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Identification of Autoregressive
Moving-Average

Parameters of Time Series

D. GRAUPE, M~MBER,IEEE,D. J. KRAUSE, MEMBER,IEEE,

AND J. B. MOORE

,4bstme—A pmeedurefor sequentiaffy eatirnating the parameters and
orders of mixed autoregmsive moving-average signaf modefs from tirne-
serfes data is presented. Iderrtfffftion ia performed by first fderstffying a
purely asrtoregmwive aignaf model. Tire parametem and orders of tbe
mixed autoregmsaive moving-average proeeaa are then gfven from tbe
solutton of sfmple sdgebraic equations involving the purely autoregresive
model parameters.

1, INTRODUCTION

Many control system design algorithms and filtering algorithms in the

literature assume knowledge of the parameters of the signal process

model. In practice rarely is there a priori knowledge of these parameters,

and so there exists the need to identify a signal model first. For

stationary stochastic time-series an autoregressive moving-average
(ARMA) model is frequently used since it is the minimum parameter

linear model of such time series.

Important contributions [1]+6] to the problem of identifying the

parameters of an ARMA model have been made in the last few years.

The text of Box and Jenkins [1] is probably the most complete book to

date on the identification of stationary and nonstationary ARMA mod-

els. In particular, Durbin [3] has treated the problem of identifying the

autoregressive (AR) parameters of an ARMA model given the moving
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average (MA) parameters (and vice versa). His work is based on the

important studies of purely AR mc.iels by Mam and Wald [7]. How-

ever, a limitation of his algorithms is that he requires an assumption of

the order for the AR or ARMA process. Lee [4] and Gersch [5] also

achieved results for the problem of estimating the AR parameters of a

mixed ARMA model of given order assuming a knowledge of the MA

parameters.
Mehra [6] has presented a method for identifying the state variable

model for a Gaussian process which can be executed in a recursive

manner. His method is computationally convenient for estimating AR

parameters of an ARMA model, but is rather complex when dealing
with the MA parameters.

This paper is an extension of earlier work by the authors [8], [9]. It is

concerned with the estimation of parameters and orders of stationary

mixed ARMA time series without a priori assumptions on parameters or

on orders. The resulting models may be further transformed to yield the
parameters of a linear state space model [10]. In this respect, the

algorithms of this paper may be viewed as an alternative approach to

that taken by Mehra [6], having their main advantage in the estimation

of the MA parameters of the ARMA model.

II. MIXED AUTOREGRESSIVE MOVING-AVERAGE MODEL

A well-known property of stationary time sequences is that they may

be represented by a linear filter model driven by white noise [10]. Let us

consider the ARMA signal model

Yk = ,~1 @j)’k-j + ,~ooiwk -i (2.1)

where {Wk ) is the input white noise sequence with zero mean and

variance o:; {yk ) is the output sequence; +,, 4JZ,. ~~,@n are the AR

parameters; and 01, 6’2,. ... Om are the MA parameters. Without 10SS of
generality [8] we take flo= 1. Equation (2.1) is commonly termed the

mixed ARMA model and may be written in operator notation as

@(~)Yk=e(B)wk; B%k=wk-, (2.2)

where B is a delay operator.

The system is assumed to be stable and invertible. That is, all the roots

of both q$(B ) (for stability) and O(B) (for invertibility) lie outside the unit

circle to guarantee that both +- ‘(B)O(B) and 13“i(B~B) form con-
vergent series [2]. We comment that in cases of noninvertible processes,

an invertible equivalent model, having the same first and second order

statistics of the original process output, will always be identified and is in
fact the only model that can be identified. (The roots of the MA

polynomial of this equivalent ARMA model will be the reciprocal of

those roots of the original process that are inside the unit circle, whereas

all other roots will be as in the original process.)

III. ESTIMATION OF MIXED ARMA PROCESSES

A. Pure AR Processes

The problem of consistent least squares estimation of the AR parame-

ters in a purely AR process [(2.1) with m = O] has already been solved by

Mann and Wald [7]. For Gaussian sequences, their algorithms are,

moreover, asymptotically efficient. A recursive version of the algorithm

is described by Lee [4] (see also [11]) using sequential regression and wil!

not be repeated here. Consistency of the AR model identification can

also be proven using stochastic approximation theory [12] for stable

signal model cases.

B. Mixed A RMA Processes

When a process involves m >1 MA terms, we proceed as follows.

Cross multiplying both sides of (2.2) by 9- l(B) as in [13], [14], we

obtain

8-i(~) @(B)yk=Y(B)Yk=wk. (3.1)

Here Y(B) = fj - l(B)+(E) is an injinife power series that IS convergent fOr
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[B I <1 as noted in Section II. Consequently, (yk) may be represented by

m $

yk=i~,yyk-j+wk+ek=i~,;lyk–i+~i) ~= estimate of y (3.2)

where E [e~] can be made arbitrarily small by choosing a sufficiently

high finite order s. Actually, an upper bound /3, on E [e;] that vanishes
with increasing s can be evaluated by expanding E [~~ - I(yi – ~i)y~- i +

x~-,+ ,y~k _,]z, as follows [IS]:

l%=l~[%zl-~[h%ll+lWIYuk-.ll ~_exj(_Q) > He;] (3.3)

where Q is the largest time constant of the envelope of E [YUk _ J, given

that i> 1. As shown in [16], such an envelope always exists for wide-

sense stationary yk.

Since (3.1) and (3.2) represent a purely AR process whose residuals
converge to discrete white noise Wk, we may employ sequential regres-

sion as in Section III-A to consistently identify yi (this identification

being asymptotically efficient for Gaussian yk). The order s may be

chosen as some large integer and checked by computing the autocorrela-

tion of fi~. As long as the sequence ( t~ ) is correlated for a given orders,

a larger value for s must be chosen. We note that the sequential
regression estimation of yi is extremely fast, even for large s, (in ex-

amples worked, a value of s =20 is more than adequate). Furthermore,

with s sufficiently large, slight changes in s are usually of little con-

sequence, as is indicated by Tables II and 111.

C. Dedication of A RMA Parameters and Orders Jrom AR Model

Once the parameters of the pure AR model have been consistently
identified, an ARMA model of the same process can be derived. The

ARMA parameters and order can be obtained directly from the

parameters of the purely AR model, noting the relation

Yk _ 1

~– I+ YIB+Y2B2+ . . .

1+81 B+02B2+. . . +BmBm
. (3.4)

I+x1B++2B2+ . . . +@nB”

where yi are the parameters of the purely AR model and @i, ~ are the

AR and the MA parameters of the mixed ARMA model of the same
process. Cross multiplication and equating the coefficients of like powers

of B yields

‘$2=02+9171+72

h=en+on-,y, +. +Yn

O=onyi+tln-, yi+,,. . “ >7. +,, for i=l,2,.. .

where t?,=Oforj=m+l, m+2,. . . , n. The preceding relationships give
us the &eful matrix equations

r
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forj=l,2,. ... where again it is understood that r?j= O for j = m + 1, m + 2
and~j=of orj=n+l, n+2,.. . .Clcarly, with m:rr, andY,,7z,... IYn+m
known, the parameters fll and @ican be determined from (3.5) and (3.6).

Note that the square matrix involving the yi in (3.5) must be nonsingular

for a unique solution of 8,. Such will be the case if the m and n specified

are minimal orders.

Actually, the determination of the minimal orders m and n from just

knowledge of the AR parameters is straightforward. Denoting the square

matrix involving the yi in (3.5) for n = E and m = m by ~,, ~, the rank of

~fi,fi is tested for [ii, m] = [0,0], [1, l], [1, O], [2,2], [2,1], [2, O], etc., until for

some m and n.

rank{ lti,fi} = m, forii>n, m>m

or alternatively,

[ZH,J=O, for it>n, m>m. (3.7)

In practice, only estimates of the true yi and of [AM,HIare available.
Hence the condition (3.7) is replaced by a test

@n,#<&, forsome fi>n,lfi>m (3.8)

and some small e >0, or better, the values [A–n,~12 can be examined for a

range of H and m and the region for which l~fi,~ I* becomes small to

obtain good estimates of m and n. Since the ARMA parameter estimates

above are based on estimates of pure AR model parameters which have

been shown in Section II to be consistent (if the order of the purely AR

model is correct, or othemvise to be within upper bounds as in [151), and

noting [17, theorem 2.3.3], the ARMA parameter estimates will also be

consistent (or bounded for unknown AR order). There is likelihood of

difficulties with a signal model if m and n are estimated on the low side

of the true values since then there is not the possibility of omitting

dynamics which are essential in a signal description. On the other hand,

if the values fof m and n are overestimated, all that happens is that

negligibly small extra coefficients are introduced into the model which

correspond to the addition of small-magnitude high-frequency terms
which for signal models in other than control applications do not usually

spell disaster. Some examples will be considered to give some feel for

what can happen in workkg with estimates.

Example 1: Consider a pure ARMA process model

1 –0.5B O(B)
—; mo=l; rso=2.

1+ 1.5B+0.625B2 = +(B)

The correct purely AR model for the preceding process is y(B)= I +
2+1.625 B2+~B3+~B4+ . . . . Identification of Y(B) has yielded

;1=2.018; ~z= 1.639; $3=0.801; ~4=0.402; j5=0.198.
Consequently, for assuming correct orders: the following ARMA

parameters where obtained. (via $,, ~2, ~3): +1= 1.519 (correct: 1.5);

42 ‘0.649 (correct: 0.625); f?,= – 0.489 (correct: – 0.5).
Via ~d instead of j,, the parameter estimates became $,= 1.518;

$*= 0.650; 01= – 0.490, which is very close to the estimates via ~1 to j~.
Underfitting of orders, i.e.~ assuming m =1; n = I wi~ yield for the

present example (via j,; j~ 0,= – 0.8 (correct: – 0.5); +,= 1.218 (cor-
rect: 1.s), w~ereas using ~1 to j~ +. +, = j~ instead of ~z will yield

~,= – .049: 6,= 1.528. which differs considerable from when onlv $,. . . -..
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TABLE I

‘$1 ‘$2
Sample

‘$3 01 ‘2
0’

Ws Pq Length

True Value 1.8 -1.3 0.4 1.1 0.28 1.0
Identified 1.841 -1.385

32
0.455 1.012 0.196

(Gaussian)
0.941 20 3 3 500

True Value 2.0 -1.7 0.5 1.5 0.685 1.0 -- 3 2
Identified 2.o16 -1,66 0.532 1.466 0.631 1.036 15 3 2
(Gaussian)
True Value -1.5 -0,625 -- 0.41 0.1524 4.09 22
Identified -1.486

1000
-0.612 -- 0.391 0.1503 4.161 10 3 2

(Gaussian)
500

True Value 1.8 -1.3 0.4 1.1 0.28 1.0
Identified 1.78

32
-1.31 0.416 1.07 0.318 0.980 10 3 2

( Non-Gaussian)
500

TABLE II

5 2.038 -1.762 0.550 1.121 0.513 1.386

10 2.018 -1.638 0.537 1.428 0.609 1.070

15 2.016 -1.661 0.532 1.466 0.631 1.036

20 2.016 -1.677 0.529 1.470 0.623 1.031

True

Values 2.0 -1.7 0.5 1.5 0.685 1.0

N = 1000 in all cases

and ~z are employed. Note that $2 is now assumed to be O instead of

0.625.
Overfitting of orders, i.e., assuming m = 1; n =3 (rno= 1; no= 2), yields

very close estimates for +1, +2, and 01 as when the correct orders are

assumed either when j~ +” is employed or when ~~ +. + I is employed
i~stead of -ym+”. The overfitting above yields (via y~) also a! estimate for

% where $3= – 0.0192 (correct: 0 A similar estimate for% is ob~ined
via j~.

,Enm@e 2: Consider a process given by:

1–0.5B

1+1.5 B+0.66B2+0.08B3

namely, mo= 1; nO=3. Here, ~1= 1.51; ~2= 1.40; ~3=0.78; j4=0.39;

;5=0.196; j6=0.098~. . . . The preceding ji yield, for assuming m =2;

n =2, an estimate of 02= – 0.0775 via ~q and jz = – 0.060 via ;5 (the true

02 being O in both cases). However, a correct assumption of m and of n
yields ARMA parameters that are close to the true ones via either ~a and

;5.

IV. COMPUTATIONAL RESULTS

Table I gives several examples of computational results where the

present procedure was employed (using Fortran on a CDC 6400 com-

puter).
Results illustrating the effect of changing the order of the AR model

on the ARMA parameter values are given in Table II.
Table 111 illustrates the effect of various orders m and n on the

variance of the one-step prediction error yk –jk, jk being obtained from

the ARMA model.

V. CONCLUSIONS

A procedure has been presented for identifying the parameters and

orders of linear mixed ARMA models of Gaussian and non-Gaussian

time series. This procedure differs from that of [6], and from procedures

based on [6], in that no computation of covariances and of spectral

factorization is required and in the simplicity of deriving the MA

parameters. Also the proofs of consistency do not require a Gaussian

TABLE 111

Number of Number of var[yk - yk]

AR Parameters NA Parameters

2 1 unstable

2 2 1.423

2 3 1.042

3 1 1.052

3* 2* 1.031

3 3 1.034

4 1 1.039

4 2 1.031

4 3 1.o36

s = 20, N = 500 samples *True order

assumption. Concrete criteria for determining the AR and ARMA

orders are given.
Extensions of the method to input+utput noise models, and to some

nonstationary processes are possible, as is a direct transformation [9] to a

state-space formulation, for cases of noise-free and of noisy measure-

ments.

We note that the present approach can use a stochastic approximation

subroutine with a scalar correction coefficient (p of [18]) instead of

employing a sequential least squares regression subroutine as in [9], [11,

ch. 6]. However, the convergence rate will inevitably be much slower

[18].

The analysis above indicates that ARMA signal model parameter and

order estimation can be performed by a sequential pure AR identifica-

tion followed by a solution of a set of algebraic equations (3.5) and (3.6),

the latter requiring only the storing of m + n + 1 AR parameters. The

computation effort is therefore virtually that of the very fast sequential

regression identification of the pure AR model, which requires storage of
only s measurements where s is the AR model order. Hence, complete
identification can be executed with microprocessing hardware at great

speed.
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