Mb genome is the largest viral ge-
nome described so far, containing more than 900 protein-
coding sequences (CDS) (36).

Annotation of ATCV-1 and mimivirus genomes identified
genes encoding putative enzymes involved in L-rhamnose pro-
duction. This 6-deoxyhexose sugar is a common component of
surface glycoconjugates such as bacterial lipopolysaccharides
(LPS), where it plays an important role in pathogenicity (28,
29). L-Rhamnose also occurs in plant cell wall rhamnogalacto-
glucans and rhamnosides, such as flavonoids, terpenoids, and
saponins (24, 38). Moreover, rhamnose is also present in the
virus PBCV-1 glycan(s) attached to its major capsid protein
(43). Bacteria and plants synthesize L-rhamnose from glucose
by two slightly different pathways (Fig. 1). In bacteria, dTDP-
D-glucose is the initial substrate for a dehydratase activity
(RfbB/RmlB), which eliminates a water molecule and leads to
production of an unstable intermediate compound, dTDP-4-
keto-6-deoxy-D-glucose. This compound is then subjected to
epimerization at C-3 and C-5 by RfbC/RmlC and finally to an
NADPH-dependent reduction of C-4 by RfbD/RmlD. Three
separate enzymes catalyze these steps (2, 17, 18, 20). In con-
trast, in the plant Arabidopsis thaliana the initial substrate is
UDP-D-glucose, and the three enzymatic activities are fused
into a single polypeptide, named RHM enzymes, as depicted
in Fig. 1 (34). An enzyme with epimerase/reductase activity

* Corresponding author. Mailing address: Department of Experi-
mental Medicine, University of Genova, Viale Benedetto XV, 1, 16132
Genova, Italy. Phone: 39-010-3538131. Fax: 39-010-354415. E-mail:
tonetti@unige.it.

� Published ahead of print on 10 June 2010.

8829

 

http://jvi.asm.org/


(NSR/ER) leading to UDP-L-rhamnose was also identified in
A. thaliana (44).

In this study we identified and characterized three func-
tional enzymes involved in UDP-L-rhamnose synthesis in
both ATCV-1 and mimivirus. ATCV-1 encodes only a UDP-
D-glucose 4,6-dehydratase (UGD), whereas mimivirus encodes
the complete pathway, i.e., UGD and a bifunctional UDP-4-
keto-6-deoxy-D-glucose 3,5-epimerase/4-reductase (UGER).
The virus-encoded UDP-L-rhamnose pathway and the enzy-
matic properties are similar to those described for plants. Se-
quence and phylogenetic analyses indicate that ATCV-1 likely
acquired UGD from its chlorella host through a recent hori-
zontal gene transfer (HGT). In contrast, both UGD and
UGER were transmitted much earlier, probably between mim-
ivirus and a protozoan ancestral host. Thus, these results sup-
port the hypothesis that both ATCV-1 and mimivirus encode
at least part of a host-independent glycosylation system, which
may be essential for virus replication and infection.

MATERIALS AND METHODS

Sequence and phylogenetic analyses. BLASTP searches of the NCBI (www

.ncbi.nlm.nih.gov) and DOE-JGI (http://genome.jgi-psf.org) databases were used

to identify UGD homologs of ATCV-1 (CDS Z544R, YP_001427025.1) and

mimivirus (CDS R141, YP 142495.1). These same databases were used to iden-

tify UGER homologs in mimivirus (CDS L780, Q5UPS5.1). Bacterial sequences

were used to root the phylogenetic trees for both proteins. Phylogenetic analyses

were performed on the phylogeny.fr web tool (10), which implements MUSCLE

for multiple-sequence alignments (12), GBLOCK for automatic curation of

multiple alignments (5), and PhyML for maximum-likelihood (ML) phylogenetic

reconstruction (22). Accession numbers for all sequences are given in the figures

of both phylogenetic trees.

Expression and purification of the recombinant proteins. Proteins were ex-

pressed in Escherichia coli BL21-Gold cells (Stratagene) as glutathione S-trans-

ferase (GST) fusion proteins as previously described, using the pGEX-6P-1

vector (GE Healthcare) (40). Viral DNA was purified by standard procedures.

The ATCV-1 putative UGD sequence corresponds to CDS Z544R in the viral

genome, and the coding region was amplified by PCR using the following

primers: forward, 5�-ACTGGATCCATGAATTCTCAGGAA; reverse, 5�-T

GATATTCCCGGGTTAAAATTTCGGGAC (BamHI [forward] and SmaI

[reverse] restriction sites are underlined). The mimivirus putative UGD se-

quence, corresponding to open reading frame (ORF) R141, was amplified

with the following primers: forward, 5�-AATTGGATCCATGAAGAATATT

CTCGTTAC; reverse, 5�-AATTCTCGAGTTATTGTGATCCGGGGA. The

mimivirus putative UGER sequence, corresponding to ORF L780, was am-

plified with the following primers: forward, 5�-AATTGGATCCATGAAGT

GGCTCATTTTTGG; reverse, 5�-AATTCTCGAGTTATTGTTGAAATTTC

ATTTTGG. BamHI restriction sites in the forward primers and XhoI sites in

the reverse ones are underlined.

Amplification was conducted with Pfu DNA polymerase (Promega). PCR

products were cloned into the pGEX-6P-1 vector using standard procedures.

DNA sequencing was performed by TibMolBiol (Genova, Italy). Protein expres-

sion, purification, and GST cleavage were done as previously described (40).

The proteins were concentrated to 4 to 6 mg/ml using a Centricon YM-10

system (Amicon-Millipore) and stored at 4°C in 50 mM Tris-HCl–150 mM

NaCl–1 mM EDTA, pH 7.5 (TBSE), containing 1 mM dithiothreitol (DTT).

Concentrations were determined by UV absorbance at 280 nm of the purified

proteins in water, using calculated extinction coefficients of 52,830 M�1 cm�1 for

ATCV-1 UGD, 40,340 M�1 cm�1 for mimivirus UGD, and 28,420 M�1 cm�1 for

mimivirus UGER (15). Protein purity, monitored by SDS-PAGE, exceeded 95%

in all preparations.

Size exclusion chromatography. The molecular masses of UGD and UGER

proteins were determined by size exclusion chromatography using a TSKgel

G3000SWXL column (7.8 by 300 mm; 5-�m particle size) (Tosoh Biosciences).

The mobile phase was 0.1 M sodium phosphate buffer, pH 6.7, containing 0.1 M

Na2SO4. The eluate was monitored at 220 nm. Protein standards, obtained from

Sigma, were cytochrome c (12 kDa), carbonic anhydrase (29 kDa), ovalbumin (44

kDa), bovine serum albumin (66 kDa), gamma globulin (157 kDa), and thyro-

globulin (670 kDa). Blue dextran and DTT were used to determine the void and

total column volumes, respectively, to enable calculation of the distribution

coefficient Kav according to the equation (19, 45) Kav � (Ve � Vo)/(Vt � Vo),

where Ve is the elution volume of the protein, Vo is the column void volume, and

Vt is the total bed volume. The Kav for each protein standard was plotted against

the logarithm of the corresponding molecular mass. Kavs of samples were used to

calculate the molecular mass by linear regression analysis.

Analysis of enzyme activities. UGD activity was assayed in TBSE-DTT, using

various concentrations of UDP-D-glucose or dTDP-D-glucose and protein. As-

says were conducted at 25°C, and 100-�l aliquots were withdrawn at various

times (maximum of 15 min). Reactions were stopped by heating at 80°C for 3

min, followed by centrifugation at 12,000 � g for 5 min. The conversion of UDP

(dTDP)-D-glucose to UDP (dTDP)-4-keto-6-deoxy-D-glucose measured dehy-

dratase activity; the sugar nucleotides were detected by anion-exchange high-

pressure liquid chromatography (HPLC) as reported previously (14). Effects of

pH were analyzed using the buffers 50 mM piperazine-N,N�-bis(2-ethanesulfonic

acid) (PIPES)-HCl (pH 5.5, 6.0, 6.5, 7.0, and 7.5) and 50 mM Tris-HCl (pH 7.0,

7.5, 8.0, 8.5, and 9.0). Km and Vmax parameters were determined with the Michae-

lis-Menten equation using nonlinear regression (GraphPad Prism). To deter-

mine thermal stability, the concentrated proteins were preincubated at the indi-

cated temperatures for 30 min, and enzyme activity was assayed as indicated

above. UDP-L-rhamnose, used to test feedback inhibition of UGD, was obtained

in millimolar amounts using UGER (see below) after purification by anion-

exchange chromatography.

Epimerase/reductase activity was analyzed using UDP-4-keto-6-deoxy-D-glu-

cose as the substrate. This compound was produced by incubation of 1 mM

UDP-D-glucose in the presence of ATCV-1 UGD. Complete conversion of

UDP-D-glucose to the intermediate compound UDP-4-keto-6-deoxy-D-glucose

was monitored by HPLC. The sugar nucleotide was separated from the protein

by ultrafiltration using the Microcon YM-10 system (Amicon-Millipore). Heat

inactivation was avoided to prevent possible degradation of the intermediate

compound. Enzymatic activity of UGER in the presence of either NADH or

NADPH was determined by anion-exchange HPLC. Enzymatic parameters were

obtained as indicated above for UGD.

Characterization of UDP-sugars. The products of ATCV-1 and mimivirus

UGD and mimivirus UGER were analyzed by electrospray ionization-mass spec-

trometry (ESI-MS) and gas chromatography (GC)-MS. Electrospray analysis was

performed on an Agilent1100 MSD ion trap instrument (Agilent Technologies,

Palo Alto, CA) by flow injection of the samples with an infusion pump (KD

Scientific, New Hope, PA). The reaction mixtures were diluted 1:50 with a

water-acetonitrile-ammonia solution (49.5/49.5/1); spectra were acquired in the

negative-ion mode in the mass range of the expected m/z ratios. The ion source

parameters were set to obtain optimal signal-to-noise ratio for molecules of

interest.

The UGER product was purified by anion-exchange HPLC. The eluate was

subjected to several cycles of lyophilization to remove NH4HCO3. Purified UDP-

L-rhamnose was then derivatized as described by Henry et al. (23) and Merkle

and Poppe (31) with slight modifications. Briefly, the UGER product or stan-

dards were treated with 2 N HCl for 90 min at 100°C and dried in a Speed-Vac.

The resulting compounds were reduced to their corresponding alditols with

NaBH4 (10 mg/ml in 1 M ammonia solution). The products were acetylated in 1:1

pyridine-acetic anhydride at 90°C for 20 min, dried, and resuspended in 100 �l of

FIG. 1. L-Rhamnose biosynthetic pathways in bacterial and plant
cells. In bacteria, the three enzymatic activities are on separate
polypeptides. In plants, UGD and UGER are fused into a single
polypeptide (RHM isoforms) (34).
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ethyl acetate, and 5-�l aliquots of this solution were injected into an HP 5890

series II gas chromatograph coupled to an HP 5889A engine mass spectrometer

equipped with an electron impact ionization source (Hewlett Packard). Separa-

tion was performed on an S.E.-54 (Alltech) capillary column; the helium gas flow

was 2 ml/min. Sample injection was performed in splitless mode. The oven

temperature gradient was as follows: initial temperature of 80°C, isothermal for

5 min, 80 to 190°C (rate, 15°C/min), 190 to 250°C (rate, 5°C/min), and isothermal

for 5 min. The MS analysis was performed in full-scan mode.

Expression of UGD and UGER after viral infection. Chlorella strain SAG 3.83

was grown at 25°C as described previously (13). Cells (1 � 108/ml) were infected

with ATCV-1 at a multiplicity of infection (MOI) of 3, and 30 ml of cells was

withdrawn between 45 min and 8 h postinfection (p.i). Cells were pelleted by

centrifugation, and total RNA was isolated by adding 1 ml of Trizol (Invitrogen).

Cells were disrupted with a TissueLyser from Qiagen (twice for 3 min, 30 Hz).

The following steps are described in the Trizol protocol. Removal of residual

genomic DNA was achieved using the gDNA Wipeout buffer of the QuantiTect

reverse transcription protocol (Qiagen); this step was followed by reverse tran-

scription using the same kit. Real-time PCR was performed on a Bio-Rad IQ5

cycler using the iQSYBR green supermix (Bio-Rad). Primers for ATCV-1 UGD

were as follows: forward, 5�-AACTCGCTGGCATTTACC; reverse, 5�-GTAGA

CACATTGATGAACC.

Sample standardization was achieved by densitometry of 28S and 18S RNAs

on agarose gels. Reverse transcription was omitted in control RNA samples,

which were then used for normalization of the expression levels.

Mimivirus production and purification were performed as described previously

(4). Briefly, cells (Acanthamoeba castellanii Neff purchased from ATCC [ATCC

30871]) were infected with mimivirus at an MOI of 1,000. After 30 min of

incubation in Page’s amoeba saline (PAS) medium (2.5 mM NaCl, 1 mM

KH2PO4, 0.5 mM Na2HPO4, 40 mM CaCl2, and 20 mM MgSO4) with gentle

stirring, infected cells were centrifuged (500 � g, 5 min) and the supernatant

containing excess virus discarded. The cell pellet was washed once with PAS

medium and once with PPYG (2% [wt/vol] proteose peptone, 0.5% [wt/vol] yeast

extract, 0.5% [wt/vol] glucose, pH 7.2). A total of 2.5 � 107 cells were kept as the

time zero sample, while the rest of the cells were distributed among 175-cm2

flasks containing 25 ml PPYG medium. For each time point, 2.5 � 107 infected

cells (two 175-cm2 flasks) were harvested and centrifuged (500 � g, 5 min).

RNA extraction, quantification, and double-stranded cDNA production were

performed as previously described (4). cDNAs were synthesized using a Clontech

SMART protocol optimized for 454 GS FLX sequencing from the polyadenyl-

ated RNA fraction of A. castellanii cells at �15 min, 0 min, 90 min, 3 h, 6 h, 9 h,

and 12 h after mimivirus infection. Pyrosequencing was performed on the French

National sequencing platform (“Genoscope”) according to the manufacturer’s

protocol using at least 4 �g of double-stranded cDNA (260/280-nm absorbance

ratio of �1.6) for each time point.

Nucleotide sequence accession number. The 454 RNA-Seq data used in this

study have been deposited in the NCBI Short Read Archive under accession no.

SRA010763.

RESULTS

Sequence analysis. The viral CDSs encoding UGD and UGER
were identified by a BlastP survey of ATCV-1 and mimivirus
genomes using A. thaliana RHM2 protein (NP_564633.2) (34).
ATCV-1 Z544R had about 60% amino acid identity (207/345)
with the N-terminal region of RHM2 proteins; this region is
responsible for UGD activity (34). The maximum-likelihood
tree (Fig. 2) and the high amino acid identity with Chlorella sp.
strain NC64A (297/357, 83% identity) (G. Blanc et al., submit-
ted for publication) suggest that ATCV-1 Z544R was acquired
from its host (Chlorella SAG 3.83) via HGT. Indeed, all other
members of the ATCV-1 clade are green algae. This alga-virus
HGT event is not surprising or unique, since there is evidence
that algae and their viruses have shared some other genes via
HGT (32). It is worth noticing that two other green algal
viruses, Ostreococcus tauri virus 1 and Ostreococcus virus OsV5,
encode putative UGDs; however, they are closer to the one
found in metazoa. Amino acid identity with the E. coli RfbB

(RmlB) protein, which catalyzes the dehydration of dTDP-D-
glucose in bacteria (2), is 140/339 (41%).

The putative UGDs from mimivirus (CDS R141) and
ATCV-1 (CDS Z544R) have 46% amino acid identity. The
best hit for mimivirus R141 is with a putative Trypanosoma

cruzi protein (166/327, 50% amino acid identity), while identity
with the N-terminal region of the A. thaliana RMH2 protein is
45%. The complete A. castellani genome is not present in
GenBank. However, a putative A. castellani UGD sequence
was retrieved from 454 RNA-Seq data deposited in NCBI
Short Read Archive (accession number SRA010763). The A.

castellani and mimivirus UGDs have 50% amino acid identity
(159/315). The mimivirus UGD gene is 31% GC, which is
similar to the case for the mimivirus genome (38). These ob-
servations, together with the phylogenetic analysis (Fig. 2),
suggest that mimivirus did not acquire its UGD gene through
a recent HGT from its host. Interestingly, the mimivirus and
ATCV-1 UGDs also have about 40% amino acid identity with
some mammalian proteins (NP083854.3 from Mus musculus

and NP055120.1 from Homo sapiens, as indicated in the phy-
logenetic tree in Fig. 2) and with several others found in meta-
zoa such as Nematostella vectensis. The function of these pro-
teins in metazoa is still unknown, with no data on the possible
presence of L-rhamnose in lower animals and clear evidence
that this sugar is absent from higher vertebrates. We can spec-
ulate that, at least in mammals, UGD homologs have evolved
a new specificity. Such a case has already been reported for a
protein sharing significant homology with the bacterial RlmD
and corresponding to the regulatory subunit of the methionine
adenosyl transferase 2 (MAT2B) in mammals (48).

Mimivirus also encodes CDS L780, which has about 40%

FIG. 2. Maximum-likelihood tree of UDP-D-glucose 4,6-dehy-
dratase (UGD) for 14 taxa, including the viruses ATCV-1 and mim-
ivirus. Only posterior probabilities of �50% are indicated to the left of
each node. The distance bar represents 0.1 amino acid substitution per
site. Accession numbers follow each of the taxon names. Accession
numbers with five or six digits can be obtained at the JGI Genome
portal at http://genome.jgi-psf.org for the respective species. f, plant
species; F, green algal species; Œ, nonplant/algal species; �, bacterial
species (used as the outgroup, TDP-glucose 4,6-dehydratase). The two
viruses are in italics.
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amino acid identity with the C-terminal region of A. thaliana

RHM2, a well-documented epimerase/reductase (UGER) that
forms UDP-L-rhamnose (Fig. 1) (34). Phylogenetic analysis
and sequence alignment indicate that L780 also was likely
obtained by HGT from a Trypanosoma sp. (150/284 [52%]
amino acid identity for T. cruzi) (Fig. 3). The putative A.

castellani UGER (SRA010763) shares 37% (106/284) amino
acid identity with the mimivirus UGER, while bacterial RfbD/
RmlD proteins (which have only dTDP-4-keto-L-rhamnose re-
ductase activity) have less than 23% amino acid identity (18,
20). Thus, mimivirus probably acquired the complete pathway
for the conversion of UDP-D-glucose to UDP-L-rhamnose
from a protozoan ancestor. In contrast, ATCV-1 lacks an epi-
merase/reductase gene; however, its chlorella host may encode
this enzyme, which could complete UDP-L-rhamnose synthe-
sis. Indeed, Chlorella sp. NC64A, whose genome was recently
sequenced and annotated (Blanc et al., submitted), encodes a
putative epimerase/reductase (Chlorella sp. NC64A 132889).
The RHM2 proteins from A. thaliana and Chlorella sp. NC64A
(132889) share 68% amino acid identity (191/281) and 81%
amino acid similarity (228/281).

Expression and structural analysis of UGD and UGER.

ATCV-1 and mimivirus proteins were expressed in E. coli as
GST fusion proteins. After removal of the GST tag by protease
cleavage, the proteins had the expected molecular masses and
were �95% pure, as indicated by SDS-PAGE analysis (results
not shown). Size exclusion chromatography of ATCV-1 UGD
(monomer, 39 kDa) indicated a molecular mass of approxi-
mately 75 kDa, which suggests a dimeric structure (Fig. 4A).
Incubation of this protein with NAD or NADP, in either the
oxidized or reduced forms, had no effect on the apparent
molecular mass of ATCV-1 UGD. In contrast, chromato-
graphic analysis of mimivirus UGD (monomer, 37 kDa) re-

vealed three forms with apparent molecular masses of 100
kDa, 51 kDa, and 17 kDa (Fig. 4B). Incubation with either
NAD� or NADH converted the lower-molecular-mass peaks
to the 100-kDa peak of mimivirus UGD. However, NADH was
10-fold more efficient in this conversion than NAD� in induc-
ing mimivirus UGD dimer formation. Figure 4C shows a chro-
matogram after incubation of mimivirus UGD with 10 �M
NADH; 100 �M NAD� was required to achieve the same
effect (results not shown). No change occurred with either
NADP� or NADPH, indicating that the protein has a high
specificity for its coenzyme. A 100-kDa molecular mass is

FIG. 3. Maximum-likelihood tree of UDP-4-keto-6-deoxy-D-glu-
cose epimerase/reductase (UGER) for 12 taxa, including mimivirus.
Only posterior probabilities of �50% are indicated to the left of each
node. The distance bar represents 0.2 amino acid substitution per site.
Accession numbers follow each of the taxon names. Accession num-
bers with five or six digits can be obtained at the JGI Genome portal
at http://genome.jgi-psf.org for the respective species. f, plant species;
F, green algal species; Œ, nonplant/algal species; �, bacterial species
(used as the outgroup, dTDP-4-deoxyrhamnose reductase). Mimivirus
is in italics.

FIG. 4. Size exclusion chromatography of UGDs and UGER.
(A) ATCV-1 UGD; (B) mimivirus UGD; (C) mimivirus UGD prein-
cubated with 10 �M NADH; (D) mimivirus UGER. Proteins were
kept in 50 mM Tris-HCl–150 mM NaCl, pH 7.5. Mimivirus UGD and
UGER proteins also contained 1 mM Na EDTA and 1 mM DTT
(indicated as buffer). Detection was performed at 220 nm. Molecular
masses (kDa) were calculated after column calibration using known
standards, as indicated in the Materials and Methods section.
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higher than that expected for the dimer and the mass observed
for ATCV-1 UGD. However, retention times in size exclusion
chromatography can be influenced by the shape of the protein
(19). We cannot presently draw any definitive conclusion about
the 17-kDa species. No additional low-molecular-mass bands
were observed on SDS-PAGE, thus excluding contamination
from bacterial proteins. Moreover, this peak completely disap-
pears when mimivirus UGD is incubated with either NAD� or
NADH. We postulate that this species may be a partially
folded monomer which is converted to the dimeric form by
NAD(H) binding, but more-specific analyses (i.e., circular di-
chroism, light scattering, or equilibrium sedimentation) will be
required for conclusive identification. These results clearly in-
dicate that, like for the PBCV-1 and ATCV-1 GMDs (14), a
coenzyme is essential for both catalysis (see below) and struc-
tural integrity of UGD. Moreover, the higher ability of the
reduced coenzyme to induce dimer formation resembles re-
sults obtained for viral GMDs (14).

Size exclusion chromatography of mimivirus UGER indi-
cated an apparent molecular mass of 47 kDa (Fig. 4D). These
results do not unequivocally support either a monomeric (33-
kDa) or a dimer structure. Addition of a molar excess of either
NADP� or NADPH and/or bivalent cations did not alter the
retention time of the protein.

Enzyme characterization. Enzyme assays indicated that both
UGD proteins preferred UDP-D-glucose as a substrate; activ-
ity with dTDP-D-glucose was less than 10% of that with UDP-
D-glucose. Figure 5A shows a chromatogram for ATCV-1
UGD, but similar results were obtained with the mimivirus
enzyme (results not shown). ATCV-1 UGD was unaffected by
adding NAD�, indicating that the protein tightly bound the
coenzyme during purification. ATCV-1 UGD had a specific
activity of 23 nmol/min/mg of protein and a Km for UDP-D-
glucose of 18.4 	 3.3 �M. In contrast, mimivirus UGD re-
quired exogenous NAD� for activity (specific activity with 100
�M NAD� was 4.2 nmol/min/mg of protein). This observation
is consistent with the size exclusion chromatography experi-
ments, which indicated that the same concentration of NAD�

induced a shift of the lower molecular masses to a 100-kDa
species. The optimum pH for ATCV-1 UGD was 7.5, with a
sharp decrease at both acidic and basic pHs, while mimivirus
UGD had maximal activity over a wider range (between 7.5
and 8.5). Bivalent cations had no effect on the activity of either
enzyme.

Feedback inhibition of UGD by the final product of the
pathway was examined by monitoring enzyme activity in the
presence of UDP-L-rhamnose. Addition of 100 �M UDP-L-
rhamnose to equimolar UDP-D-glucose resulted in 50% and
60% reductions in ATCV-1 and mimivirus UGD activities,
respectively. These results confirm the inhibitory effect of
UDP-L-rhamnose previously reported for A. thaliana RHM2
(34). Preincubation of concentrated ATCV-1 and mimivirus
UGDs at temperatures higher than 20°C resulted in a progres-
sive decrease in enzyme activity. Complete inactivation was
achieved in 30 min at 30°C, indicating that both proteins are
thermolabile.

To test mimivirus UGER enzyme activity, UDP-4-keto-6-
deoxy-D-glucose was produced as a substrate using ATCV-1
UGD (Fig. 5B). When incubated in the presence of mimivirus
UGER and NADPH, the intermediate compound was con-

verted to a new peak with a lower retention time (Fig. 5C).
The specific activity and Km for UDP-4-keto-6-deoxy-D-glucose
were 11 	 2.5 nmol/min/mg and 183 	 51 �M, respectively.
Mimivirus UGER was specific for NADPH, since no activity
occurred with NADH. Similar to the case for UGD, maximal
activity was at pH 7.5. Addition of bivalent cations did not alter
enzyme activity. UGER was stable after preincubation for 30
min at up to 42°C.

Identification of UGD and UGER products. The identities of
the nucleotide sugars formed by UGD and UGER were con-
firmed by ESI-MS and ESI-MS/MS analyses. UDP-4-keto-6-
deoxy-D-glucose (m/z 547), consistent with UDP-D-glucose
(565 Da) lacking a water molecule, was obtained in the UGD
reaction (Fig. 6A). UDP-4-keto-6-deoxy-D-glucose, incubated
in the presence of NADPH and UGER, produced a signal at
m/z 549, which agrees with the reduction of the 4-keto group
and the formation of a UDP-6-deoxyhexose (Fig. 6B). The
identification of these molecules was also confirmed by MS/MS
analysis (results not shown).

GC-MS, performed after acid hydrolysis and conversion of
the UGER product to the corresponding alditol acetates, es-

FIG. 5. Products of the enzymatic activity of UGD and UGER
determined by anion-exchange chromatography. (A) UGD activity by
ATCV-1; (B) production of the intermediate UDP-4-keto-6-deoxy-D-
glucose by ATCV-1 UGD; (C) same as panel B but incubated with
mimivirus UGER and NADPH.
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FIG. 6. Electrospray spectrum of UGD and UGER products. (A) Analysis of the UGD product, corresponding to chromatogram shown in Fig.
5A. (B) Analysis of the UGER product, corresponding to Fig. 5C.
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tablished that L-rhamnose was the product of the reaction (Fig.
7). Unambiguous identification was achieved by mass spectrum
interpretation and by comparison of retention times with
rhamnose, fucose, and 6-deoxy-glucose standards. The presence
of 6-deoxy-D-glucose, which is expected from a 4-reductase
activity only, was not detected. These results confirm that the
enzyme has both a 3,5-epimerase activity and a stereospecific
NADPH-dependent 4-reductase activity leading to rhamnose
formation.

Transcription profiling of ATCV-1 and mimivirus UGD and

UGER genes. ATCV-1 Z544R (UGD) expression was deter-
mined by real-time PCR after RNA extraction at different
times p.i (Fig. 8A). RNA levels peaked at 6 h p.i, showing a
decrease at 8 h. At 8 h, significant cell lysis occurred, indicating
that the viral life cycle was completed. Thus, Z544R is a late
gene; this differs from the expression profiles of the enzymes
involved in GDP-L-fucose synthesis, which are expressed as
early genes (40).

For mimivirus, as is customary in sequence tag-based tran-
scriptome studies, a transcription profile for each gene was
determined, following a normalization procedure, from the
counts of its cognate reads at each time. These numbers were
then treated as gene “coordinates” in seven-dimensional space
and used in a variety of classical statistical methods allowing
pairwise comparison of gene profiles (e.g., distance or corre-
lation indices), their “clustering” into groups sharing similar
profiles, and the identification and visualization of the domi-
nant transcriptional patterns (27).

The mimivirus R141 (UGD) and L780 (UGER) genes both
belong to the “late” cluster, which includes genes encoding
structural components of the virus particles (such as the main
capsid protein L425 or the core protein L410), genes encoding
enzymes carried by the particle, and genes encoding enzymes
most likely involved in the biosynthesis of the LPS-like outer
layer of the virus particle (6, 7, 47). The expression profiles of

these two genes are similar (Fig. 8B), suggesting that they are
expressed together and could be key enzymes in the biosyn-
thesis of the fiber layer surrounding the mimivirus particle;
thus, rhamnose could be one of the sugars in the fibers respon-
sible for the phagocytosis of the host.

DISCUSSION

The results presented here establish that two NCLDV vi-
ruses, ATCV-1 and mimivirus, members of the Phycodnaviri-

dae and Mimiviridae, respectively, encode and express func-
tional proteins involved in L-rhamnose biosynthesis. Thus,
virus-encoded enzymes involved in sugar nucleotide synthesis
and glycan production are not restricted to the chloroviruses as
previously reported (14, 26, 40); this property is shared with
some other large DNA viruses. These enzymes presumably
contribute to the formation of specific glycan structures, which
differ from those in host cells and which contribute to virus
infectivity. This property differs from those of most viruses,
which use the host ER/Golgi system for glycosylation of their
surface proteins and whose glycan structure and composition
are completely dependent on their host cells (30). The glycans
produced by the virus PBCV-1, which infects Chlorella sp.
NC64A, have features not found in other organisms. For ex-
ample, N-linked glycans in the PBCV-1 major capsid protein
are bound to Asn located in sequences different from those
typically found in eukaryotic cells (33). Moreover, the final
glycan structure probably differs from those of eukaryotic N-
linked glycans (43). Similarly, several proteins in mimivirus
particles are glycosylated, and genes encoding putative en-

FIG. 7. GC-MS analysis of acetylated alditols. Extracted ion cur-
rents (XIC) of the ion at 157 m/z are shown for the standards rham-
nose (Rha) and fucose (Fuc) and for the UGER product (sample).

FIG. 8. (A) Expression profiles of the ATCV-1 Z544R (UGD)
gene determined by real-time PCR at different times p.i. ATCV-1
DNA replication begins at 60 to 90 min p.i. (B) Expression profiles of
mimivirus R141 (UGD) and L780 (UGER) genes.
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zymes involved in glycan synthesis (including glycosyltrans-
ferases) are present in its genome (36, 37). Thus, mimivirus
may also encode some, if not all, of its glycosylation machinery.
Studies on the enzymes involved in glycoconjugate production
encoded by NCLDVs could provide important insights, not
only about their role in viral life cycles but also about the
predicted long evolutionary history of these viruses, including
relationships with bacterial glycans and the evolution of the
eukaryotic glycosylation machinery (42).

L-Rhamnose is common in plants, where it is an important
component of surface polysaccharides as well as small mole-
cules. However, L-rhamnose is not present in animals, at least
in higher vertebrates. Very little is known about the presence
of L-rhamnose in Protista and lower animals. Enzymes in-
volved in the UDP-L-rhamnose pathway in Arabidopsis thali-

ana have been identified and characterized (34, 44). A. thaliana

encodes three isoforms, named RHM proteins, which result
from a fusion between a dehydratase and an epimerase/reduc-
tase; indeed, fusion of enzymes in the same pathway is a com-
mon strategy used for metabolic channeling. Enzymes involved
in UDP-L-rhamnose biosynthesis were described over 40 years
ago in a Chlorella sp., and L-rhamnose is a major component of
its cellular polysaccharides (3, 46). Recently, the Chlorella sp.
NC64A genome was sequenced and annotated (Blanc et al.,
submitted); UGD- and UGER-like proteins with high amino
acid identities to the A. thaliana enzymes were identified. Even
though the genome sequence of the ATCV-1 host, Chlorella

sp. SAG 3.83, is not available, the ATCV-1-encoded UGD has
80% amino acid identity with the Chlorella sp. NC64A UGD.
Thus, it is likely that ATCV-1 acquired the gene from an algal
host by a recent HGT. It should be noted that genes encoding
UGD-like proteins are not present in five other sequenced
chloroviruses, suggesting that this enzymatic activity is not es-
sential for all chlorella viruses. On the other hand, both puta-
tive enzymes for L-rhamnose synthesis (UGD and UGER) are
encoded by virus OsV5, another member of the Phycodnaviri-

dae, which infects Ostreococcus tauri, the smallest known ma-
rine photosynthetic eukaryote (11).

Two obvious questions are, what is the role of UGD in the
virus ATCV-1 replication cycle, and why does the virus encode
only UGD and not the rest of the L-rhamnose biosynthetic
pathway. Presumably, the UGD product, UDP-4-keto-6-de-
oxy-D-glucose, is converted to UDP-L-rhamnose by a host
UGER enzyme. (Note that Chlorella sp. NC64A, a host for
some of the chloroviruses, including PBCV-1, contains a pu-
tative UGER [Blanc et al., submitted].) Therefore, Chlorella

sp. SAG 3.83 also probably encodes a UGER. The resulting
L-rhamnose could be one of the component sugars in the
ATCV-1 major capsid protein. Indeed, preliminary sugar analysis
of the ATCV-1 major capsid protein indicates that rhamnose is
present in its glycan(s) (Parakkottil Chothi et al., unpublished
results), as previously reported for the PBCV-1 major capsid
protein (43). Interestingly, the PBCV-1-encoded GMD en-
zyme has not only the expected dehydratase activity but also
has a reductase activity that produces GDP-D-rhamnose (40).
However, the ATCV-1 GMD lacks this reductase activity and
does not produce rhamnose (14). Hence, the ATCV-1 enzyme
could be required to augment rhamnose production.

Presently, nothing is known about a possible role for L-
rhamnose in the mimivirus life cycle. The viral capsid is cov-

ered by dense glycosylated fibers that contribute to the Gram-
positive staining of the virus, which resulted in mimivirus
initially being identified as a bacterium (35). As indicated
above for ATCV-1, preliminary GC-MS analyses indicate that
L-rhamnose is present in large amounts in mimivirus particles
(Parakkottil Chothi et al., unpublished results). The complete
compositions and structures of mimivirus glycans are currently
under study, with the oligosaccharide moiety(ies) being impor-
tant for mimivirus infection of different hosts (7). Mimivirus
infects amoebae and other cells by mimicking a bacterial sur-
face, leading to phagocytosis. Nothing is known about the
activity of a UDP-L-rhamnose pathway in the Acanthamoeba

host, and it is not known if and how the host contributes to the
glycosylation of mimivirus proteins. Putative UGD and UGER
genes are expressed in A. castellani (deposited in the NCBI
Short Read Archive, accession no. SRA 010763), but enzy-
matic activities of their products have not been tested. How-
ever, mimivirus infects other phagocytic cell types, including
mammalian macrophages, and infectious viruses are produced
(16). Since mammalian cells lack an L-rhamnose biosynthetic
pathway, a virus-encoded complete UDP-L-rhamnose pathway
would be essential to provide this sugar in this host.

The data presented here establish that ATCV-1 UGD and
mimivirus UGD and UGER are expressed as late gene prod-
ucts during virus replication. This is consistent with them play-
ing a role in posttranslational modification of capsid proteins.
Interestingly, mimivirus genes are coexpressed in the same
cluster and at the same time as putative enzymes involved in
forming the fibrillar outer layer of the viral particles. These
proteins include glycosyltransferases (R139 and L193), acyl
transferase (L142), acetyltransferase (L280, L316, R363, and
L373), mannose-6-phosphate epimerase (L612), glucos-
amine-fructose-6-phosphate aminotransferase (L619), and
collagen-like proteins (R239, R240, and R241). It is impor-
tant to note that the enzymes involved in GDP-L-fucose and
GDP-D-rhamnose synthesis previously identified in PBCV-1
are expressed as early gene products (40). This differs from the
expression pattern of ATCV-1 UGD, which is expressed late
during infection. However, this difference could be due to
differences in the glycosylation pathway between the two vi-
ruses. ATCV-1 is the only chlorella virus identified so far to
code for UGD, and it is possible that the role of this enzyme is
to increase the L-rhamnose supply already produced by chlo-
rella cells, in particular during the last stages of virus replica-
tion. It is also possible that very high UGD activity during the
initial phases of virus replication is avoided to prevent a re-
duction of UDP-D-glucose availability, since this nucleotide-
sugar serves both as a donor for its specific glucosyltransferase
and as a precursor for UDP-D-galactose. Indeed, preliminary
results by GC-MS on the monosaccharide composition of
ATCV-1 indicate that glucose and galactose are the main com-
ponents of the ATCV-1 glycans (Parakkottil Chothi et al.,
unpublished results). A small peak of UGD expression was
also observed at around 45 min p.i., suggesting that UGD
production may be biphasic, with a small amount produced in
the early phase and higher expression in later stages of virus
replication.

The L-rhamnose biosynthetic enzymes identified in both vi-
ruses are more closely related to enzymes in the plant pathway
(34). In fact, bacteria use dTDP, not UDP, to activate glucose
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to initiate the pathway. Another important difference is that
the epimerization and reduction steps in bacteria are catalyzed
by two proteins, RmlC (RfbC), characterized by a cupin do-
main, and RmlD (RfbD) (17, 18, 20). This difference could be
due to the fact that dTDP-4-keto-6-deoxy-D-glucose can also
be used by bacteria to produce other modified sugars (1), while
this pathway is probably specific for L-rhamnose production in
plants and the viruses reported here. The epimerase/reductase
activity found in plants and mimivirus UGER resembles that of
the last enzyme in the GDP-L-fucose pathway, the GMER/FX
protein, which catalyzes a similar two-step reaction (39).

ATCV-1 and mimivirus UGDs differ in their enzymatic be-
havior. In particular, mimivirus UGD requires exogenously
added NAD� for maximal activity, while this coenzyme re-
mains tightly bound to the ATCV-1 enzyme during purifica-
tion. NAD� or NADP� is required for all nucleotide-sugar
dehydratases to allow the internal oxido-reduction reaction in
which the hydride removed from the C-4 is temporarily trans-
ferred to the coenzyme and then used to reduce the C-6 (1).
We have previously demonstrated that the coenzyme is essen-
tial for structure maintenance in the chlorovirus GMDs (14).
Indeed, for mimivirus UGD, addition of NAD� promotes the
catalytic activity and promotes structural changes, confirming
that the coenzyme also plays a key role in quaternary assembly
of UGD enzymes. We cannot explain the lower affinity of
mimivirus UGD for NAD�. However, it is worth noting that
mimivirus UGD contains an Asn at position 29; the corre-
sponding residue in ATCV-1 UGD and A. thaliana RHM2 is a
Lys that is well conserved among different species. This residue
is located in the coenzyme-binding region and seems particu-
larly important, since the RMH2 K36A mutant has a signifi-
cantly lower activity than wild-type protein (34). Crystallo-
graphic analyses of UGD proteins, which are currently under
way, and site-directed mutagenesis will help clarify the role of
this residue in coenzyme binding affinity.
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