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Abstract 

Background: The use of accelerometers in bio-logging devices has proved to be a powerful tool for the quantifica-

tion of animal behaviour. While bio-logging techniques are being used on wide range of species, to date they have 

only been seldom used with non-human primates. This is likely due to three main factors: the long tradition of direct 

field observations, a difficulty of attaching bio-logging devices to wild primates and the challenge of decipher-

ing acceleration signals in species’ with remarkable locomotor and behavioural diversity. Here, we overcome these 

aforementioned obstacles and provide methodology for identification of behaviours from accelerometer data of wild 

chacma baboons (Papio ursinus) in Cape Town, South Africa.

Results: We apply machine learning techniques to process complex accelerometer data, collected by bespoke 

tracking collars to quantify a range of behaviours (focusing on locomotion and foraging behaviour). We successfully 

identify six broad state behaviours that represent 93.3% of the time budget of the baboons. Resting, walking, running 

and foraging were all identified with high recall and precision representing the first classification of multiple behav-

ioural states from accelerometer data for a wild primate.

Conclusion: Our ‘end to end’ process—from collar design and build to the collection and quantification of accelera-

tion data—provides advantages over gathering data by traditional observation, not least because it affords data col-

lection without the presence of an observer which may affect an animal’s behaviour. Furthermore, our methodology 

and findings open new possibilities for the fine-scale study of movement and foraging ecology in wild primates, and 

in particular our baboon study population which is in conflict with people.
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Background

�e development of animal-attached devices that pro-

vide data on animal movement, behaviour or physiol-

ogy (without the need to directly observe the animal) 

has proved a powerful way to quantify animal behaviour 

[1, 2]. In particular, three-dimensional accelerometers 

have been used to reconstruct animal behaviour [1, 3]. 

�e use of accelerometers has been used most widely in 

studies of marine mammals and birds [3, 4], but recent 

advances in bio-logging technologies have made devices 

smaller, cheaper and longer-lasting, drawing interest 

from researchers working with a wider diversity of spe-

cies [5]. Behaviours identified from acceleration data can 

range from simple active–inactive behaviour [6, 7] to the 

dynamics of prey capture [8] or even the classification of 

‘internal state’ [9].

Bio-logging techniques are seldom used on non-human 

primates, probably due to the long tradition of direct 

observation by researchers in the field [10, 11, 12]. How-

ever, bio-logging can provide information on elusive or 

out of sight behaviours that are difficult to record [13, 

14] and reduce potentially negative outcomes associated 

with observer presence [15], or habituation to obser-

vation [16, 17]. To date, only a handful of studies have 

used accelerometer data to infer behaviours in primates, 

but these analyses have been limited to broad levels of 
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activity, rather than specific behavioural states (rhesus 

monkeys, Macaca mulatta [18], vervet monkeys, Chlo-

rocebus pygerythrus [19] and owl monkeys, Aotus azarai 

[20]). To our knowledge, the only study that has used 

accelerometers to identify specific behaviour was under-

taken by Sellers and Crompton [21] where they success-

fully identified locomotion events in captive red-ruffed 

lemur (Varecia variegata rubra). �erefore, unlike other 

terrestrial species [22–25] no acceleration ethogram (a 

catalogue of different acceleration footprints produced 

by different behaviour of an animal) exists for any non-

human primate.

An acceleration ethogram would be particularly useful 

to collect fine-scale behavioural data with high tempo-

ral resolution. Among many applications, such methods 

could be used to document situations where primates 

are in conflict with people in species ranging from chim-

panzees (Pan troglodytes) [26] to macaques (Macaca 

mulatta) [27] allowing us to quantify the occurrence of 

such events and their spatial–temporal dynamics. One of 

the most high-profile non-human primate–human con-

flict occurs with people and baboons in the Cape Penin-

sula, South Africa, with baboons raiding bins, properties 

or taking food directly from people themselves daily [28]. 

We are particularly interested in using acceleration data 

to document baboons’ behaviour in this environment to 

understand baboons’ behavioural responses to anthropo-

genic change, but in order to complete this later goal (not 

developed in the present work), we first need to define a 

reliable method to assess behaviour through acceleration.

A key challenge that is common to all studies involving 

the use of accelerometer data lies in the analysis of the data. 

�is is particularly pertinent for datasets that extend over 

weeks or even months, which are typically extremely large. 

To infer behaviour from acceleration data, researchers 

manually annotate the signal by expert interpretation [3], 

or ‘label’ behaviours in the acceleration signals, ideally using 

time-matched behavioural observation, to teach machine 

learning algorithms [29–31]. �e broad approaches can be 

applied across taxa, although the specific selection of vari-

ables is likely to vary with and reflect characteristic move-

ment modes, behavioural categories and habitat types of a 

particular species or population.

Here, we aim to describe a reliable ‘end to end’ pro-

cess to quantify major behavioural states from tri-axial 

acceleration, applied here to baboons, but potentially 

transferable to other primates or contexts. We equipped 

n = 10 adult male baboons in the Cape Peninsula, South 

Africa, with three axial accelerometers and used video 

footage of the collared baboons ranging in their natural 

environment to generate a labelled dataset. We then used 

random forest models [32] to match behaviour and accel-

eration in the dataset with a focus on the identification of 

locomotion gaits and foraging behaviour [12]. Finally we 

compared the model predictions to our observations to 

test its accuracy and validate our procedure.

Methods

�e general workflow of the methods is summarised in 

Fig. 1. All data processing and analyses were conducted 

in R (R version 3.2.2, R Core Team (2015). R: A language 

and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. URL https://

www.R-project.org/.), and all codes used are provided in 

Additional file  1 (Computation of acceleration variables 

for behavioural identification) [22, 30].

Study site and subjects

We studied the ‘Constantia’ baboon troop that ranges in 

a varied landscape at the edge of the City of Cape Town 

(S −34.0349, E 18.4156) (for more details see [33]) for 

30 days from mid-May to mid-June 2015. �e troop com-

prised 13 adult males, 25 adult females, 4 subadult males 

and approximately 30 juveniles of both sexes.

Acceleration data (Fig. 1a)

Ten adult males were fitted with SHOAL group in-house 

constructed collars (F2HKv2 collars, see Additional file 2, 

a Acceleration 

data from collars

b Video of 

collared subjects

e Time matching video 

and acceleration data

Labelled dataset

Validation dataset (40%) Training dataset (60%)

h Random Forest Models

d Analyses of 

acceleration data

c Processing of 

video data

g Model building 

f 

i Validation: test model precision and recall

Fig. 1 General workflow. Process for identification of behaviours 

from accelerometer data in a wild social primate

https://www.R-project.org/
https://www.R-project.org/


Page 3 of 11Fehlmann et al. Anim Biotelemetry  (2017) 5:6 

Baboon collar development). Each collar contained a tri-

axial accelerometer (‘Daily Diary’ sensor [31]) recording 

acceleration in each axis at 40  Hz which allows for the 

study of behaviours of most terrestrial animals whose fast-

est movements range between 0.5 s to 1 s. Baboons were 

cage-trapped in accordance with the local ‘baboon man-

agement team’-approved protocol before being sedated 

by a certified veterinary surgeon and fitted with the col-

lar. Collars weighed less than 3% of the body mass of the 

baboons and were approved for use by Swansea Univer-

sity Ethics Committee (Swansea University IP-1314-5). Of 

the 10 collars fitted to the baboons, one baboon dispersed 

before we were able to collect video data (see below) and 

so our sample is based on n = 9 individuals.

Video data (Fig. 1b)

Baboons were habituated to close (≤10 m) human obser-

vation and could thus be followed on foot by one or 

two observers without affecting their behaviour. Collar 

equipped individuals were video recorded using an AEE 

SD100 camera (PNJ SARL, Paris, France) for 15.3  h in 

total with a mean ±  standard deviation of 1.7 ±  0.96  h 

per individual.

Video processing (Fig. 1c)

Footage was time-stamped to allow synchronisation 

with the accelerometer, and the signal was annotated 

using Framework4 [31]. We labelled behaviours at time 

steps of one second, relevant for most behaviours (mean 

duration of one behavioural bout (±SD) =  33  s ±  62  s, 

median  =  12  s) [22, 34], leading to a sample size of 

33,619  s. �is created a dataset with n  =  18 labelled 

behaviours (Tables  1, 2) for a total of 9.3  h. All rare 

behaviours with less than 100  s of observations (repre-

senting in total 7.3% of their time budget) were discarded 

from further analysis, bringing the labelled sample down 

to 33,387  s, i.e. 9.2  h (on average 1.2  ±  1.3  h (SD) per 

behaviour and on average 1.0 ± 0.6 h (SD) per individual, 

Table 2). 

Analyses of acceleration data (Fig. 1d)

�ere are essentially two main types of variables that can 

be derived from tri-axial acceleration data that are rel-

evant to the identification of behaviour. �ese are static 

acceleration, which is dependent on gravity and describes 

the posture of the animal, and dynamic body accelera-

tion, which reflects the body movement of the animal. 

�ese variables can be measured in each of the three-

dimensional axes (with X for ‘surge’, Y for ‘sway’ and Z for 

‘heave’; Fig. 2). Data from the three axes can also be com-

bined to give a general index of body motion.

In order to match our behavioural sampling frequency 

(1  Hz) and identify behaviours at this frequency, we 

computed mean values over one second for a total of 25 

variables that describe both static (Fig. 1b) and dynamic 

(Fig. 1c) acceleration data across our individuals. �e list 

that follows summarises each of these variables, which 

are numbered 1–25 in round parentheses: (1–3) tri-axial 

static acceleration [1]; (4–5) pitch and roll [1]; (6) vecto-

rial dynamic body acceleration (VeDBA); (7) smoothed 

vectorial dynamic body acceleration (VeDBAs) [35, 

36]; (8–10) tri-axial partial dynamic body acceleration 

(PDBA) [1]; (11–13) the tri-axial PDBA-to-VeDBA ratio. 

In addition to these descriptive statistics, we processed 

the dynamic part of the acceleration further by comput-

ing its (14–16) tri-axial power spectrum density (PSD); 

(17–19) maximum frequencies associated with the tri-

axial PSDs; (20–22) the second maximum frequencies 

associated with the tri-axial PSDs; (23–25) the associated 

frequency for each axis. We provide a full description for 

each of these variables (1–25), in turn, below.

(1–3) �e static (st) component of acceleration for each 

axes stX, stY and stZ is directly influenced by the ori-

entation of the logger with respect to gravity and there-

fore indicative of the posture of the animal [1, 37]. �e 

tri-axial static acceleration was calculated from the raw 

acceleration with a running mean of 3  s [38]. From the 

resulting 3D-static acceleration, the angles (4) pitch and 

(5) roll were calculated, converting the 3D orientation 

Table 1 Ethogram of baboon behaviours

Behaviours observed in 9.3 h of video data for n = 9 baboons. The behaviours 

selected for further analysis are highlighted in italics; see Table 2 for details of 

sample sizes

Behaviour Description

Aggressive display Threatening body postures (stare, open mouth) 
accompanied by ground slaps or shaking 
vegetation with forelimbs

Body shake Fast whole body movement from side to side

Climbing downward Motion downwards from trees or buildings

Climbing upward Motion upwards in trees or buildings

Complex locomotion Pivoting/spinning while walking

Foraging Actively handling or consuming food

Grooming (actor) Picking at or looking through fur of self (auto-
grooming) or conspecific (allogrooming)

Grooming (receiver) Being groomed by a conspecific

Inspecting female Touching and/or inspecting female genitals

Jumping Jumping off a high feature such as a building 
or post

Mating Mounting and/or copulating with female

Resting (lying) Lying down in any postures (dorsal, ventral or on 
the side)

Resting (sitting) Sat motionless

Running Moving on the ground with galloping gait

Scratching Self-scratching with hind legs

Standing Stationary in quadrupedal posture

Walking Moving on the ground with a walking gait
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towards gravity (measured in g), to two angles (in 

degrees) using the plane and upright position as Ref. [1]. 

Pitch was calculated as the arcsine of stX and roll as the 

arcsine of stY [1].

Tri-axial dynamic body acceleration (DBA), which rep-

resents overall body movement [1, 35], was calculated as 

the difference between raw and static acceleration from 

each axis. We note that centripetal acceleration can also 

affect the acceleration signal (e.g. when an animal ‘pulls g’ 

by cornering); however, this is unlikely to be a main factor 

affecting the acceleration signal in baboons. (6) �e vec-

torial dynamic body acceleration (VeDBA) was computed 

using the dynamic components of the signal to assess the 

‘activity level’ of the individual, bringing the three axes (x, 

y, z) together as given by Eq. 1.

To allow for a general estimation of activity, reducing 

the impact of short high-amplitude burst of activity, we 

(7) smoothed the VeDBA using a running mean of 3  s, 

that is, ‘smoothed VeDBA’. (8–10) Partial dynamic body 

acceleration [1] was also calculated in each different axis 

in order to describe the amplitude of the movement, cal-

culated as the absolute dynamic acceleration values for 

each axis (11–13). �e PDBA-to-VeDBA ratio provided 

an estimation of contribution of each axis to the VeDBA, 

calculated by the ratio of PDBA to the VeDBA in each of 

the three axes.

To characterise the oscillations in the dynamic body 

acceleration for each axis, we computed (14–16) power 

(1)VeDBA =

√

X2 + Y 2 + Z2

spectrum densities (PSDs) and their associated frequen-

cies using Fourier analysis [21, 39]. Fast Fourier analysis 

decomposes the signal into frequencies and amplitude. 

It can therefore be used to indicate at which frequency 

the signal varies the most, providing an overview of large 

body movements and ignoring signal associated with 

small body movements. For each second, we defined (17–

19) maximum PSD and (20–22) second maximum PSD 

together with their (23–25) associated frequencies, at an 

interval of 3  s (1  s after and 1  s before, this in order to 

sample enough oscillations to define a frequency even for 

slow cyclic behaviour such as walking).

Time matching (Fig. 1e) and building datasets (Fig. 1f)

Acceleration variables were time-matched with our 

video-based behavioural data to obtain a labelled data-

set. Of this dataset, 60% was used as a training dataset 

(20,111 s, 5.6  h) and 40% as a validation dataset which 

we later used to test the success of our model predictions 

(13,276 s, 3.7 h, Fig. 1e).

Model �tting via random forest models (Fig. 1h; Fig. S1)

To be able to assign behaviours according to the 25 

descriptive variables (see above), we used random forests. 

Random forests are based on classification trees and, in 

summary, build many trees using a random subset of the 

data each time, and a random subspace of variables for 

each classification step. �anks to the great number of 

iterations (here 500) and two ‘layers of randomness’ [40], 

this model has the advantage of being more powerful 

Table 2 Observed baboon behaviours and sample sizes

Sample sizes (frequency of observed behaviour, seconds) for behaviours observed during the training sample (T.S.) and the validation sample (V.S.) video footage, for 

each baboon (M). Behaviours selected for further analysis are highlighted in italics and descriptions of those behaviours are provided in Table 1

M1 M2 M3 M4 M5 M6 M7 M8 M9 Total Event T. S. V. S.

Aggressive display 0 0 15 0 0 0 0 0 0 15 1 0 0

Body shake 0 7 3 0 0 0 1 2 1 14 9 0 0

Climbing downward 0 7 14 0 0 0 0 0 0 21 2 0 0

Climbing upward 17 12 5 0 0 0 0 0 0 34 3 0 0

Complex locomotion 0 0 12 0 0 0 0 0 0 12 1 0 0

Foraging 936 778 2793 0 1085 699 2097 849 1025 10,262 220 5590 3816

Grooming (actor) 0 212 0 0 0 0 0 0 0 212 4 118 94

Grooming (receiver) 0 544 0 0 0 0 0 0 6 550 8 324 226

Inspecting Female 0 9 0 4 8 0 4 0 0 25 4 0 0

Jumping (post/fence) 4 0 0 0 0 0 0 0 0 4 2 0 0

Mating 5 10 19 0 8 0 3 0 9 54 8 0 0

Resting (lying) 0 0 189 0 47 0 1355 0 133 1724 17 1005 711

Resting (sitting) 590 2449 2732 741 1045 1032 2099 322 689 11,699 141 6743 4615

Running 73 25 13 20 0 0 65 0 2 198 25 114 84

Scratching 3 35 1 0 0 0 0 3 11 53 11 0 0

Standing 347 306 90 0 91 63 278 39 804 2018 186 1185 790

Walking 1021 1622 841 352 321 541 745 320 961 6724 412 3875 2529
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than the classical classification trees, limiting the risk of 

overfitting and of being more able to cope with unbal-

anced dataset [40].

�e first step of the random forest is to sample the ini-

tial training set randomly with replacement (such that 

one observation can be drawn many times), resulting 

in several bootstrapping sets with the same number of 

observations as the initial training set (Additional file 3: 

Fig. S1). Due to replacement, not all observations are rep-

resented in every bootstrapping set.

From one of these artificial sets of data, the model 

builds one classification tree which aims to classify the 

full set of observations into different classes (here, behav-

iours) by building a set of hierarchical decision rules 

based on the given variables (Additional file  3: Fig. S1 

[32]). At each node (a set of observations, represented 

by a circular graph when two branches split in Addi-

tional file 3: Fig. S1), the model will aim to split this set 

of observations into two smaller and ‘purer’ subsets, i.e. 

each subset contains a fewer number of different classes 

(here, behaviours). A subset is considered as pure when it 

only contains one kind of behavioural classes. �is purity, 

or its absence, is quantified with the Gini impurity index 

(Eq. 2) which will tend to zero when only one class is rep-

resented in a subset.

where n is the number of behavioural classes and pi is 

the proportion of each class in the set of observations. At 

each step of the classification, the model uses a random 

selection of the total variables available and tests each of 

them with different thresholds to define a rule that will 

minimise the Gini index in the two descendent subsets 

(Additional file  3: Fig. S1). �is process continues until 

(2)G =

n∑

i=1

pi(1 − pi)

Fig. 2 Schematic of baboon with a collar and acceleration data example. a Schematic of a male baboon wearing the GPS/acceleration collar. The 

three axes measured by the accelerometers are indicated by the arrows. b Example of labelled acceleration signal from three axes. Sections are 

coloured (and labelled) according to the observed behaviours (upper section) and predicted behaviours (lower row)
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no more rules can be found to split the dataset into purer 

subsets. �e local importance of a variable is calculated 

by the index of the parent set of observations minus the 

Gini indexes of the two descendent subsets. We classified 

the variables according their overall importance and per-

formed Kruskal–Wallis tests to compare the mean of the 

most discriminating variables according to the different 

behaviours.

When using random forests, the model will simply 

grow many trees, each built from a different random 

portion of the training set (60% of our initial dataset). 

Because the advantages of random forests come from 

the high number of iterations, we built 500 trees. We 

tested post hoc the minimum number of trees required 

to obtain the best classification and found that the best 

results were reached above 300 trees (Additional file  4: 

Fig. S2).

Model validation (Fig. 1g, i)

Once we built our model, we used it to predict the behav-

iour of our validation dataset. All analyses were con-

ducted in R environment (version 3.2.2) with the package 

random forest [41]. Each time unit is therefore classified 

according the 500 trees, each assigning one behavioural 

class to the time unit, ending in 500 predictions (Addi-

tional file  3: Fig. S1). �en, the most frequent predic-

tions across all trees were selected as the final prediction 

(Additional file  3: Fig. S1). We then compared the pre-

dicted behaviour with the observed behaviour and built a 

confusion matrix to assess the recall and the precision of 

the model [30] (Fig. 1h) as described in Eqs. 3 and 4:

where TP is true positive, TN true negative, FP false posi-

tive and FN false negative for each behaviour.

Results

Acceleration ethogram (model �tting)

Of the variables calculated from our acceleration data, 

static acceleration on all axes, X, Y and Z (which pro-

vides information on the ‘posture’ of the baboon) were 

the most important for distinguishing behaviours, stX, 

stY, stZ being ranked 1st, 6th and 13th and pitch and 

roll being ranked 2nd and 12th in our model (Fig.  3a). 

�e static acceleration for the X axis (stX) were differ-

ent between resting (sitting, median [1st and 3rd quar-

tile]: 0.62 g [0.50 g–0.73 g], Additional file 5: Table S1) and 

behaviours in standing postures such as locomotion and 

foraging (median [1st and 3rd quartile]: 0.01 g [−0.29 g–

0.23  g], Additional file  5: Table S1, Kruskal–Wallis Chi-

squared = 20,264.87, df = 7, p value <0.001, Fig. 3b).

(3)Precision = TP/(TP + FP)

(4)Recall = TP/(TP + FN )

Power spectrum densities (PSDs) were the next most 

important class of variables, with four out of six of these 

measures ranked in the top ten. �e PSD2 on the X axis 

and PSD1 on the Z axis was, as expected, the highest for 

running behaviour (PSD1Z median [1st and 3rd quar-

tile]: 0.5870 [0.2614–0.6792]; PSD2X median [1st and 3rd 

quartile]: 0.0405 [0.0220–0.0586], Additional file 5: Table 

S1), indicating high-amplitude movements happening 

on a regular frequency. Walking behaviour was repre-

sented by intermediate values for these variables (PSD1Z 

median [1st and 3rd quartile]: 0.0157 [0.0092–0.0268]; 

PSD2X median [1st and 3rd quartile]: 0.0025 [0.0043–

0.0075], Additional file 5: Table S1) while foraging behav-

iour, with low-amplitude movements was represented 

with lower values (PSD1Z median [1st and 3rd quartile]: 

0.0008 [0.0004–0.0016]; PSD2X median [1st and 3rd 

quartile]: 0.0007 [0.0004–0.0016], Additional file 5: Table 

S1). Overall we found significant differences between the 

three behaviours on these variables (Kruskal–Wallis Chi-

squared 22,773.87, df = 7, p value <0.001, Fig. 3). In con-

trast, the ratio and frequency measures did not contribute 

much to the model’s ability to classify behaviours (Fig. 3).

Model accuracy (validation procedure)

�e random forest model reached an average precision 

of 88.3% (±8.5%) and a mean recall of 70.7% (±29.3%) 

across all behaviours (Fig.  3c; Table  3). �e recognition 

(or extraction) of foraging, resting, running and walk-

ing shows a high precision and recall (>85%), while lying 

and grooming (both when focal is actor and receiver) 

have high precision (>85%) but lower recall (>60% for 

lying and grooming [receiver] and >20% for grooming 

[actor]); the missing instances being principally classi-

fied in other low-amplitude behaviours (Fig. 3c; Table 3). 

�e extraction of standing behaviours was poor (recall: 

38.9%, precision: 67.9%), and instances of standing that 

were misclassified tended to be labelled as foraging and 

resting.

Discussion

We have successfully used acceleration data to identify 

six behaviours performed by adult male chacma baboons. 

�ese behaviours represented 93.3% of the time budget 

recorded from video observations and the first ethogram 

from acceleration data for a wild non-human primate. 

Behaviours relevant to raiding behaviours (foraging, run-

ning, walking and resting), which are important with 

respect to the study population [33], were successfully 

identified with good precision and recall (>85%). We dis-

cuss the variables calculated from our accelerometer that 

contributed to identification of these behaviours in turn.

Static acceleration and the smoothed vectorial 

dynamic body acceleration (VeDBA) were among the 
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most important variables and were found to be differ-

ent between active and inactive behaviours. Differentiat-

ing between active and inactive behaviours is commonly 

done with variables such as VeDBA or VeDBAs [1, 7, 

18, 24]. Interestingly, static acceleration metrics are not 

always included as discriminators in machine learn-

ing algorithms [30] and so our findings suggest that this 

could be an important factor for other primate research-

ers to include in their models.

�e performance of our model varied when it came 

to the different inactive behaviours, while resting was 

extracted with a high recall and precision, standing 

behaviour was less accurately described. A standing pos-

ture is adopted within a range of other behaviours (dur-

ing locomotion, or foraging, for example), and this may 

explain the difficulty in identifying resting or vigilance 

when standing, particularly when other activities are exe-

cuted slowly. Differentiating non-active behaviours has 

proved difficult in other species too; for example, in vul-

tures static acceleration was not useful for differentiating 

between different types of passive flights behaviour, such 

as gliding, thermal soaring or slope soaring [25]. �is 

problem is therefore not unique to the baboons and sug-

gests there is an inherent problem in using acceleration 

data to classify behaviours which involve subtle move-

ments and especially when these movements are adopted 

with similar postures [25]. Nevertheless, the identifica-

tion of a broad inactivity category is likely sufficient for 

most researchers and questions. For instance, the identi-

fication of inactivity could enable us to identify habitats 

Fig. 3 Random forest model results. a Variable importance for the identification of baboon behaviour. Variables are ordered according to the mean 

decrease in Gini index (see “Methods” for more details). b Density histogram plots for major behaviours as a function of mean static acceleration, 

stX, which scored the highest mean decrease in the Gini index (i.e. was most important to classification of behaviours). c Precision and Recall for all 

identified behaviours

Table 3 Confusion matrix

Comparison of the predicted behaviour (from our model) and observed behaviour (from video recording) showing the quality of extraction of di�erent behaviours. 

Observed behaviours are organised in columns and predicted behaviours are in rows. values in italics represent the true positives correctly classi�ed by our model 

Foraging Grooming 
(actor)

Grooming 
(receiver)

Resting 
(lying)

Resting 
(sitting)

Running Standing Walking Tot. pred.

Foraging 3805 14 8 38 100 0 240 122 4327

Grooming (actor) 0 12 0 0 0 0 1 0 13

Grooming (receiver) 1 3 125 0 6 0 3 0 138

Resting (lying) 5 0 25 490 9 0 11 0 540

Resting (sitting) 116 28 42 134 4472 0 181 4 4977

Running 0 0 0 0 0 66 1 4 71

Standing 56 20 5 30 60 0 369 4 544

Walking 83 0 0 1 11 7 44 2524 2670

Tot obs. 4066 77 205 693 4658 73 850 2658 13,280
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that can be used as refuges. More generally, in the case 

of our baboon research in the Cape Peninsula, identifying 

inactivity before and after a raiding event, or short inac-

tive pauses while travelling, could indicate periods of vig-

ilance and can overall be used to explore how and when 

baboons adopt ‘sit and wait’ raiding (foraging) strategies 

[12]. Similarly, identification of inactivity can provide 

interesting insights into energy expenditure and recovery 

time in other systems [24, 19, 42].

Locomotion (walking and running) were the best 

identified behaviours by our model (92% of the misclas-

sifications occurring in running were composed of walk-

ing—either running segments classified as walking or 

walking segments classified as running). �is efficiency 

in the recognition of locomotion has been observed in 

other species and reflects a regular signal in the heave 

channel [1, 3, 23] and/or frequency of the general accel-

eration [1, 21, 43]. �is result is also consistent with the 

importance of the 1st maximum power spectrum density 

peak in the Z channel (PSD1Z) describing the amplitude 

of the sinusoidal pattern during locomotion on the Z axis 

(Fig.  2). Because locomotion is generating the patterns, 

we frequently describe by the use of GPS data and math-

ematical models of animal movement [44–46], accu-

rately describing locomotion phases versus sedentary 

phases via acceleration can allow the user to correct GPS 

errors and investigate movements which are happening 

between fixes. Combining GPS and acceleration data will 

therefore increase the reliability of both data streams that 

are at the basis of burgeoning field of movement ecology 

[44]. In the context of our larger programme of research 

on baboons, locomotion’s precision and recall will enable 

us to explore the dynamics of forays into urban areas by 

raiding baboons [12], such as the speed of the approach 

or the sinuosity of trajectories [46].

Our model was extremely successful at extracting 

foraging, despite the fact that a wide diversity of ‘types’ 

of foraging behaviours are exhibited by baboons [47]. 

Indeed, our model successfully extracted most foraging 

events (recall  =  93.5%) which is particularly important 

for the study of a short lived behaviour such as raid-

ing behaviour [12]. Foraging in baboons is almost never 

performed in isolation of other behaviours, as it can 

take place while being stationary (sitting, or standing, 

i.e. stationary foraging [48]) or while walking (i.e. travel 

foraging [48]). Interestingly, the 2nd maximum power 

spectrum density peak in the X axis (PSD2X), the fourth 

most important variable, was important for quantify-

ing a sinusoidal pattern in the secondary amplitude. As 

such, PSD2X was important for identifying behaviours 

of smaller amplitude that co-occur during other activi-

ties of higher amplitude such as chewing (foraging); 

which can occur while walking, for example (Fig. 2). We 

therefore suggest that this variable can be of interest for 

accelerometer users looking at the foraging ecology of 

primates or species sharing a similar foraging behaviour. 

Indeed, researchers have had success identifying foraging 

in other terrestrial species [23, 43, 49, 50], in birds using 

location clues, for example, from GPS or pressure sensors 

[8, 39, 51] and in sea mammals using, for example, man-

dible accelerometers [52, 53]. �is suggests that ‘complex’ 

foraging behaviours in fact lend themselves to identifica-

tion from acceleration (and other bio-logger) signals, and 

offers a useful avenue for further research.

While the main focus of our study was locomotion and 

foraging behaviours, we also identified grooming from 

our collar data. �e maintenance of social affiliation  by 

baboons is mostly mediated through grooming, espe-

cially for females [12, 11, 54]. As such, grooming has been 

studied in various contexts across primates [54], and it 

constitutes one of the most used metrics to build social 

networks [54, 55]. Grooming behaviour is traditionally 

identified by direct observation only and is therefore 

limited by the number of observers available to witness 

it and their ability to recognise individuals’ identity, and 

thus recording only one or a few interactions at a time. 

We were able to identify grooming with  >60% of recall 

and precision when the focal individual was receiver and 

>20% when the focal individual was the actor. Further 

work would be needed to confirm this extraction since 

our model included grooming events from two baboons 

with few independent events, which could have led to 

overfitting in the model. Because adult males rarely if 

ever groom one another, by collaring females that spend 

a high proportion of their time grooming each other [56], 

it is likely that grooming behaviour (active and passive) 

could be resolved with greater confidence (since the dyad 

would be stationary and grooming one another). To iden-

tify even a fraction of grooming events remotely using 

tracking collars could transform our ability to explore 

the spatial–temporal dynamics of social relationships in 

baboons (and other grooming species) [57]. In the future, 

grooming data identified through acceleration would 

afford researchers opportunity to comprehensively inves-

tigate questions relating to ‘biological market theory’ [56, 

58], or enhance our understanding of decision processes 

in movements and leadership [59, 60], for example.

Conclusion

Overall our study shows that the use of accelerometers 

can document foraging strategies and social behaviour 

in wild primates. Such methodology provides advantages 

in gathering data with limited direct observation [15, 16] 

and offers an alternative to habituation of wild primates 

[17]. We hope that researchers interested in primate 

behavioural ecology will be inspired by the ‘end to end’ 
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process that we have described here. �is paper offers a 

full protocol—from collar design and construction to the 

identification of behaviours from accelerometers—for 

any researcher working with a medium- to large-sized 

primate. We hope that researchers in the fields of both 

primatology and biotelemetry make the most of these 

exciting new opportunities.
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