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Abstract— This paper presents the use of the wavelet 

transform to extract fiber surface texture features for 

classifying cashmere and superfine merino wool fibers. 

Extracting features from brightness variations caused by the 

cuticular scale height, shape and interval provides an effective 

way for characterizing different animal fibers and 

subsequently classifying them. This may enable the 

development of a completely automated and objective system 

for animal fiber identification. 

 
Index Terms— Cashmere fibers, image analysis, Merino 

fibers, wavelet texture analysis.  

 

I. INTRODUCTION 

  Cashmere is an expensive and rare animal fiber used to 

produce soft and luxurious apparel. As cashmere processing 

capacity outstrips available supplies of cashmere, some 

cashmere processors use superfine merino wool (19 µm and 

finer) to blend with cashmere. Cashmere wool blends 

provide the high quality worsted (twisted and spun from 

long staple fibers) suiting fabric [1] and produces a lower 

cost product while exploiting the positive market 

perceptions associated with the luxury cashmere content. 

Labeling textiles to indicate their composition in such 

blends is required from both technical and marketing 

perspectives. 

Current standard test methods for analyzing blends of 

specialty fibers with sheep’s wool are based on scanning 

electron microscopy (SEM) (IWTO test method 58) [2] and 

light microscopy (LM) (AATCC test method 20A-2000 [3] 

and [4] American Society for Testing and Materials (ASTM) 

method D629-88 [4]). The test accuracy that can be 

achieved depends largely on the operator’s expertise with 

the visual/microscopic appearances of different fibers. The 

current operator-based methods are tedious and subjective. 

It is desirable to develop an objective, automatic method to 

identify and subsequently classify animal fibers. 

A rational descriptive system of classifying the cuticular 

scale pattern of animal textile fibers was suggested by 

Wildman [5]. It consists of the following main features: the 

form of the scale margins, e.g., smooth, crenate (scalloped) 
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or rippled; the distance apart of the external margins of the 

scales, e.g., close, distant or near; and the type of overall 

pattern, e.g., regular, irregular mosaic, waved or chevron. To 

develop an automatic method similar to the above system, 

various authors have used combinations of microscopy and 

image analysis together with statistical and neural network 

techniques [6-10]. Cuticular scale characteristics and scale 

height have been used as the main diagnostic features to 

classify wool and specialty fibers. 

Scale parameters have been obtained using image 

processing techniques [10, 11]. They objectively describe 

the scale interval and scale shape, and form a basis for 

classification. However, the measurement of the scale 

parameters is based on a binary skeleton image, which has 

lost all the information of scale height. Converting the SEM 

or LM images into binary thin skeleton images needs 

complicated image processing techniques and loses the 

important scale height information. 

The scale height has been shown to be an important 

classification parameter for wool/specialty fiber blends [8, 

12-15]. By adding scale height to an array of scale pattern 

parameters [8], Robson greatly improved the accuracy in 

classifying the wool and cashmere fibers under study. 

However, as the variation in scale height depends on scale 

location along the fiber [16], the scale heights depend on the 

scales selected for measurement. For quantification of fiber 

blends, which requires a very large number of fibers, the 

measurement of scale height with techniques described by 

Robson [8] would be overly time-consuming. 

As the scale pattern is determined by the visible shape, 

height of each scale and the scale interval, changes in scale 

pattern may occur along the fiber length. The fiber surface 

texture/overall pattern is actually composed of scale height, 

scale shape and scale interval. Features of the fiber surface 

texture would be more useful in distinguishing wool fibers 

from specialty fibers than parameters based on individual 

scales. The main objective of this work is to develop a 

reliable fiber classification system using advanced texture 

analysis – wavelet texture analysis. Specifically, the 

discrimination between cashmere fiber and the superfine 

merino fiber is considered. 

 

II. SAMPLE IMAGE PREPARATION 

Images of cashmere and superfine merino wool fibers 

were scanned from the reference collection Cashmere Fiber 

Distinction Atlas [17]. The cashmere fiber collection 

includes samples taken from 16 main production areas in 

China. The mean diameter of the cashmere fibers is 14-16 

µm and that of the merino fibers is 16.5 µm. Fig. 1 shows 
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representative images scanned from the source [17]. 

 

 
 

Fig. 1. Scanned images of cashmere fibers (upper) and Merino 

wool fibers (lower) 

 

Individual fiber images were then cropped from the 

scanned image and placed in the centre of a 512×512 pixel 

black background (Fig. 2). All fiber images have been 

adjusted to the same contrast using Matlab function 

“imadjust”. From the Cashmere Fiber Distinction Atlas [17], 

13 cashmere fiber images and 15 merino fiber images were 

prepared. The diameters of the cashmere and merino wool 

fibers range from 7.0 µm to 19.9 µm. The image preparation 

was performed using the Matlab Image Processing Toolbox 

[18]. 

 

III. FIBER SURFACE TEXTURE FEATURE EXTRACTION 

Human vision researchers have found that the visual 

cortex can be modeled as a set of independent channels, 

each with a particular orientation and spatial frequency 

tuning [19]. These findings have been the basis for more 

recent approaches to texture using multiresolution or 

multichannel analysis such as Gabor filters [20, 21] and the 

wavelet transform [22-25].  The Gabor transform suffers 

from the difficulty that the output of Gabor filter banks is 

not mutually orthogonal, which may result in significant 

correlation  

 

 
 

Fig. 2. Prepared sample images of cashmere fiber (11.0-13.9µm) 

(upper) and Merino wool fiber (7.0-10.9µm) (lower) 

 

between texture features. It is usually not reversible, which 

limits its application to texture synthesis. Gabor filters 

require proper tuning of filter parameters at different scales 

(here ‘scale’ refers to different apparent size ranges in an 

image). By using the wavelet transform, most of these 

problems can be avoided. The wavelet transform provides a 

solid and unified mathematical framework for the analysis 

and characterization of an image at different scales [26-28]. 

The two-dimensional dual-tree complex wavelet transform 

(2DDTCWT) is an enhancement to the two-dimensional 

discrete wavelet transform, which yields nearly perfect 

reconstruction, an approximately analytic wavelet basis and 

directional selectiveness (±15º, ±45º, ±75º) in two 

dimensions. A detailed definition of the 2DDTCWT is 

available elsewhere [29]. It has been successfully applied, in 

a textile texture classification application, to the objective 

grading of fabric pilling [30]. 

By using 2DDTCWT, an image can be decomposed and 

reconstructed into single-scale only detail and 

approximation images. Fig. 3 displays the reconstructed 

scales 1 to 4 detail images and scale 4 approximation image 

from the cashmere fiber image in Fig. 2, where only the 

section that includes the fiber is displayed. The 2DDTCWT 

Proceedings of the World Congress on Engineering 2010 Vol I 

WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

was performed using the wavelet software from Brooklyn 

Polytechnic University, NY [31].  

 
 

Fig. 3. Reconstructed scale 1 to 4 detail images, and scale 4 

approximation image 

 

The wavelet transform measures the image brightness 

variations at different scales/frequencies [26, 27]. From Fig. 

3, it can be observed that the scale 4 (last scale) 

approximation image represents the lowest frequency 

brightness variation, that is the lighting or illumination 

variation, so it is not used to generate a textural feature. The 

scales 1 to 4 detail images measure the brightness variations 

of the cuticular scale edges at different scales/frequencies.  

The cuticular scale’s height, shape and interval are directly 

related to the brightness variation at scale edges, therefore, 

the texture features extracted from these detail images are 

intended to be a comprehensive measurement of the scale 

height, scale shape and scale interval. 

Each scale detail image consists of six directional (±15º, 

±45º, ±75º) detail subimages, which represent the cuticular 

scale margins more effectively. Textural features are 

generated from the six directional detail subimages at scales 

1 to 4. A commonly used textural feature is the normalized 

energy of the detail subimage. In this work, the analysis 

object is the fiber surface, and the texture feature is defined 

as: 

 

     (1) 

 

Where M×N is the size of the fiber surface image, and 

 
 are the pixel grey-scale values of fiber surface 

image in scale s and direction k. 

 

IV. RESULTS AND DISCUSSION 

From each of the 28 fiber images, a texture feature vector 

consisting of 24 (6 orientations x 4 scales) energy features 

was developed. Principal component analysis [32] was used 

to reduce the dimension of the texture feature vector. 

Principal component analysis is a quantitatively rigorous 

method for achieving this simplification. The method 

generates a new set of variables, called principal 

components. Each principal component is a linear 

combination of the original variables. All the principal 

components are orthogonal to each other, so there is no 

redundant information. The principal components, as a 

whole, form an orthogonal basis for the space of the data. 

Fig. 4 shows the amount of variance accounted for by each 

component. Principal components 9 through to 24 explain 

less than 0.176% of the variance, which is sufficiently close 

to zero. Thus eight is effectively the actual dimensionality of 

the 28×24 texture feature vector data. Principal component 

analysis was carried out using the Matlab Statistics Toolbox 

“princomp” function [33]. The principal component scores 

(28×8), which are the original 28×24 data mapped into the 

new coordinate system defined by the eight principal 

components, are used as the input of classifier. 

 

 
 

Fig. 4. Variance explained by principal components 

 

Models of data with a categorical response are called 

classifiers. A classifier is built from training data, for which 

the classifications are known. The classifier then assigns 

new data to one of the categorical levels of the response. 

Parametric methods, like discriminant analysis, fit a 

parametric model to the training data and interpolate to 

classify new data. Discriminant analysis was carried out by 

the Matlab Statistics Toolbox “classify” function [33], 

which uses quadratic discriminant function. 
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Table I tabulates the results from the quadratic 

discriminant analysis. When the 28 samples are all used as 

training data, 27 samples out of the 28 samples are correctly 

classified.  

 
Table I. Discriminant analysis results 

 

Round 1 2 3 4 5 

Training set size 28 26 24 22 20 

Training correct no. 27 25 23 22 20 

Testing set size 0 2 4 6 8 

Testing correct no. 0 2 4 5 6 

 

Fig. 5 shows the misclassified cashmere fiber and a wool 

fiber with the same range diameter. Based on fiber scale 

characteristics such as scale frequency and scale length, it is 

difficult to discern any difference visually. When 4 of 13 

cashmere fibers and 4 of 15 merino wool fibers are selected 

for testing and the rest used for training, the trained 

classifier with zero misclassification error correctly predicts 

6 samples out of the 8 samples. When the selected testing 

set number decreases, the accuracy of the testing set 

increases with the training set size. 

 

 

 
 

Fig. 5. Misclassified cashmere fiber (upper) and Merino wool fiber 

with the same diameter (lower) – 1 micron = 1 µm 

 

V. ALLIED AND FUTURE WORK 

In related work using wavelet texture analysis as the basis 

for the objective classification of fabric surface pilling (pills 

are entanglements of fibers that arise from wear that stand 

proud of the surface of a fabric), it has been shown that the 

performance of the texture classification method can be 

significantly improved by using a multilayer perceptron 

artificial neural network to perform the task of classifying 

the results of the principal component analysis.  Pilling 

evaluation is traditionally performed manually by an 

‘expert’ comparing a fabric test sample to a set of standard 

pilling images.  The evaluation produces a pilling rating in 

the range from 1 (heavily pilled) to 5 (no pilling).  This 

expert rating process relies on the subjective experience of 

the rater. 

Using a large set of 203 pilled fabric samples that had 

been previously rated for pilling intensity by an expert rater, 

a wavelet texture analysis method was employed to develop 

an objective pilling rating method.  All of the fabric samples 

were imaged using a digital camera.  As described above, 

the 2DDTCWT was used to decompose and reconstruct the 

sample images into their single-scale detail and 

approximation images.  It was observed that the pilling 

features were predominately localized in two detail scales.  

From each of the 203 fabric images, a texture feature vector 

consisting of 12 (6 orientation x 2 scales) energy features 

(using (1)) was developed.  Principal component analysis 

revealed that 87% of the variation in the texture feature 

vector was contained in the first principal component, and 

only minor proportions of the variation distributed amongst 

the remaining components.  Based on this result, the single 

transformed first principal component consisting 12 pilling 

texture features was used as the basis for classification. 

A neural network classifier was constructed comprising 

12 linear input neurons (1 for each pilling texture feature), 7 

nonlinear (tan-sigmoid) hidden neurons in a single layer, 

and 1 linear output neuron to provide a floating point pilling 

rating.  Two thirds of the fabric image sample set was used 

to train the neural network.  Following training, the 

remaining 68 image samples were presented to the neural 

network as test samples for automatic classification.  Fig. 6 

gives the test sample rating results from the neural network 

classifier (in black), paired with the original human expert 

rating (in white) for the same fabric sample. Note that the 

result pairs are ordered/grouped using the expert pilling 

ratings, creating the ‘staircase’ appearance in Fig. 6 and 

indicating the relative proportions of the 5 pilling ratings in 

the fabric sample set. 
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Fig. 6. Artificial neural network pilling classification results 

 

 

The difference between the classifier test results and the 

expert measured grades for the test subset samples ranges 

from -0.81 to 0.69 pilling grades.  If the classifier test results 

are converted to integer values, only a handful of test 

samples are misclassified, when compared to the expert 

ratings.  As with the misclassified cashmere sample noted 

previously, it was difficult to visually discern the difference 

between the pilling ratings of the fabric samples in question.  

This perhaps raises as many questions about the human 

expert rating ability as it does about the accuracy of the 

automatic classification.  Many human expert pilling raters 

claim the ability to interpolate half-interval pilling intensity 

ratings based on comparisons of fabric samples to a standard 

pilling image set.  The ability of the neural network 

classifier to produce a floating point output rating can match 

this purported precision rating precision. 

The very good results obtained in the application of 

automated pilling intensity rating based on wavelet texture 

analysis combined with neural network classification 

suggest a number of logical extensions of, and future work 

for, the application of wavelet texture analysis to the task of 

automatic identification of cashmere and other specialty 

fibers, including: 

1) the use of a neural network to perform the task of 

classifying the results of the principal component 

analysis; 

2) the testing of the performance of the wavelet texture 

analysis method of the fiber identification on a larger 

set of real cashmere and other fiber samples; and 

3) the application of the wavelet texture analysis method 

to the of task analyzing/assaying blends of specialty 

fibers – the determination of the relative component 

fiber proportions in cashmere-merino blends is of 

particular interest. 

 

VI. CONCLUSION 

This paper demonstrates the feasibility of using wavelet 

texture analysis in classifying cashmere and superfine 

merino wool fibers. By using the two-dimensional dual-tree 

complex wavelet transform (2DDTCWT) decomposition 

and reconstruction, an effective way to extract features that 

represent cuticular scale height, scale shape and scale 

interval is provided, which is needed to develop an 

automated and objective system for animal fiber distinction. 

While this preliminary study has used existing SEM images 

of cashmere and wool for analysis, work is on-going to 

examine the feasibility of using fiber images from simple 

optical microscopes for a similar analysis.  Further work is 

also planned to employ an artificial neural network as the 

classifier element, based on the good performance obtained 

in a similar textile texture classification application. 
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