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Abstract

Genome-scale metabolic models (GEMs) have proven useful as

scaffolds for the integration of omics data for understanding the

genotype–phenotype relationship in a mechanistic manner. Here,

we evaluated the presence/absence of proteins encoded by 15,841

genes in 27 hepatocellular carcinoma (HCC) patients using

immunohistochemistry. We used this information to reconstruct

personalized GEMs for six HCC patients based on the proteomics

data, HMR 2.0, and a task-driven model reconstruction algorithm

(tINIT). The personalized GEMs were employed to identify

anticancer drugs using the concept of antimetabolites; i.e., drugs

that are structural analogs to metabolites. The toxicity of each

antimetabolite was predicted by assessing the in silico functionality

of 83 healthy cell type-specific GEMs, which were also recon-

structed with the tINIT algorithm. We predicted 101 antimetab-

olites that could be effective in preventing tumor growth in all

HCC patients, and 46 antimetabolites which were specific to

individual patients. Twenty-two of the 101 predicted antimetabo-

lites have already been used in different cancer treatment

strategies, while the remaining antimetabolites represent new

potential drugs. Finally, one of the identified targets was validated

experimentally, and it was confirmed to attenuate growth of the

HepG2 cell line.
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Introduction

Hepatocellular carcinoma (HCC) is the most common form of

primary liver cancer and affects more than half a million people

worldwide, with the highest incidences in Asia and Africa (Jemal

et al, 2011). It is the third leading cause of cancer death, and the

global burden of HCC continues to increase worldwide (Finn, 2010).

Multiple etiologic factors are implicated in the development of HCC

(Sanyal et al, 2010), and these factors have a direct impact on

patient characteristics as well as the tumor progression. The treat-

ment of an HCC patient is dependent on the size, stage, and grade of

the tumor, and several treatment modalities are available, including

liver transplantation and local ablative therapies (Padhya et al,

2013). There is an urgent need for the development of efficient

drugs since sorafenib, an approved drug for HCC, is effective only in

approximately 30% of the patients (Bruix & Sherman, 2011). The

diagnosis of HCC still remains difficult and there are large gaps in

our current understanding about the underlying molecular mecha-

nisms involved in the pathogenesis of HCC (Sanyal et al, 2010). The

elucidation of these diverse mechanisms for the identification of

novel drug targets has therefore been a major focus in medicine,

and further research efforts are still needed for an increased under-

standing and for developing efficient treatment strategies. However,

this is quite a challenging task, since HCC involves a large number

of interplays between different biological pathways (Ye et al, 2012).

In addition to environmental factors, individual genetic variations

should also be accounted for developing effective treatment strate-

gies and for optimizing surveillance methods. This could be

achieved through personalized medicine (Chen et al, 2012; Hood

et al, 2012), a novel approach to healthcare that allows to tailor the

treatment strategy based on the individual’s genetic makeup (Hood

& Friend, 2011).

The decreasing cost of omics profiling has made high-throughput

technologies available for understanding the molecular basis

of disease. Genome-scale metabolic models (GEMs) can aid in

this by providing a scaffold for the integration of omics data
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(Mardinoglu & Nielsen, 2012). To date, different generic human

GEMs (Duarte et al, 2007; Mardinoglu et al, 2013a, 2014; Thiele

et al, 2013) have been reconstructed. These models can be success-

fully employed to gain further biological and mechanistic under-

standing of metabolism-related diseases, discovering potential

biomarkers and identifying novel drug targets (Mardinoglu et al,

2013b; Väremo et al, 2013). Furthermore, different GEMs for cancer

have been reconstructed to characterize the genetic mechanisms of

cancer and to reveal how cancer cells benefit from metabolic modifi-

cations (Folger et al, 2011; Frezza et al, 2011; Agren et al, 2012). In

particular, Folger et al (2011) predicted 52 potential cytostatic anti-

cancer drug targets and synthetic lethal gene targets through gene

knockdowns by employing a generic cancer GEM.

Cancer cells proliferate rapidly and adapt their metabolism based

on the availability of nutrients necessary for the synthesis of new

building blocks, a feature which is the basis for many of the antican-

cer drugs currently in use (Lazar & Birnbaum, 2012). One of the

most common types of anticancer drugs is antimetabolites which

prevent the use of one or more endogenous metabolites by inhibit-

ing the catalyzing enzymes, normally by being structurally similar

to the metabolite(s) in question. Examples of such antimetabolites

are antifolates and antipurines, which mimic folic acid and purines,

respectively. This type of drugs has been used for decades and

results in disrupted robustness of the cancer cell and reduction or

suppression of growth (Garg et al, 2010; Hebar et al, 2013). The

purpose of this study was to predict potential antimetabolites (or

rather, their corresponding endogenous metabolites) for HCC by

simulating their effect using genome-scale metabolic modeling.

In this study, we first evaluated the presence/absence of proteins

encoded by 15,841 genes in tumors obtained from 27 HCC patients

(Fig 1A) and identified extensive differences between six HCC

patients based on the proteomics data. Secondly, we developed the

tINIT (Task-driven Integrative Network Inference for Tissues) algo-

rithm, which allows for automated reconstruction of functional

GEMs based on protein evidence and a novel task-driven recon-

struction approach (Fig 1B). To this end, we defined a set of core

metabolic tasks that should occur in all cell types and enforced their

functionality during the GEM reconstruction process. Thirdly, we

applied tINIT to the Human Metabolic Reaction database (HMR) 2.0

(Mardinoglu et al, 2014) together with personalized proteomics data

and reconstructed functional personalized GEMs for six HCC

patients. Fourthly, we generated functional GEMs for 83 different

healthy cell types based on the proteomic data in the Human Protein

Atlas (HPA, www.proteinatlas.org). This approach represents a

significant step forward in the reconstruction of cell type-specific

models, given that tINIT not only generates connected and consis-

tent metabolic networks, but also ensures functionality by integrat-

ing evidence-based metabolic functions which are established for a

certain cell type. Furthermore, we identified potential antimetabo-

lites that were predicted to inhibit or kill the growth of HCC tumors

in all six patients (Fig 1C). Since the inhibition of a metabolite may

lead to abnormalities in the metabolic functions of a healthy cell,

the toxic effect of each antimetabolite was evaluated for a number

of metabolic tasks in each of the 83 healthy cell type GEMs. The

proposed antimetabolites are therefore likely to damage the tumor

in all HCC patients, with the least possible side effects on the func-

tion of other healthy cell types (i.e., having high efficacy and low

toxicity). Finally, we experimentally evaluated the effect of an

L-carnitine analog, one of the predicted antimetabolites for the inhi-

bition of HCC tumor growth in all patients. By evaluating prolifera-

tion of HepG2 cell lines in the presence or absence of the analog,

we could confirm our genome-scale modeling predictions. The

presented method allowed for the identification of potential thera-

peutic targets for treatment of HCC by considering individual differ-

ences in protein expression patterns and may therefore aid in filling

the existing gap between proteomics and drug discovery.

Results

Personalized proteome data for HCC patients

The presence/absence of proteins encoded by 15,841 genes (Supple-

mentary Dataset S1) in HCC tumor obtained from 27 male and

female HCC patients (Supplementary Dataset S2) was evaluated

using 18,707 antibodies generated in the HPA project. Duplicate

evaluations of every protein were performed, and the abundance of

each protein was analyzed in three or more HCC patients. The

proteomics data displayed notable differences between the 27 HCC

patients during the determination of the global protein expression

levels (Fig 2A).

Here, we focused on the proteomics differences of six HCC

patients that had the largest coverage of protein expression levels

(Fig 2B). The number of the evaluated proteins in these HCC patients

varied between 9,312 and 14,561. The expression levels of 4,936

proteins were identified in all six HCC patients and healthy hepato-

cytes (Fig 2C and Supplementary Dataset S3). Figure 2C demon-

strates the apparent differences between the proteomics data of the

HCC tumors and with the healthy hepatocytes. Functional differ-

ences between these 4936 proteins were identified through the level

5 gene ontology biological process (GO BP) terms (Supplementary

Dataset S4) using DAVID (Huang et al, 2009) and GO BP terms with

adjusted P-values < 0.005 are presented in Supplementary Fig S1.

In order to reconstruct personalized GEM for the six HCC

patients based on the proteomics data, the missing expression of

protein in each patient was predicted based on the protein expres-

sions in the other 26 HCC patients. Hereby, the absence/presence of

15,841 proteins could be evaluated in the six HCC patients (Supple-

mentary Dataset S5) and these proteomics data for each HCC patient

were used for the reconstruction of personalized GEMs. The func-

tional differences of the proteomics data were also identified

through GO BP terms (Supplementary Dataset S6) using DAVID

(Huang et al, 2009) and GO BP terms with adjusted

P-values < 0.0001 are presented in Supplementary Fig S2. It is

observed that there are significant differences in GO BP terms

between the hepatocytes and the HCC patients. In particular, GO BP

terms including positive regulation of programmed cell death, posi-

tive regulation of apoptosis, mitosis, M phase of mitotic cell cycle,

protein catabolic process, fatty acid (FA) catabolic process, FA

oxidation and lipid oxidation showed notable changes in all HCC

patients compared to healthy hepatocytes.

Personalized GEMs for HCC patients

It is known that the synthesis, degradation, and redistribution of

metabolites and minerals as well as metabolite consumption rates
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are different in cancer versus normal cell types (Lazar & Birnbaum,

2012). We have previously developed the INIT algorithm and used

it to reconstruct active metabolic networks for 69 cell types and 16

cancers (Agren et al, 2012). We identified the common metabolic

differences between cell types and cancers using the reconstructed

model. These networks could be seen as snapshots of active metab-

olism in a given cell type, but they were not functional models that

could be directly applied for simulations. Recently, we constructed

HMR 2.0 (Mardinoglu et al, 2014), which contains 8,181 reactions,

6,007 metabolites in eight different compartments, and 3,765 genes

associated with the reactions (Table 1).

Here, we reconstructed personalized GEMs for six HCC patients

based on personalized proteomics data and HMR 2.0 by employing

the new concept of task-driven model reconstruction (Fig 1B). This

was done by first defining a list of 56 metabolic tasks which must

occur in all cell types and that the resulting model should be able to

perform (Supplementary Dataset S7). Literature evidence for

the occurrence of these tasks in all human cells is provided in

83 Healthy cell-types6 HCC Patients

Cell type GEMsPersonalized GEMs

Human metabolic reaction (HMR) 2.0 database

Antimetabolites for HCC

 27 HCC patients 

 83 healthy cells 

 56 metabolic tasks 

 Growth in HCC tumours 

tINIT AlgorithmHuman Protein Atlas

Toxicity TestAntimetabolites

A  B  

101 Antimetabolites

C  

Effect of antimetabolites on healthy 

cell types 

 Failing of  the 56 metabolic tasks 

P1 P2 P3 

P4 

P6 

P5 

P8 

P2 

P9 Blocked reaction 

Antimetabolite 

Other metabolite 

Protein P 

A B 

D E 

C 

 Testing of 3,160 metabolites 

 High efficacy (410) 

High efficacy in all six HCC 

patients (349) 

 Pool metabolites are ignored 

Figure 1. General pipeline for the identification of antimetabolites.

A The presence/absence of 15,841 proteins in tumors obtained from 27 HCC patients was evaluated using immunohistochemistry. tINIT algorithm was developed and

used for reconstruction of personalized GEMs for six HCC patients and GEMs for 83 healthy cell types based on proteomics data and HMR 2.0. A method identifying

potential antimetabolites for the treatment of the HCC patients was developed, and the toxicity of each antimetabolite was predicted using GEMs for healthy cells

types.

B tINIT was used for reconstructing GEMs which are in agreement with omics data and which could perform a set of predefined tasks. In this illustration, the model

should perform two simple tasks; production of “D” from “A” and “E” from “B.” The resulting model should contain as many of the green reactions and as few of the

red ones as possible. In the first step, all reactions were identified which, if removed from the network, cause any of the tasks to fail. These reactions were marked

blue. In the second step, the INIT algorithm was used to find the network with the maximal number of green reactions compared to red, with the additional

constraints that the model must be functional and that all blue reactions must be included. This would result in the dotted reactions being removed from the

network. At this stage, the first task would be possible, but not the second one (since uptake of “C” makes the production of “E” possible without using any red

reactions). In the final step, each task was tested and a gap-filling algorithm was used to reinsert the reactions which were required for all tasks to work. This would

result in the inclusion of the lower-most red reaction.

C The effect of antimetabolites can be predicted in silico by using metabolic network and potential use of antimetabolites is illustrated.
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Supplementary Dataset S7. These 56 metabolic tasks were catego-

rized as energy and redox, internal conversions, substrate utilization

and biosynthesis of products. Examples include the catabolism of

nutrients or biosynthesis of precursors, but also generation of

membrane potentials and ADP re-phosphorylation. For cancer cells,

biomass growth was also included as an extra metabolic task. The

objective was then to reconstruct models that can perform all the

defined tasks and at the same time are consistent with the proteo-

mics data. This concept was formulated in the tINIT algorithm (see

Materials and Methods) and implemented in the RAVEN Toolbox

(Agren et al, 2013).

Personalized GEMs for the HCC patients are provided in SBML

format at the Human Metabolic Atlas (HMA) portal (www.metabol-

icatlas.org), and the contents of the models are presented

(Table 1). The resulting personalized models ranged in size from

4,690 to 4,967 reactions and 1,715 to 2,025 genes. A total of 5,405

reactions and 2,361 genes were shared across the models and 4,212

of the reactions and 1,324 of the genes were present in all six

personalized HCC models. It was observed that 248 of the reactions

(Supplementary Fig S3A), 102 of the metabolites (Supplementary

Fig S3B), and 227 of the genes (Supplementary Fig S3C) were

unique to any one model. However, we observed notable differ-

ences between the reactions (Fig 3A) and genes (Fig 3B) during a

pairwise comparison of the models. The differences between the

numbers of reactions in the personalized models varied between

356 and 610, whereas the similarities between the reactions varied

between 4,437 and 4,699. On the other hand, we observed larger

differences in the number of the genes incorporated into the

B 

CA

Figure 2. Proteomics data for 27 HCC patients.

A Clustering of the generated proteomics data between 27 different HCC patients showed notable differences. The color indicates the protein expression differences

between tissue samples.

B Due to the coverage of the proteomics data, we focused on the reconstruction of the personalized models for six HCC patients. The number of the evaluated proteins

in each HCC patients varies between 9,312 and 14,561.

C The expression level of 4,936 proteins measured in all six HCC patients and the proteomics data showed notable differences between the HCC patients and

hepatocytes.
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models. The model differences on the present genes varied between

392 and 524, and considering all 2,361 genes shared in all models,

a 16–22% difference was observed between the personalized

models.

To investigate to which extent the personalized HCC models

differ from a HCC population model, we reconstructed a generic

HCC model based on the average protein expression of the 27 HCC

patients and presented the content of the generic HCC model in

Table 1. The pairwise reaction and gene differences between the

personalized models and generic HCC model are also presented in

Fig 3A and B, respectively. As it can be seen, the generic HCC model

is about as different to the personalized models as these models are

to one another.

In order to check whether a specific pathway is activated in the

personalized and generic HCC models, we counted the number of

the reactions in the relevant subsystem of HMR 2.0 (Supplementary

Dataset S8). The numbers of the reactions in the personalized and

generic HCC models did not show any significant differences. We

further observed that none of the specific pathways were activated

or deactivated in each of the personalized and generic HCC models.

However, in-depth analysis showed that many reactions in the

specific pathways differed between the models, and hence, this

Table 1. The content of the HMR 2.0, generic HCC model, and personalized genome-scale metabolic models for six HCC patients

Reactions Metabolites Genes Model-specific reactions Model-specific metabolites Model-specific genes

Generic human model

HMR 2.0 8181 6007 3765 – – –

Generic HCC model

HCC average model 4816 4346 1779 – – –

Personalized models for HCC patients

Patient 2177 4823 4339 1823 29 9 21

Patient 2280 4954 4446 2025 89 49 74

Patient 2556 4690 4324 1715 24 7 25

Patient 2766 4967 4418 2009 36 8 57

Patient 3196 4764 4377 1860 39 19 26

Patient 3477 4833 4341 1803 31 10 24

Common in all models 4212 4113 1324 – – –

Total shared components 5405 4599 2361 – – –

BA

Figure 3. Comparison of the personalized GEMs for HCC patients.

A, B The pairwise differences and similarities of the reactions (A) and genes (B) between personalized HCC models and the generic HCC model that is reconstructed

based on the average protein expression level of 27 HCC patients.
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shows that different enzymes are activated in the different cancers

but the same overall metabolic functions are characteristic of HCC.

Cell type-specific functional GEMs

We reconstructed functional GEMs for 83 healthy cell types based

on HMR 2.0 using tINIT algorithm. The proteomics data in HPA

version 12.0, as well as the list of 56 metabolic functions known to

occur in all cell types, were used as input to tINIT to generate func-

tional cell type GEMs. The GEMs are available in SBML format at

the HMA portal (www.metabolicatlas.org). The number of the

reactions, metabolites, and genes in the models are presented in

Supplementary Dataset S9. These models represent a significant

improvement over existing automatically reconstructed cell type-

specific models in that they are based on high-quality proteomics

data and are built to carry out a range of important metabolic func-

tions. This makes them an important resource to perform simula-

tions or for the integration of omics data.

Antimetabolites for HCC patients

Previously, Kim et al (2011) used the concept of metabolite essenti-

ality to identify potential drug targets using a GEM for an opportu-

nistic microbial pathogen. The targets were then used to identify

novel potential antimicrobial targets from a chemical library, and a

screening identified one chemical to have clear antimicrobial prop-

erties. The concept of metabolite essentiality is a similar approach

to that of antimetabolites. An antimetabolite is structurally similar

to a specific metabolite, but it cannot be utilized for the production

of physiologically important substances. Its drug action comes from

that it inhibits or otherwise affects the enzyme(s) that utilizes the

metabolite. A strong characteristic of antimetabolites is that they

can allow for targeting of multiple enzymes simultaneously and

can reduce or kill the growth of tumors more effectively (Garg

et al, 2010). Antimetabolites is one of the most widely used type of

drugs for cancer treatment as of today (Hebar et al, 2013). Since

antimetabolites accomplish their drug action from being structur-

ally similar to metabolites, here we emulate the effect of antimetab-

olites by inhibiting enzymes based on which metabolites they have

as substrates. We identified the metabolites that, upon blockage,

disabled tumor growth in HCC patients while having a minimal

effect on the previously defined biological processes of healthy

cells (Fig 1C) (see Materials and Methods). The structural analogs

of these metabolites were predicted as potential anticancer drugs

and proposed as antimetabolites. Such analogs can be screened

from chemical libraries in a similar manner to what was success-

fully used by Kim et al (2011) for the identification of novel

antibiotics.

By means of our approach, we predicted 147 antimetabolites that

can inhibit growth in any of the studied six HCC tumors (Supple-

mentary Dataset S10). One hundred and one (69%) of these poten-

tial antimetabolites were predicted to be effective in disabling

growth in all six HCC patients (Fig 4A), 23 (16%) of the antimetabo-

lites were effective in 2–5 patients, and the remaining 23 (16%) of

the antimetabolites were only effective in one of the patients

(Fig 4B). The 46 (31%) of the antimetabolites that are predicted to

be effective in only some of the HCC patients are presented in

Fig 4C. Even though 69% of antimetabolites disable growth in all of

the HCC tumors, the fact that not all antimetabolites are applicable

for all the HCC tumors illustrates the importance of using personal-

ized models rather than relying on a generic HCC model.

One hundred and one potential antimetabolites that were

predicted to be effective in all six HCC patients were grouped based

on the relevant subsystem in HMR 2.0 and literature evidence for

their usage as antimetabolites in different cancers was included

(Supplementary Dataset S11). The evidence for each metabolite was

provided for HCC and for other cancers if it has not been used in the

treatment of HCC yet. The number of antimetabolites in each

subsystem is presented in Fig 5. It was observed that cholesterol

biosynthesis contained the largest number of metabolites, followed

by synthesis of co-factors, nucleotides, lipids, amino acids, and

folate metabolism.

The analogs of 22 metabolites in folate, vitamin B12, and nucleo-

tide metabolism were proposed as antimetabolites for inhibiting or

killing the growth of tumors in all HCC patients. Vitamin B12 and

folate metabolism may induce abnormal DNA methylation and DNA

synthesis and the development of HCC is associated with an

increased DNA synthesis (Leong & Leong, 2005). Fourteen of these

metabolite analogs have already been used as antimetabolites in the

treatment of different types of cancer (Supplementary Dataset S11)

and the remaining eight metabolites were predicted to be beneficial

for inhibiting the growth since the enzymes utilizing these metabo-

lites have already been targeted in different cancers.

The analogs of 30 metabolites were targeting enzymes in the

cholesterol biosynthesis and mevalonate pathways. Cholesterol is

an essential molecule for building cell membranes and a precursor

to several essential hormones and bile acids. The growth of HCC

tumors is dependent on cholesterol biosynthesis (Borena et al,

2012), and use of statins that inhibit the enzyme HMG-CoA reduc-

tase has previously been proposed in the treatment of HCC (Lonardo

& Loria, 2012). Although HMG-CoA reductase is the rate-limiting

and key regulatory enzyme in the cholesterol synthesis, several

other enzymes in cholesterol biosynthesis have been targeted

for preventing the proliferation of the cells in different cancers

(Cuthbert & Lipsky, 1997) (Supplementary Dataset S11).

The analogs of 13 metabolites in terpenoid backbone biosynthe-

sis, two metabolites in pantothenate and CoA biosynthesis, one

metabolite in nicotinate and nicotinamide metabolism, two metabo-

lites in riboflavin metabolism, nine metabolites in lipid metabolism

and eight metabolites in amino acid metabolism were identified as

potential antimetabolites.

Two metabolites involved in the synthesis of tetrahydrobiopterin

(BH4), which is an essential cofactor for several aromatic amino

acid hydroxylases including tyrosine and tryptophan, were predicted

as antimetabolites. BH4 is synthesized from GTP and supplementa-

tion of the BH4 has been shown to increase cell proliferation and

effect tumor angiogenesis in endothelial cells (Chen et al, 2010).

One of these metabolite analogs has already been used as antime-

tabolite. Tyrosine was also among the proposed antimetabolites for

HCC, and tyrosine kinase inhibitors have been proposed as potential

targets for the treatment of HCC (Giannelli et al, 2007).

The analogs of eight metabolites were identified in heme and

porphyrin metabolism. The analog of 5-aminolevulinate, which can be

synthesized from glycine and succinyl CoA and is a precursor for the

synthesis of porphyrin, heme, and bile pigments (Ishizuka et al, 2011),

has already been used as an anticancer drug. The correlation between
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activity of the remaining seven metabolites and the cancer progression

was obtained in different cancers (Supplementary Dataset S11).

In summary, 22 of these 101 potential antimetabolites are in

current use as anticancer drug targets and 61 of them have either

been proposed as drug targets or show a strong correlation with

cancer progression. Eighteen of targets have not been previously

suggested as anticancer drugs. We also evaluated the toxic effect of

these potential antimetabolites using 83 GEMs for healthy cells for

testing the disruption of the antimetabolites on the healthy cell types

in human body.

We also predicted antimetabolites through the use of the generic

HCC model which was reconstructed based on the average HCC popu-

lation data. Analogs of 127 metabolites were predicted as antimetabo-

lites through the generic HCC model, and 26 (20%) of these

antimetabolites were not suitable for inhibiting the growth in all six

HCC patients (Fig 4A). These 26 antimetabolites would therefore not

be suitable targets for cancer treatment in all HCC patients. Thus,

personalized HCC models allowed us to predict the effect of these

false-positive antimetabolites on the treatment of all HCC patients. It

is hereby clear that the use of personalized models can significantly

improve the identification of drug targets effective in a given patient.

The potential use of L-carnitine analog in the treatment of HCC

The analogs of L-carnitine and metabolites involved in the synthesis

of L-carnitine were proposed as antimetabolites for the treatment of

all six HCC patients due to the non-toxic effect to here studied

healthy cell types (Fig 6). L-Carnitine is synthesized in the liver and

A

B

C

Figure 4. Prediction of antimetabolites for HCC patients.

A 147 antimetabolites are predicted as potential anticancer drugs through personalized HCC models and 101 of these antimetabolites are effective for inhibiting HCC

tumor growth in all six HCC patients. Antimetabolites are also predicted through the use of a generic HCC model that is reconstructed based on the average protein

expression data in HCC patients, and 127 potential antimetabolites are identified. Twenty-six of the antimetabolites predicted based on the generic HCC models are

not effective in all six HCC patients.

B Distribution of the antimetabolites that are predicted to be effective in number of the personalized HCC models.

C 46 of the antimetabolites identified through the use of personalized models cannot be used for inhibition of the HCC tumor in all six HCC patients. The differences

between the 46 predicted antimetabolites are shown through the use of personalized and generic HCC models.

ª 2014 The Authors Molecular Systems Biology 10: 721 | 2014

Rasmus Agren et al Personalized genome-scale metabolic models Molecular Systems Biology

7



kidneys, from the essential amino acids lysine and methionine, but

it can also be derived from dietary sources (Rebouche, 1991). Nota-

bly, the analogs of lysine and methionine were also predicted as

antimetabolites through our analysis and have already been used as

antimetabolites in the treatment of different cancers. We also

observed that proteins involved in the synthesis of the L-carnitine

have strong or moderate expression levels in HCC tumors.

L-Carnitine has powerful antioxidant and anti-inflammatory prop-

erties and has a decisive role in the metabolism of FAs and energy

by regulating the free CoA and acyl-CoA ratio in the mitochondria

(Silverio et al, 2011). L-Carnitine is involved in the transport of acti-

vated long-chain FAs from the cytosol to the mitochondria where

these mobilized FAs can be degraded through b-oxidation. FAs

represent a very relevant energy source for many cells, including

cancers, and can be taken up from outside the cell, synthesized

through de novo synthesis or obtained through lipolysis in the liver.

L-Carnitine also facilitates the transfer of peroxisomal b-oxidation

products to the mitochondria and removal of medium-chain FAs.

Notably, our GO BP term enrichment analysis of hepatocytes and

HCC tumor proteomics data suggested that the expression level of

the genes involved in FA and lipid oxidation in HCC patients was

higher than in healthy hepatocytes. Higher protein expression level

of genes involved in b-oxidation can be explained by the increased

functional activity of mitochondria in HCC. Previously, Wu et al

(1984) measured the size, number, and surface membranes of the

mitochondria in HCC tumor and reported a significantly higher

activity of mitochondria. Furthermore, Toshima et al (2013) also

reported the activation of the b-oxidation in HCC progression. The

b-oxidation process provides ATP and also supplies and converts

nutrients in the liver (Carracedo et al, 2013).

In order to test the use of an L-carnitine analog as a potential

antimetabolite for the inhibition of HCC tumor growth, we studied

the effect of perhexiline, an inhibitor of carnitine palmitoyltransfer-

ase 1 (CPT1) and to a lesser extent CPT2, on the proliferation of the

HepG2 cell line. In our study, we used perhexiline to mimic the

effect of the L-carnitine analog since L-carnitine conjugates to FAs

and translocates them to the mitochondria through the enzyme

CPT1. We treated the HepG2 cells with four different concentrations

(2, 4, 8 and 20 lM) of perhexiline, determined the viable cells after

24 and 48 h, and compared the inhibitory effect of perhexiline to

sorafenib (2 and 4 lM) (Fig 7). Whereas the lower concentration

(2 lM) had no effect, the results clearly showed that the treatment

of the HepG2 cell line with 8 and 20 lM perhexiline reduced the

viability of the HepG2 cell line after 24 and 48 h (Fig 7A) and that

its effect is comparable to the effect of sorafenib (Fig 7B). Figure 7C

shows HepG2 cells after 24 h of treatment with 20 lM perhexiline.

Discussion

In order to reduce the public health burden of HCC, continued

efforts are needed to identify novel drug targets for developing effec-

tive HCC treatment strategies. It is well known that cancer cells

modify their metabolism in order to meet the requirements of

cellular proliferation. The potential use of metabolic enzymes as

therapeutic targets has led to a renewed interest in understanding
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Vitamin B12 metabolism 

Tyrosine metabolism 

Terpenoid backbone biosynthesis 

Sphingolipid metabolism 

Riboflavin metabolism 

Porphyrin metabolism 

Pantothenate and CoA biosynthesis 

Nucleotide metabolism 

Nicotinate and nicotinamide metabolism 

Lysine metabolism 

Lipoic acid metabolism 

Glycine, serine and threonine metabolism 

Glycerophospholipid metabolism 

Folate metabolism 

Cysteine and methionine metabolism 

Cholesterol biosynthesis 

Biopterin metabolism 

Used as AM 

Same enzymes targeted, but with other AM 

Same enzymes targeted, but not with AM 

Same metabolite/enzyme targeted, but at least partly for other reasons 

AM developed for other conditions than cancer 

Activity correlates with cancer progression 

Figure 5. Evidence levels of the predicted antimetabolites for HCC patients.

Antimetabolites are a type of drugs, which acts by inhibiting the use of a normal metabolite, most often by being structurally similar to the metabolite in question. The 101

predicted antimetabolites were categorized based on their known use as antimetabolites and/or their connection to HCC (see Supplementary Dataset S11 for literature

evidence). In summary, 22 of the predicted antimetabolites are currently in use as anticancer drugs, and 9 are used as drugs against other diseases. For 39 of them, the

corresponding enzymes are currently targets for drugs but not with antimetabolites. The remaining 31 have not been investigated as drugs or drug targets, but all of them

show a strong correlation with cancer progression. These results speak strongly for the validity of the in silico predictions.
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the altered metabolism in cancer (Vander Heiden, 2011). Our study

showed a novel approach to identify therapeutic targets for treating

HCC through combination of personalized proteomics data and

metabolic modeling. This is the first time personalized GEMs have

been used to find and evaluate new potential drugs, some that could

be used for general treatment of HCC, and others that are highly

specific for each HCC patient.

We generated high-quality personalized proteomics data for 27

HCC patients in order to understand the differences in tumor

appearance and to search for potential drugs that would be effective

in all patients. We developed the tINIT algorithm and reconstructed

personalized GEMs for six HCC patients based on the personalized

proteomics data and HMR 2.0. The tINIT algorithm was developed

for the efficient reconstruction of simulation-ready models based on

omics data coupled with defined metabolic tasks.

In a similar fashion, we also reconstructed functional cell type-

specific GEMs for 83 different healthy cell types, which represent an

important resource in their own. These functional GEMs may enable

the application of constraint-based modeling techniques to distin-

guish metabolic states under different physiological conditions.

This is a significant improvement over the previous automatically

reconstructed GEMs, since these functional models were generated

based on high-quality proteomics data and in a manner that enables

them to perform a range of defined biological tasks. These tasks can

of course be expanded on, and functional models for other cell types

can be reconstructed with the tINIT algorithm as implemented in

the RAVEN Toolbox (Agren et al, 2013).

By using the concept of antimetabolites, we were able to propose

anticancer drugs which could be effective in inhibiting tumor

growth. Furthermore, we simulated the effect of these antimetabo-

lites on 83 healthy cell types to predict their toxic effects. We thus

identified 101 antimetabolites which were predicted to inhibit

cancer growth in all six HCC patients simultaneously, while not

being overly toxic to healthy cells. Through our personalized model-

ing approach, we also predicted 46 antimetabolites which would

inhibit HCC tumor growth only in a subset of the patients. There-

fore, the outcome of our study can be used to predict false-positive

drug targets that would not be effective in all patients.

One of the few identified antimetabolites that have not yet been

studied for cancer patients is antimetabolites of L-carnitine. We

predicted that such antimetabolites may inhibit the b-oxidation and

hereby suppress the growth of HCC tumor (Fig 6). This was tested

Figure 6. Usage of L-carnitine antimetabolites for the treatment of HCC.

L-Carnitine and metabolites in the L-carnitine biosynthetic pathway, as well as two essential amino acids, lysine and methionine, necessary for the synthesis of L-carnitine

were identified through our modeling approach. The analogs of L-carnitine were proposed as antimetabolites for the treatment of HCC patients and the predicted

consequence of the use of an L-carnitine antimetabolite is presented. L-Carnitine antimetabolites may result in reduced b-oxidation, de novo synthesis of fatty acids, and

eventually may suppress or kill the growth of the HCC tumor. The abbreviations and the detailed explanations for the metabolites as well as the associated genes for each

reaction are presented in HMR 2.0.
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in vitro using perhexiline, which has been used to mimic the

behavior of an L-carnitine analog, and it was shown to reduce the

viability of HepG2 cells. This is a proof of principle that genome-

scale modeling can be used to predict relevant targets for anticancer

drug identification.

Several other studies have also proven the link between b-oxida-

tion and different types of cancer and support our here presented

results. b-Oxidation is a central pathway for energy generation in

prostate cancer (Liu, 2006), and enhanced mitochondrial b-oxida-

tion has been associated with tumor promotion in pancreatic cancer

(Khasawneh et al, 2009). Inhibition of b-oxidation has been shown

to induce apoptosis in leukemia cells and in glioblastoma cells

(Samudio et al, 2010; Pike et al, 2011). It is earlier reported that

expression of CPT1C, a brain-specific enzyme, in cancer cells

promoted FA oxidation, ATP production, resistance to glucose

deprivation, and tumor growth (Zaugg et al, 2011). The expression

of CPT1C, which is frequently up-regulated in human lung tumors,

increased the resistance to the mTOR complex 1 (mTORC1) inhibi-

tors and was therefore proposed as a new therapeutic target for the

treatment of hypoxic tumors. Recently, Pacilli et al (2013) reported

that the inhibition of the CPT1A in vivo models of Burkitt’s

lymphoma induced lipid accumulation in cytosol and reduced the

availability of cytosolic acetyl-CoA. It should also be noted that the

level of acetyl-CoA in a cell regulates the oxidation of fatty acids

and pyruvate (Pekala et al, 2011) and effects the activity of pyruvate

dehydrogenase (PDH) complex that provides the link between

glycolysis and the TCA cycle. The usage of L-carnitine antimetabo-

lites, and eventual inhibition of the b-oxidation, may also result in a

decrease in cytosolic NADPH production. Decreased level of NADPH

in the cytosol results in increased production of reactive oxygen

species resulting in cell death within HCC tumor as in glioma cells

(Pike et al, 2011).

In conclusion, we identified potential antimetabolites which may

inhibit the growth of HCC tumors through the use of personalized

metabolic modeling, proposed the usage of antimetabolites for the

treatment of HCC, and demonstrated the inhibitory effect of the

L-carnitine analog, one of the predicted antimetabolites, on the prolif-

eration of the HepG2 cell line. The results of our study can be used

to reduce the number of chemical compounds for drug screening by

focusing on the structural analogs of the identified antimetabolites.

It is of course important to note that the findings presented here are

based on cellular models and do not take systemic effects into

consideration. One way to alleviate this could be to integrate the

method described here with whole-body pharmacokinetic and phar-

macodynamics modeling. Beyond the prediction of new potential

drug targets for HCC, the modeling approach presented here may be

expanded to predict the effect of a standard therapy for a particular

individual and evaluate whether the treatment is likely to work.

Our approach may hereby enable new exciting possibilities for

personalized medicine.

Materials and Methods

Proteomics data for HCC patients

The HPA portal covers the relative abundance of proteins analyzed

with one or more antibodies and the subcellular localization of

proteins in all major human healthy cells and cancer (Uhlen et al,

2010). The proteomic profiling using immunohistochemistry was

performed as previously described (Uhlen et al, 2005). In brief,

tissue microarrays (TMAs) were produced for HCC tumors obtained

from 27 different HCC patients. Representative formalin- and

A

B

C

Figure 7. Inhibitory effect of perhexiline on the proliferation of the

HepG2 cell line.

A, B Perhexiline was used to mimic the effect of the L-carnitine analog on the

proliferation of the HepG2 cell line. The number of viable cells was

determined after treatment with (A) perhexiline (2, 4, 8, and 20 lM) and

(B) sorafenib (2 and 4 lM) for 24 and 48 h. Both perhexiline and

sorafenib were dissolved in DMSO, and for each concentration of

compounds analyzed, controls with corresponding concentration of

DMSO were analyzed. Each bar represents the results from eight

replicate samples, and mean � s.d. values are presented. Students

t-test versus untreated cells: *P-values < 0.001.

C Example images for the HepG2 cell line after 24 h of the treatment with

20 lM perhexiline and corresponding concentration of DMSO.
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paraffin-embedded material from donor blocks were punched

(1 mm in diameter) and placed in a recipient block TMAs (Kampf

et al, 2012). Thereafter, 4-lm TMA sections were cut using a micro-

tome and placed on super frost glass slides.

Immunohistochemically stained tissues were scanned and digital-

ized at 20× magnification. Annotations of each high-resolution

image was manually performed by certified pathologists with the

relative expression levels including strong, moderate, weak, and

negative (Kampf et al, 2004), and proteins with strong, moderate,

and weak relative expression were included in the reconstruction

process of the GEMs. The annotation of the presence or absence of a

particular protein target as well as related high-resolution images is

publically available through the Human Protein Atlas (www.pro-

teinatlas.org). During the reconstruction process of personalized

GEM for six HCC patients, the missing expression of protein in each

patient was predicted using the median of the protein expression

levels in other 26 HCC patients. The present and absent proteins in

each patient which were input for tINIT are presented in Supple-

mentary Dataset S5.

Task-driven reconstruction using tINIT

Previously, Agren et al (2012) developed the INIT (Integrative

Network Inference for Tissues) algorithm for automated generation

of cell type-specific and cancer GEMs. These networks could be seen

as snapshots of active metabolism in a given cell type, but they were

not functional models that could be directly applied for simulations.

In this work, we expanded significantly the INIT algorithm in order

to allow for direct reconstruction of functional GEMs. The tINIT

algorithm allows the user to define metabolic tasks, which the

resulting model should be able to perform. These metabolic tasks

can be outlined and used as an input to tINIT algorithm in Microsoft

Excel for convenience (Supplementary Dataset S7).

The algorithm then works by first identifying the set of reactions

in the generic model which, if any of them are excluded, cause one

or more of the tasks to fail. This set of reactions then have to be in

the resulting model. Note that this is not the same thing as the

smallest set required for performing the tasks, as there can be iso-

enzymes or alternative pathways. The INIT algorithm is then

implemented as described in the original paper (Agren et al, 2012),

but with the additional constraint that these reactions have to be in

the solution. The resulting solution has to adjust to fit with these

reactions and is therefore likely to be close to being able to

perform the tasks. In a final step, each task is tested in a sequential

manner, and if it cannot be performed, then the gap-filling algo-

rithm in the RAVEN Toolbox (Agren et al, 2013) is applied in order

to enable it. The sequential testing means that the order of the

tasks could theoretically impact which reactions are included in the

gap-filling step. However, this is normally not the case, since the

solution is close to functional because of the set of required

reactions.

tINIT contains two additional improvements over the original

INIT algorithm. Firstly, it constrains the solution so that reversible

reactions cannot have flux in both directions simultaneously. This

enabled some loops to be included even though they were not

connected to the rest of the metabolic network. Secondly, it allows

the user the choice of whether net production of all metabolites

should be allowed (which was the case in the original implementa-

tion). The tINIT algorithm is implemented and extensively

commented in the RAVEN Toolbox (Agren et al, 2013) together with

functions for working with the concept of metabolic tasks

(www.sysbio.se/BioMet).

The tasks used for imposing constraints on the functionality of

the reconstructed models (see Supplementary Dataset S7) are based

on metabolic functions that are known to occur in all cell types. As

such, there is some redundancy between the tasks. For example,

ADP re-phosphorylation is a prerequisite for the biosynthesis of

some of the precursors (which in turn is a prerequisite for biomass

formation). The reason for this is twofold. On the one hand, it

makes for a less computationally demanding optimization, as the

reconstruction can be performed in a more stepwise manner. On the

other hand, it makes for more fine-grained analysis of the impact of

each task, in particular when it comes to the effect of antimetabo-

lites. It should be noted that the redundancy is not a problem from a

reconstruction viewpoint, since the resulting GEM will look the

same regardless.

Since the set of measured proteins differed somewhat between

the six HCC patients, averaged data from all 27 HCC patients

were used to fill the gaps. tINIT requires that all reactions in the

reference network are given a score, and the alternative solution

would be to use an arbitrary negative score for proteins which

were not measured in some given patient. This would represent a

larger bias, and it was therefore chosen that averaged data should

be used for the missing protein expression value. It should be

also noted that the filled protein expression data are relatively

small comparing to the measured protein expressions in each

patient.

Prediction of antimetabolites and their toxicity

The effect of antimetabolites was emulated by considering the corre-

sponding real metabolites as antimetabolite analogs. For each

unique metabolite (not taking compartmentalization into account),

all reactions that used it as a substrate were constrained to have no

flux. Reversible reactions were constrained to have no flux in the

direction where the metabolite was a substrate. The model was then

tested for its ability to perform each of the 56 tasks defined in

Supplementary Dataset S7 by using the checkTasks function in the

RAVEN Toolbox. This was done for each of the six HCC models and

for the 83 GEMs for healthy cell types.

In total, 3,160 metabolites were tested in this manner, out of

which 410 disabled growth in at least one of the HCC models (Sup-

plementary Dataset S10). 349 out of these disabled growth in all six

HCC models and this led to a total of 349 potential antimetabolites.

However, a large fraction of these were fatty acid derivatives

involved in the formation of pool metabolites. These were deemed

to be unlikely to be effective antimetabolites and were thus

excluded. This resulted in a final list of 147 metabolites that are

potential antimetabolite homologs. One hundred and one of these

potential antimetabolites were effective in killing the growth of the

tumors in all six HCC patients.

Antimetabolites can also be disruptive to healthy cells, similar to

other chemotherapeutic drugs (Munoz-Pinedo et al, 2012). It is

therefore a need for evaluating the toxic effect on health cells. We

used the 83 GEMs for healthy cells as a means to investigate this. As

a first step, metabolites which disabled tasks classified as being
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involved in energy and redox balancing in any of the 83 GEMs for

healthy cells were excluded. The rational for this was that such

tasks could be supposed to be central for all types of cells, not only

proliferating ones.

Cell proliferation assay on liver cancer cell line HepG2

Hepatocellular carcinoma cell line HepG2 was obtained from DSMZ

(DSMZ, Braunschweig, Germany) and cultivated according to

DSMZ instructions. A proliferation assay was performed using the

colorimetric CellTiter 96 AQueous One Solution Cell Proliferation

Assay (MTS) (Promega, Fitchburg, USA) according to instructions

from the manufacturer. In brief, HepG2 was separately treated with

2 and 4 lM of sorafenib (Santa Cruz Biotechnology, Inc., Dallas,

USA) and with 2, 4, 8, and 20 lM of perhexiline maleate salt

(Sigma-Aldrich, St. Louis, USA) for 24 and 48 h. Both compounds

were dissolved in DMSO, and corresponding concentrations of

DMSO in the medium were used as controls. In addition, controls

consisting of cells growing in only cell culture medium were

included. For all concentrations of sorafenib and perhexiline male-

ate salt, and for corresponding DMSO controls, eight replicates were

analyzed. For the controls consisting of cells in only medium, 16

replicates were analyzed. For all experiments, the measured colori-

metric differences between DMSO controls and medium controls

were insignificant.

Supplementary information for this article is available online:

http://msb.embopress.org
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