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Abstract

Bacteriophages/Phages are viruses that infect

and replicate within bacteria and archaea. An-

tibiotic resistance is one of the biggest threats

to global health. The therapeutic use of bac-

teriophages provides another potential solu-

tion for solving antibiotic resistance. To de-

velop phage therapies, the identification of

phages from metagenome sequences is the fun-

damental step. Currently, several methods

have been developed for identifying phages.

These methods can be categorized into two

types: database-based methods and alignment-

free methods. The database-based approach,

such as VIBRANT, utilizes existing databases

and compares sequence similarity between

candidates and those in the databases. The

alignment-free method, such as Seeker and

DeepVirFinder, uses deep learning models to

directly predict phages based on nucleotide se-

quences. Both approaches have their advan-

tages and disadvantages.

In this work, we propose using a deep represen-

tation learning model with pre-training to in-

tegrate the database-based and non-alignment-

based methods (we call it INHERIT). The

pre-training is used as an alternative way for

acquiring knowledge representations from ex-

isting databases, while the BERT-style deep

learning framework retains the advantage of

alignment-free methods. We compared the

proposed method with VIBRANT and Seeker

on a third-party benchmark dataset. Our ex-

periments show that INHERIT achieves bet-

ter performance than the database-based ap-

proach and the alignment-free method, with

the best F1-score of 0.9868. Meanwhile, we

demonstrated that using pre-trained models

helps to improve the non-alignment deep learn-

ing model further.

∗To whom correspondence should be addressed: Yao-
zhong Zhang <yaozhong@ims.u-tokyo.ac.jp>, and Seiya
Imoto <imoto@hgc.jp>

1 Introduction

The human gut is rich in bacteria and bacterio-

phages (phages for short) and a proportion of gas-

trointestinal diseases are due to specific bacteria

(known as pathobionts)(Kamada et al., 2012), and

one of the most common treatments available is

the usage of antibiotics at present. However, this

kind of treatment has several weaknesses. For in-

stance, for the disease CDI, the use of antibiotics

may harm the beneficial bacteria in the human gut

and disrupt the ecological balance of the human

intestinal microbes. Meanwhile, the use of antibi-

otics may also cause its pathobiont C. difficile to

gradually develop antibiotic resistance, resulting in

CDI being prone to recurrence and failing to solve

the fundamental problem(Lessa et al., 2015). Thus,

it is thought to be the best way to treat this disease

currently is phage therapy, which uses a phage to in-

fect its corresponding host bacterium(Mirzaei and

Maurice, 2017). This approach avoids damaging

the bacteria in the gut that are beneficial to people

compared to antibiotics. Therefore, it is necessary

to investigate the relationship between phages and

their host bacteria in the human gut.

In recent years, researchers have been working

on this topic. Fujimoto, K. et al. (Fujimoto et al.,

2020) analyzed fecal samples from 101 healthy

Japanese individuals with CDI and identified novel

antibacterial enzymes that could target the patho-

biont of the disease. The researchers extracted

the metagenome sequences from the samples after

which they needed to process phage identification.

It is a fundamental step and researchers have pro-

posed many methods recently. We roughly summa-

rize several approaches which work on identifying

phages, and they can be roughly classified into two

categories: database-based methods, such as VI-

BRANT (Kieft et al., 2020) and VirSorter2 (Guo

et al., 2021); and alignment-free methods, such as

Seeker (Auslander et al., 2020) and DeepVirFinder

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 8, 2021. ; https://doi.org/10.1101/2021.09.25.461359doi: bioRxiv preprint 

mailto:yaozhong@ims.u-tokyo.ac.jp
mailto:imoto@hgc.jp
https://doi.org/10.1101/2021.09.25.461359


(Ren et al., 2020). Both types have their advantages

and disadvantages, but they are complementary to

some extent.

Recently, the pre-train-fine-tune paradigm us-

ing the Transformer architecture is very popular

in other areas such as natural language process-

ing. Among them, BERT has excelled in many

fields and even reached state-of-the-art in many

tasks. DNA sequence as an important medium

for conveying biological information just like a

language, we believe that BERT can also be used

in DNA sequence analysis. Ji, Y. et al proposed

DNABERT (Ji et al., 2021), an extension of BERT

that can use DNA sequences as input. DNABERT

can be used for the pre-training process to fully

learn the information about phages and bacteria,

which is very similar to HMM Profiles in database-

based approaches. That indicates that the core

of the database-based approach: sequence align-

ment, can be used for a similar purpose by rep-

resentation learning approaches. Therefore, we

can learn the biological features of bacteria and

phages by using the pre-train-fine-tune paradigm

with DNABERT, so we can unify the advantages

of both methods into a model with fast predic-

tion and high accuracy simultaneously. Thus,

here we propose INHERIT: IdentificatioN of bacte-

riopHagEs using deep RepresentatIon model with

pre-Training. It also means our model ”inher-

its” the characteristics from both database-based

approaches and alignment-free methods. The

codes of INHERIT are now available in: https://

github.com/Celestial-Bai/INHERIT. We show

that using the representation learning framework

can make improvements for deep learning models,

and INHERIT also achieves the best performance

in our test.

The main contributions of our paper can be sum-

marized as follows:

1 BERT-style deep learning framework is feasi-

ble for identifying phages, even if better than

LSTM in our test.

2 Adding pre-trained models can help deep

learning models make improvements on iden-

tifying phages. We also trained DNABERT

without any pre-trained models, and INHERIT

performs better on most of the metrics.

3 INHERIT reaches the best performance com-

pared with two state-of-the-art approaches:

VIBRANT and Seeker. Because INHERIT

is the first integrated model with the represen-

tation learning framework, we compare it with

two representatives of database-based meth-

ods and alignment-free methods. INHERIT

performs the best in our test with an F1-score

of 0.9868.

Related Work

Database-based methods

This kind of method takes the genome sequence

and first predicts its compiled protein using tools

such as Prodigal (Hyatt et al., 2010), then com-

pares it with the sequence in the database by Pro-

file Hidden Markov Models to determine whether

the sequence is a phage. While these methods can

identify phages with high accuracy in general, they

also have two drawbacks. First, the computational

time required to identify phages by these methods

is usually long. If a large number of metagenome

sequences need to be identified, or if the sequences

need to be identified quickly, database-based meth-

ods are not suitable for these situations. At the

same time, such methods are largely limited by the

sequences within the reference database, so it is

difficult for such methods to identify phages with

little sequence similarity to those in the reference

databases.

Alignment-free methods

This kind of method uses deep learning to extract

features directly from DNA sequences to determine

whether they are phages or not. One of the popular

approaches is to use Long Short Term Memory

(LSTM) models for training this problem. When

the sequences are converted from bases to values,

there are usually two ways: one is to convert bases

to four values of 1,2,3,4, and the other is to use

the one-hot encoding. A typical example of this

approach is Seeker. It uses both of these strategies

to encode the sequence and then uses LSTM to

classify the sequences.

The DNA sequence is changed from a sequence

to a matrix with one-hot encoding, so another com-

mon idea is to treat this matrix like an image and

use Convolutional Neural Network (CNN) to train.

Therefore, researchers proposed the DeepVirFinder

which is trained by CNN. It is special because it

takes not only the original sequences as input, but

also includes the reverse complemented sequences.

The other feature is that it chooses the different

models to predict the sequence based on its length.
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Figure 1: Figure 1 mainly illustrates the pipeline of INHERIT. For such a DNA metagenome sequence as the example, as
Figure 1A shows, it is first divided into several 500 bp-long segments. Then each segment is generated into 495 k-mers tokens.
Any degenerate bases (like “K”, “R”, and “N”) are replaced with “N” consistently during this process. Those tokens are the
inputs of INHERIT, and Firgure 1B shows the structure of INHERIT. For the 495 tokens for one segment as an instance, they are
first tokenized into numeric vectors by DNABERT tokenizer, added the “[CLS]” token on the head, and appended “[SEP]” token
at the end. All of them are input into the two pre-trained models, bacteria pre-trained DNABERT model and phage pre-trained
DNABERT model. Used the BERT for Sequence Classification Function, both of them can output two logits outputs respectively.
Those four outputs are run through the dense layer and we can get the output (called “score”) for a segment. The score of the
sequence is the average of the score of its segments, and we set the threshold at 0.5 as default. If the score of the sequence is
above 0.5, it will be identified as a phage, otherwise it will be identified as a bacterium.
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However, the alignment-free methods can only

extract some biological features from the training

set itself during the training process, but this pro-

cess of extracting features is limited. Because when

we train a deep learning model on a classification

task, we usually need an equal or similar amount of

positive and negative data. However, the number of

phages we can obtain from databases is much less

than their hosts, bacteria, and the genome sequence

lengths of phages usually are much shorter than

those of bacteria. Thus, in the past, the number

of bacteria selected by these methods tended to be

small, which caused information about bacteria to

rely too much on these small amounts of bacterial

sequence data with a relatively high degree of ran-

domness. Therefore, there is room of improvement

for this kind of method.

2 Methods

Here is the pipeline of INHERIT (see Figure 1). IN-

HERIT uses two pre-trained models as references

and we fine-tune them simultaneously to identify

the metagenome sequences. The following will

introduce the features of INHERIT by sections.

Two pre-trained models for INHERIT

INHERIT is a model based on DNABERT, a spe-

cific BERT model that modifies the way of tokeniz-

ing for DNA sequences. BERT (Devlin et al., 2018)

stands for Bidirectional Encoder Representations

from Transformers and has been widely used in

the field of natural language processing, demon-

strating the superiority and power of its structure.

The success of BERT has also made the pre-train-

fine-tune paradigm popular. Since BERT can be

successful with human language, it is straightfor-

ward to think that for the language of cells and

other biological tissues (i.e., the genome), BERT

might be also useful. The feasibility of this assump-

tion is demonstrated by DNABERT. It divides the

DNA sequence into several tokens by the k-mers

method, so that there will be a finite vocabulary

and can be applied to BERT. Simultaneously, we

enlarged the vocabulary of the DNABERT. We uni-

fied the degenerate bases as ”N” and added them

to our vocabulary to ensure fuller information of

the sequence read-in. For example, for a sequence

ATCKNTCG, its sequence using 6-mers segmenta-

tion is {ATCKNT, TCKNTC, CKNTCG}. The au-

thors of DNABERT made pre-trained models with

the human genome samples and achieved state-of-

the-art in solving both the human genome and the

mammalian genome sequences, again demonstrat-

ing that the structure of BERT can be used to solve

genome-related problems. After experiments, we

also found that DNABERT is more suitable for

identifying phages than LSTM (see in Section 3.1).

We prepared two brand new pre-trained models

for INHERIT. Based on the past experience, we

divided the sequences into 500 bp-long segments

and converted them into the form of 6-mers as in-

put to DNABERT. What is more, since the number

of bacteria we have known is much larger than the

number of phages and the length of bacteria is also

longer, there are many more segments belonging

to bacteria than to phages if the pre-training set

is large enough. Since we want the pre-training

set to carry a larger amount of data, then the seg-

ments belonging to the bacteria are bound to be

much more than those belonging to the phage. If

we combine bacteria and phages in one pre-trained

model, then the model will learn much more infor-

mation belonging to bacteria than phages. Thus,

in order to make the phage information acquired

by the pre-trained model can be equally weighted

with the bacterial information and can contain as

many sequences as possible, we generated two dif-

ferent pre-training sets for bacteria and phages and

included two pre-trained models for the fine-tuning

process.

The pre-trained model is an important part of

INHERIT. One of the major drawbacks of the

database-based methods is that when we need to

identify a large number of sequences at the same

time, it takes a long time to get the predictions due

to the large file size. This can make it difficult for

us to identify phages. However, this turns out to be

the advantage of the alignment-free methods. Since

alignment-free methods are usually based on deep

learning models, they can usually take advantage

of the current GPU computing and can perform

the recognition and prediction of sequences faster.

In proposing the MSA Transformer, Rao, Roshan,

et al. (Rao et al., 2021) demonstrated that pre-

trained models can have comparable performance

to HMM Profiles and even better in some cases. In

this case, the alignment-free methods can be com-

bined with the database-based approaches by using

the pre-train-fine-tune paradigm. In addition, the

number of bacteria and phage segments should be

balanced when we train the deep learning model

on alignment-free methods, which results in a lim-
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ited number of bacteria training samples. However,

after using pre-train-fine-tune paradigm, the pre-

training sets can be chosen large enough to reduce

the limitations caused by the balance of the dataset

in the downstream tasks. Thus, we chose the pre-

trained models as the references of INHERIT. Af-

ter our experiments, we demonstrate that the pre-

trained models can bring some improvements to

the prediction performance of the deep learning

model (see in Section 3.2).

Both pre-trained DNABERT models have the

default BERT structure, i.e., 12 hidden layers, 12

attention heads, and 768 embedding size, and since

we included the degenerated bases as ”N” com-

pared to vanilla DNABERT, the vocabulary of our

DNABERT is permutated by five letters (i.e., ”A”,

”T”, ”C”, ”G”, ”N”), with a total of 16530 words.

Both of them were trained on A100 GPUs. The

unsupervised learning task used in the pre-training

process of the models is the Masked Language

Model.

Pre-training sets

For the pre-training sets, we wanted them to

be as large as possible. Since the bacteria pre-

training set and the phage pre-training set would

train two separate pre-trained models, and we

wanted them to carry as much biological infor-

mation as possible, we did not balance the size

of the bacteria pre-training set and the phage

pre-training set. For the bacteria pre-training

set, we used ncbi-genome-download (https://

github.com/kblin/ncbi-genome-download) to

download the complete bacteria genome sequence

from the NCBI FTP. The command we used was:

ncbi-genome-download –formats fasta –assembly-

levels complete bacteria, and sampled 4124 bacte-

ria sequences from them randomly because of the

limitation of the physical memory. However, these

4124 sequences can generate 15975346 segments

and the dataset size is large enough.

For the phage pre-training set, we cannot ob-

tain the phage sequence data in the same way.

Since phage sequences cannot be found and down-

loaded directly in the NCBI FTP like the bacteria

sequences, we directly searched for the keyword

”phage” on NCBI and downloaded all sequences

longer than 500 bp, and checked all of them manu-

ally. We also referred to the phage sequences used

by Seeker and VIBRANT, and finally generated a

pre-training set containing 26920 phage sequences.

To prevent overfitting, it did not include the phage

sequences contained in the test set and validation

set. These phage sequences can generate 1750662

segments, and the size is still large for a phage

dataset.

Input and output

Although many models have been proposed in re-

cent years to work on this problem, there is no

consistent input format and rules of identification.

For example, VIBRANT is to first split the target

sequence into segments of length 3kb to 15kb to

simulate scaffolds for alignment. The final out-

puts of VIBRANT are also the predictions by each

fragment. However, Seeker divides the target se-

quence into 1000 bp-long segments on average at

first, but it offers the final predictions by each se-

quence. The input and output rules of INHERIT

are similar to those of Seeker. Due to the limita-

tion of DNABERT and past experience, first, the

sequences should be split into several 500 bp-long

segments as the input of INHERIT. When this se-

quence is not divisible by 500, we will use the head

of this sequence to complement the end of the se-

quence until it is divisible, which keeps the same

with Seeker. As discussed above, each segment

should be converted to 6-mers format so that each

segment is generated to a segment with 495 tokens

(hereafter called ”6-mers segments”). INHERIT

gives each segment a prediction, and the prediction

of the whole sequence is the average of the predic-

tions of all the 6-mers segments, which we call the

”score” of the sequence. The default threshold of

INHERIT is set to 0.5, which means if the average

score is above 0.5, the sequence will be regarded

as a phage, otherwise, it will be regarded as a bac-

terium. The threshold can be adjusted based on the

specific situation: If we want INHERIT to predict

the phages with higher confidence, for instance, we

can adjust the threshold slightly larger.

Fine-tuning (training) process

The two pre-trained models are used during the

fine-tuning process. Typically, researchers only

use one pre-trained model for fine-tuning. How-

ever, if we fine-tune the two pre-trained models

separately, then for a segment, two predictions will

be generated. We then need to average these two

predictions to get the final score for this segment.

Nevertheless, it is difficult to make a precise deci-

sion on the weights used for averaging. Therefore,

we design a network stucture that allows two pre-
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Model Precision Recall Accuracy F1-score AUROC AUPRC

LSTM 0.8430 0.8619 0.8214 0.8523 0.9199 0.9516

DNABERT (w/o pre-train) 0.9854 0.9835 0.9814 0.9844 0.9966 0.9978

INHERIT (w pre-train) 0.9902 0.9835 0.9843 0.9868 0.9981 0.9987

Table 1: The benchmark test for LSTM, DNABERT and INHERIT. On the first two rows of this table, we compare the
performance of two different network structures: LSTM and DNABERT to show the feasibility of using DNABERT to identify
phages and the reason we use the DNABERT-based model. The last two rows show the difference in the performance of
DNABERT and INHERIT. One does not use any pre-trained models during training and the other uses two pre-trained models as
references respectively.

trained models to simultaneously participate in a

fine-tuning process and derive a prediction directly

for each segment (see Figure 1B). We use the ”Bert-

ForSequenceClassification” Function from Hug-

gingface’s Transformers (Wolf et al., 2020) to ob-

tain the ”logits” output from both models. After

concatenating the ”logits” outputs from the two

models together, we derive the final classification

results by a fully connected layer and output the

prediction with a value range of 0 to 1 by using the

Sigmoid function. The batch size of both training

and validation sets is 64, and the learning rate is

10-5 for both pre-trained models, without weight de-

cay and warmup. We also use early stopping based

on validation accuracy. This strategy has also been

used in the field of natural language processing, for

example in the paper presented by Tay, Yi, et al. in

2020 (Tay et al., 2020). We also set the patience to

3, i.e., if the best validation accuracy does not rise

in all 3 epochs, the training process will stop. The

random seed is set to 6.

Training set and validation set

For the fine-tuning part, we hope INHERIT can

learn more features to have better generalization

ability. Thus, for the bacterial dataset, we randomly

selected 260 bacteria sequences that were not in

the pre-training set and the test set, of which 217

bacteria sequences were divided as the training set,

generating 718879 segments, and the remaining 43

were used as the validation set, generating 188149

segments. However, for phages, we did not have

as many sequences to choose, so we selected the

phage sequences with higher quality from the pre-

training set. We chose 13217 phage sequences that

were not included in the test set by referring to

the phage sequences selected by Seeker and VI-

BRANT, of which 10574 phage sequences were

used as the training set, generating 718663 seg-

ments, and the remaining 2643 sequences were

used as the validation set, generating 186121 seg-

ments.

Test set

The test sets we used were one of the third-party

benchmark tests previously proposed by Ho et al.

(Ho et al., 2021) for virus identification methods,

called the RefSeq test set. Since our method just

identifies phages and not other viruses, we only

use data related to phages. The RefSeq test set

contains 710 bacteria sequences and 1028 phage

sequences. However, since there were 19 bacteria

sequences removed from RefSeq, we used rest of

them, including 691 bacteria sequences and 1028

phage sequences, to examine the performance of

INHERIT for phage identification. It should be

added that, in that article, the authors split the se-

quences in this test set into 1kb to 15kb segments

on average, and predicted the results and calculated

metrics in terms of segments to make a benchmark

test. However, since we consider that in applica-

tions, we want INHERIT to determine whether a

sequence is a phage or not, all the predictions in

our experiments are in terms of sequences.

We have posted the accessions of all the se-

quences used in each dataset and their sources ob-

tained in Supplement File 1.

3 Experiments

We mainly focus our experiments on the following

three research questions:

1 For Seeker, they used LSTM to solve this

problem. Thus, for LSTM and DNABERT,

which is more suitable for our research?

2 Can add pre-trained models help the final per-

formance of the deep learning models?

3 Compared to other methods, can our proposed

INHERIT perform better and be easier to use,

like VIBRANT and Seeker?
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In this section, we first answer the 3 problems

described above by the first 3 sections and explain

the features of INHERIT in Section D.

Figure 2: Figure 2 shows the difference between the network
structure of RNN-based model and the one of Transformer-
based model. Each hidden unit in the RNN-based model will
learn from the previous hidden units, while the Transformer-
based model will learn from every unit in the former layer
all together. This difference in network structure results in
different performance, and in most cases, the Transformer-
based model performs better.

3.1 Evaluation of different network

structures

Although Transformer-based pre-trained models

are currently the most popular, pre-trained models

based on other neural networks also exist. For ex-

ample, ELMo(Peters et al., 2018) is a bi-directional

LSTM-based pre-trained model. The proposal of

Seeker demonstrates the feasibility of LSTM for

this problem. However, no Transformer-based

model has been applied to this problem before.

Therefore, we first compare the performance of

LSTM and the DNABERT we used on this prob-

lem to verify that it is feasible to solve this problem

with DNABERT. For DNABERT, we used the same

hyperparameters as INHERIT but did not add the

pre-trained models. For the LSTM, we refer to

the network structure of Seeker: a one-way LSTM

structure with 5 hidden units. However, we used

a dense layer and output a prediction with a value

range of 0 to 1 by using the Sigmoid function, and

the training batch size was 64, which was slightly

different from Seeker. DNABERT used a learning

rate of 10-5, while LSTM used a learning rate of

10-3. Both models used the random seed 6, the

early stopping based on validation accuracy with

the patience of 3, and ran on the same number of

A100 GPUs. We measured their performance by

making predictions on our test set, and the predic-

tion procedure kept the same as INHERIT.

The evaluation metrics we chose are:

Precision =
TP

TP + FP

Recall = TPR =
TP

TP + FN

Accuracy =
TP + TN

TP + TN+ FP + FN

F1 − score =
2 · TP

2 · TP + FP + FN

and AUROC and AUPRC. In this paper, TP is the

number of phage sequences successfully identi-

fied as phages, while FP is the number of phage

sequences incorrectly identified as bacteria. TN

is the number of bacterial sequences successfully

identified as bacteria and FN is the number of bac-

terial sequences incorrectly identified as phages.

AUROC and AUPRC are calculated based on the

score (i.e. final predictions) of each model and the

real value (phages are recorded as 1 and bacteria as

0).

From the results (see the first two rows of Table

1) we can see that DNABERT performed signifi-

cantly better than LSTM. The results implied that

DNABERT and LSTM were both feasible for ana-

lyzing sequences, and DNABERT performed bet-

ter. This is because the Transformer-based model,

DNABERT, is more advantageous in terms of net-

work structure compared to the LSTM we built, i.e.,

RNN-based model, which we constructed based on

Seeker. This advantage is not only reflected in

our experiments, but also in other fields, such as

natural language processing, where Transformer-

based models tend to perform better than RNN-

based models. From the Figure 2, the RNN-based

model is a unidirectional structure that obtains in-

formation from the previous hidden units. The

Transformer-based model, however, is a fully con-

nected, bidirectional network structure. Therefore,

the RNN-based model can only obtain informa-

tion from the previous units during training, while

the Transformer-based model can obtain informa-

tion from all units in the previous layer in parallel,

which makes each hidden unit of the latter more

comprehensive, and therefore can have better per-

formance theoretically. Not only that, DNABERT

is a model with a 12-layer Transformer structure,

while our Seeker-based LSTM is a single-layer

unidirectional network. Therefore, DNABERT is

deeper and more complex, which is one of the rea-
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sons why it can perform better. Thus, we finally

chose DNABERT as the basis for INHERIT.

3.2 Use pre-trained models as the references

to integrate two types of methods

The database-based approach has been the tra-

ditional way of solving such problems. The

alignment-free approach, on the other hand, has

gained much attention with the popularity of deep

learning. As mentioned earlier, both of them have

their advantages and disadvantages, but they have

some complementary relationship with each other.

The two can be combined by the pre-train-fine-tune

paradigm. The pre-trained model learns features

on a large dataset, which is used as a reference for

downstream tasks to help train the model. In this

experiment, we explored whether INHERIT would

be improved compared to DNABERT with the help

of two pre-trained models.

We used DNABERT from the previous exper-

iment to compare with INHERIT. They set the

same hyperparameters, except that INHERIT in-

cluded two pre-trained models to help with training.

Based on the results (see the last two rows of Ta-

ble 1), the pre-training did help in the performance

improvement of the model. Although the differ-

ence between the two is not that large in terms

of results, this situation can be explained by the

following reasons: First, DNABERT has already

reached a high level of performance, and it would

become much difficult to continue improving its

performance. Second, although we used a pre-

trained model, we used checkpoints from an earlier

stage. If the pre-training process continues further,

the pre-training may bring more improvements to

INHERIT. Finally, our bacteria pre-trained model

could not include more samples of bacteria, and we

welcome more researchers to train pre-trained mod-

els with more samples, which will likely continue

to improve the prediction performance.

However, from the results, INHERIT improved

in most of the metrics compared with DNABERT,

which proved out that pre-training would help for

model prediction. When we fine-tuned the two pre-

trained models simultaneously, we could finally

obtain INHERIT, a unique integrated model that

used the pre-trained model as references.

3.3 Benchmark test among Seeker,

VIBRANT and INHERIT

In this section, we compared INHERIT with VI-

BRANT and Seeker, which are the representa-

Figure 3: Figure 3A shows the boxplot of the scores of
DNABERT and INHERIT for the bacteria samples in the test
set. It is used to show the difference in the distribution of
the predictions with or without pre-training. Figure 3B is the
density plot of the scores of DNABERT and INHERIT for the
phage samples in the test set. Since the recall of DNABERT
and INHERIT are the same, the box plot cannot show the
difference in the distribution of their predictions on phages.
Thus, we use the density plot.
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Model Precision Recall Accuracy F1-score AUROC AUPRC

Seeker 0.9264 0.8453 0.8674 0.8840 0.9382 0.9605

VIBRANT 0.9541 0.9903 0.9656 0.9719 0.9595 0.9521

INHERIT 0.9902 0.9835 0.9843 0.9868 0.9981 0.9987

Table 2: The benchmark results of Seeker, VIBRANT and INHERIT. We used the default codes of hyperparameters for each
model to run our test set. For VIBRANT, there were 3 sequences not given results by VIBRANT. Additionally, since we gave
1 as the score of predicting phages of VIBRANT while 0 as the score of predicting bacteria of VIBRANT, the AUROC and
AUPRC of VIBRANT would be slightly underestimated by using this strategy.

tives of database-based methods and alignment-

free methods respectively. Both of them have

proven themselves to be one of the best of their

respective types of methods. Since the input and

output of these three methods for phage identifica-

tion were inconsistent, we proposed several rules

to make them unified.

The input and output rules of Seeker were sim-

ilar to INHERIT, so we did not make any adjust-

ments to it. Seeker would first divide the target

sequence into 1000 bp-long segments and make

predictions for each segment. The score of each

sequence would be the average of its segments and

the threshold was 0.5 by default. However, since

VIBRANT is a multi-classifier and its outputs are

in segments, identified as ”organism”, ”plasmid”

and ”virus”, we need to propose some strategies to

make the results consistent.

First, we should define the prediction of VI-

BRANT for each sequence. We chose the pre-

diction with the highest frequency in the segments

to which the target sequence belonged as the pre-

diction for this sequence. If there were two or

more predictions with the highest frequency, we

would randomly select one. For example, if the

predictions of the segments of the target sequence

are: ”organism”, ”plasmid”, ”virus”, we will regard

the prediction of VIBRANT for this sequence as a

virus.

Then, since we only identified bacteria and

phage sequences, the sequence identified as ”or-

ganism” and ”plasmid” can be considered as ”non-

phage”. In VIBRANT, we equated ”non-phage”

with the category ”Bacteria”, scoring with 0, and

”virus” with ”Phage”, scoring with 1. However,

these strategies would cause the AUROC and

AUPRC of VIBRANT to be smaller. Additionally,

there were 3 bacteria sequences not given results

by VIBRANT and we did not include them in the

calculation of the metrics of VIBRANT.

All of the models were used the default codes

and hyperparameters to predict the test set. For

Seeker and INHERIT, they ran on the same num-

ber of A100 GPUs, and for VIBRANT, it ran 3

CPUs, i.e. 108 cores for predictions, because VI-

BRANT cannot be accelerated with CUDA. The

predictions of INHERIT, Seeker and VIBRANT

for all the sequences in the test set can be seen in

the Supplement File 2.

From the result (see Table 2), compared to

Seeker and VIBRANT, INHERIT performed very

outstandingly. Moreover, compared with Seeker

and VIBRANT, the accuracy of INHERIT was an

order of magnitude more precise. VIBRANT had a

slightly higher recall than INHERIT, which meant

VIBRANT may be more appropriate for identifi-

cation in cases where it is known that there is a

high proportion of phage sequences. However, in

such cases, INHERIT is also competent: we only

need to slightly lower the threshold of INHERIT to

make the recall rise, and more phages can be iden-

tified as well. Even if we used the default threshold

of 0.5, the recall of INHERIT did not differ much

from that of VIBRANT. INHERIT is well ahead of

Seeker and VIBRANT in F1-score, AUROC and

AUPRC. the prominence of F1-score proves that

INHERIT performs well enough when we use the

default parameters and is competent for most appli-

cation scenarios, which indicates that researchers

do not need to consider other special factors to

adjust the hyperparameters anymore. Second, the

high AUROC and AUPRC indicate that INHERIT

can better differentiate between phages and bac-

teria, which also reflects that researchers do not

have to worry about large fluctuations in recall and

precision due to threshold adjustment when they

want to adjust the threshold value to make their

research work more efficient. For example, when

we want to identify more phages, we can reduce the

threshold slightly, so that INHERIT can complete

its task without adding many misidentified bacteria.

INHERIT made the best performance on the rest of
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the metrics, which implied that it could be applied

in many more situations.

3.4 Analysis and summary

Based on our test results, it is not difficult to find

some advantages of INHERIT, which we will ex-

plain specifically with some phage samples.

3.4.1 INHERIT learns features from

pre-trained models

From the experiments in section 3.2, INHERIT is

less likely to misclassify bacteria as phages than

DNABERT which does not include any of the pre-

trained models. For example, NZ CP022939.1

has a score of 0.5624 in DNABERT, and since

we have a threshold of 0.5, it is incorrectly identi-

fied as a phage even though it scored just a little

bit over. However, INHERIT scores 0.4674 and

is successfully identified as a bacterium. Accord-

ing to our analysis, this phenomenon is common.

We drew a box plot of the scores of DNABERT

and INHERIT for the bacteria samples in the test

set (see Figure 3A). Based on this box plot, we

can see that the score of INHERIT for these bac-

terial samples tends more towards 0 compared to

DNABERT. The same phenomenon is observed for

samples where both models are misidentified. For

instance, NZ CP028859.1 has a score of 0.6386 in

DNABERT, but it drops to 0.5593 in INHERIT. In

addition, although the recall of INHERIT does not

rise compared to DNABERT, it does not mean that

the pre-trained models cannot help the model to

train the phages. The boxplot does not visualize

this change, but it is obvious from the density plot

(see Figure 3B) of the scores for the phage sam-

ples in the test set of both models. The high-score

samples (score > 0.9) of INHERIT are more than

those of DNABERT. These are solid evidence of

the helpfulness of pre-trained models as references

during the fine-tuning process of INHERIT.

3.4.2 INHERIT retains the strong features of

the alignment-free methods

From the paper of Seeker, we can find that

alignment-free methods (e.g. Seeker and Deep-

VirFinder) are not sensitive to the length of the

target sequence, but the performance of database-

based methods (e.g. VIBRANT and VirSorter) are

affected by the length. For the phage samples in the

test set, the phages for which VIBRANT formed an

error identification in this test are all above 100000

bp in length. From our boxplot of the length of the

Figure 4: The histogram of the length of the phage samples
in the test set. The lengths for most of the phages are lower
than 100000 bp. The length of one phage being longer than
100000 bp may be regarded as the longer one in the test set.

phage samples in the test set (see Figure 4), these

samples belong to the longer sequences. For ex-

ample, the longest sequence in the phage samples

was NC 042013.1, which reached 490380 bp and

even exceeded the sequence length of some bac-

teria. Because of its excessive length, VIBRANT

gave it high v-scores, but the score after normaliza-

tion became too low, causing VIBRANT to judge it

as a bacterium. Although there is a conflict on the

glance with the conclusion in the paper of Seeker

that VIBRANT performs worse for exceeded short

sequences, however, in fact, both findings show

the sensitivity of VIBRANT to the phage sequence

length: if the phage sequence is too short, then

it is difficult for this sequence to be compared to

get a high score; if the phage sequence is too long,

then it may be misidentified because the score af-

ter normalization is too low. However, since both

Seeker and INHERIT first split the sequence into

very short segments (1000 bp and 500 bp) for pre-

diction, they are not influenced by the length of

NC 042013.1 and they both successfully identify

it as a phage (0.6665 and 0.8383).

However, at the same time, there is also a lim-

itation of INHERIT: its recall is not optimal. It

still does not perform as well as VIBRANT when

we know that we need to predict a dataset with

a relatively large proportion of phage sequences.

Additionally, compared to DNABERT, the recall

of INHERIT does not get more improvement. We

assume that this may be because one of the pre-

trained models we used consists of only phage

sequences. Even though it also has millions of
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Model name Type Input Output Commands Threshold

Seeker Alignment-

free method

1000 bp-long

segments

Asssessed

over the

sequences

seeker fasta = Seeker-

Fasta(”sample.fasta”) predictions

= seeker fasta.phage or bacteria()

0.5

VIBRANT Database-

based method

3-15kb frag-

ments

Assessed over

the fragments

python3 VIBRANT run.py -i sam-

ple.fasta

None

INHERIT Integrated

method

500 bp-long seg-

ments

Asssessed

over the

sequences

python3 IHT predict.py –sequence sam-

ple.fasta –withpretrain True –model IN-

HERIT.pt –out sample out.txt

0.5

Table 3: Table 3 shows the features of Seeker, VIBRANT and INHERIT. To make our benchmark test fair, all models used the
default commands and hyperparameters to predict our datasets to simulate their performance in most application scenarios. All
commands can be found in the GitHub pages of the respective models.

Figure 5: The average time required for Seeker, DNABERT,
INHERIT, and VIBRANT to predict phage sequences and
bacteria sequences in the test set. The time of each model
implies their average running time (seconds) on predicting
each bacterium and phage. The average length of bacteria
samples on the test set is 3950500 bp, while the average length
of phage samples on the test set is 75800 bp. Since the average
running time of VIBRANT is too long, we cut off a part of
the y-axis.

segments, it is still relatively small compared to

the bacteria pre-trained model. However, from the

dataset and HMM Profiles prepared by VIBRANT,

we speculate that additional virus sequences can be

added to this pre-trained model, which may solve

the problem of the limited size and improve the

prediction performance, which will be one of the

areas of our future work.

3.4.3 Appropriate speed of prediction

Although INHERIT adds pre-trained models, this

does not make INHERIT take a too long time to

predict as the database-based approaches such as

VIBRANT. We calculate the average time required

for Seeker, DNABERT (i.e., without including any

pre-trained models), INHERIT, and VIBRANT to

predict phage sequences and bacteria sequences in

the test set. However, VIBRANT cannot predict

the entire bacteria test set at once, and the mini-

mum time required for VIBRANT to predict one

piece of them still reached 8 hours when we split

the bacterial dataset into 8 pieces on average. The

results (see Figure 5) show that VIBRANT’s predic-

tions take much more time than Seeker, DNABERT,

and INHERIT. Although INHERIT takes a longer

time to predict compared to Seeker, it is not much

higher than DNABERT. This indicates that the time

required for INHERIT prediction is mainly due to

the usage of the Transformer-based model: pre-

trained models do not have a large impact on the

time required for the prediction of the model. This

also shows that INHERIT can predict with high

accuracy while being able to end the prediction

of a large number of metagenome sequences in a

reasonable amount of time

3.4.4 Summary of results

We made several experiments and analyses to solve

our research problems. From Section 3.1, we found
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DNABERT performed significantly than LSTM.

That implies both LSTM and DNABERT show fea-

sibility in identifying phages, while DNABERT is

more suitable according to our task. That answers

Problem 1.

Moreover, we also built DNABERT without

any pre-trained models to compare with INHERIT.

The results from Section 3.2 show that INHERIT

achieves better performance on most of the met-

rics. We also made an analysis on Section 3.4.1 .

Those show INHERIT takes the performance a step

further from already good enough of DNABERT

with the help of pre-trained models. Those answer

Problem 2.

Most importantly, we tested the performance of

INHERIT compared with VIBRANT and Seeker

on a third-party benchmark dataset. Details of the

usage and their detailed information of all models

for this benchmark test are shown in Table 3. Since

VIBRANT gives the predictions assessed over the

fragments divided by the sequences, we proposed

several rules to obtain the predictions over the se-

quences for VIBRANT. All the models were used

the default hyperparameters and commands in our

test. From Section 3.3, INHERIT performs the

best in our test with an F1-score of 0.9868. Ac-

cording to our analysis in Section 3.4, INHERIT

can not only learn the knowledge from the pre-

trained models, which resembles database-based

approaches but retain the features of alignment-free

methods. This kind of integrated approach can just

take the appropriate time to predict the sequences,

and pre-trained models do not affect too much on

the speed. Therefore, INHERIT performs better

than VIBRANT and Seeker and it is easy to use.

Those answer Problem 3.

Hence, based on answering the research prob-

lems, we summarize our contributions as described

above.

4 Conclusions

In this work, we proposed INHERIT, an integrated

method that combines both database-based and

alignment-free approaches under a unified deep

representation learning framework. It uses two pre-

trained models as references and keeps the features

of alignment-free methods by the deep learning

structure. On a third-party benchmark dataset, we

compared the proposed method with VIBRANT

and Seeker, the state-of-the-art approaches. We

demonstrated that INHERIT could achieve a better

performance than the database-based method and

alignment-free method alone. INHERIT improved

the F1-score from 0.9719 to 0.9868. Meanwhile,

we proved that using pre-trained models can help

to improve the performance of phage identification

further.
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