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Various indicators of observed-theoretical spectrum matches were compared and the resulting

statistical signi¯cance was characterized using permutation resampling. Novel decoy databases

built by resampling the terminal positions of peptide sequences were evaluated to identify the

conditions for accurate computation of peptide match signi¯cance levels. The methodology was
tested on real and manually curated tandem mass spectra from peptides across a wide range of

sizes. Spectra match indicators from complementary database search programs were pro¯led

and optimal indicators were identi¯ed. The combination of the optimal indicator and permuted

decoy databases improved the calculation of the peptide match signi¯cance compared to the
approaches currently implemented in the database search programs that rely on distributional

assumptions. Permutation tests using p-values obtained from software-dependent matching

scores and E-values outperformed permutation tests using all other indicators. The higher
overlap in matches between the database search programs when using end permutation com-

pared to existing approaches con¯rmed the superiority of the end permutation method to

identify peptides. The combination of e®ective match indicators and the end permutation

method is recommended for accurate detection of peptides.
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1. Introduction

Mass spectrometry discovery has revolutionized proteomic research enabling the

characterization and quanti¯cation of hundreds of peptides from samples ranging in

size and complexity.1–6 In tandem mass spectrometry (MS/MS) experiments, the

peptides present in the sample can be identi¯ed by sequence database search pro-

grams.7,8 These programs attempt to match the fragment ions from the observed

spectra with the fragment ions from theoretical spectra generated from the known or

predicted peptide sequences in the target database. Based on the number of matched

fragment ions between observed and theoretical spectra the database search pro-

grams calculate scores that re°ect the quality of the match between both spectra.

Subsequently, these scores are converted into a measure of the statistical evidence

supporting the match.9,10

Two related components, the match score and the statistical signi¯cance assigned

to the score (e.g. cross-correlation score and Weibull p-value in Crux; and hyperscore

and E-value in X! Tandem), in°uence the capability to detect peptides. Database

search software di®er in the algorithms and assumptions to assess the observed-

theoretical spectra match leading to di®erent matching score indicators (e.g. number

of matched fragment ions, cross-correlation) and di®erent methods to assess statis-

tical signi¯cance of the match. The comparative e®ectiveness of the scores to capture

the match has not been evaluated.

One commonly used approach to convert a speci¯c observed-theoretical spectra

match score into a statistical signi¯cance value encompasses ¯tting a speci¯c

parametric distribution to all the match scores attained from the target database11,12

or from decoy peptides generated from the target database matches.13 Alternatively,

signi¯cance values can be obtained in a nonparametric fashion from the decoy

peptides.14 A previous comparative study of the database search programs demon-

strated that, for some peptides, detection using signi¯cance value estimation

approaches implemented in the database search programs remains challenging.7 This

situation can be traced back to the low signi¯cance levels obtained with existing

approaches particularly for short peptides under 15 amino acids in length.7

The challenges of peptide identi¯cation using existing approaches include false

negatives due to match signi¯cance levels that do not surpass the minimum detection

threshold, false positives due to incorrectly spectra match surpassing the minimum

threshold, and missed peptides due to sample complexity leading to multiple pep-

tides present in the single tandem spectrum (also known as chimeric spectra).7 The

bias introduced by the existing approach has major impact in small peptides. These

peptides are unlikely to be identi¯ed at high signi¯cance levels by most database

search programs due to limited number of fragment ions to accumulate high

matching scores.7,15,16 The programs assign low signi¯cance levels to tandem match
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spectra that contain incomplete fragmentation (i.e. missing signal peaks) and noise

peaks. This is because these spectra can result in peptide matches with low scores

that cannot be di®erentiated from other random matches.7,17 Likewise, increases in

the e®ective search database size (such as those rising from the consideration of post-

translational modi¯cations) can reduce the sensitivity of the algorithms to detect

peptides at accurate signi¯cance levels.15

In the target–decoy approach, observed spectra are matched to theoretical

spectra from reverted or reshu®led sequences from the target database together with

the original target sequences.18 The target–decoy approach aims at avoiding strin-

gent signi¯cant threshold to control for multiple testing across peptides.19,20 How-

ever, for small peptides, most decoy database construction methods produce few

spectra that have more extreme matches, arti¯cially in°ating the signi¯cance levels.

Other decoy databases construction methods that exploit the capability of resam-

pling approaches to generate null hypothesis while controlling the experiment-wise

error rate should be evaluated.

The aims of this study were: (1) to compare indicators of observed-theoretical

spectra matches and characterize the accuracy of the resulting statistical signi¯cance

using permutation testing, (2) to develop novel decoy databases including resam-

pling of terminal positions in the peptide sequence and identify the conditions for

accurate computation of match signi¯cance levels, and (3) to demonstrate the ap-

plication of the novel decoy approach using popular database search programs.

1.1. Theoretical-observed spectra match indicators

Table 1 lists the observed-theoretical spectrum match indicators evaluated and

corresponding database search programs: Crux (version 1.37),21 OMSSA (version

2.1.8),12 and X! Tandem (version 2013.02.01.1).11 These programs were selected

because their open source nature allowed the retrieval of intermediate match indi-

cators through modi¯cation of the source code.

Table 1. Crux, X! Tandem, and OMSSA match indicators used.

Programs Indicators

Crux Number of matched b- and y-fragment ions

SEQUEST preliminary (Sp) score
Cross-correlation (XCorr) score

DeltaCn (�Cn) score

p-value: computed from the Weibull distribution using 103 XCorr scores

X! Tandem Number of matched b- and y-fragment ions

Convolution score

Hyperscore
E-value: computed assuming hypergeometric distribution for hyperscores

OMSSA Number of matched b- and y-fragment ions
Lambda or Poisson mean

Poisson p-value

E-value: Poisson p-value multiplied by e®ective database size

Identi¯cation of best indicators of peptide-spectrum match
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In X! Tandem the hyperscore is computed by multiplying the factorial of the

number of matched b- and y-fragment ions with the convolution score (dot product of

the intensities of the fragment ions common between observed and theoretical

spectra). The X! Tandem E-value is estimated from the distribution of hyperscores

from all the matches of a spectrum in the database. OMSSA uses a Poisson distri-

bution with a mean that is function of the fragment ion tolerance, number of mat-

ched fragment ions, and neutral mass of the precursor. The Poisson probability is

calculated using the number of matched ions and Poisson mean. This probability is

then used to estimate the E-value by multiplying the Poisson probability by the

e®ective database size for each spectrum. For the Sp score, Crux takes into account

the intensities of the shared fragment ions between the observed and theoretical

spectra and the consecutive number of matched b- and y-ions. For the XCorr score,

the intensities of the matched ions between observed-theoretical spectra are summed

and adjusted using the XCorr scores calculated from a range of shifts in m=z values.

Database search speci¯cations were: (1) mass type: monoisotopic; (2) fragment

ion charge: default values; \mz-bin-width": 0.3 (Crux); (3) no post-translational

modi¯cations; (4) enzyme: \whole protein" (OMSSA) or custom cleavage site to

avoid cleavage of the provided neuropeptide database (Crux and X! Tandem); (5)

precursor ion tolerance: 1.5 Da; (6) fragment ion tolerance: 0.3 Da (OMSSA and X!

Tandem); and (7) OMSSA \ht": 8 to consider only those database peptides that had

one or more fragment ion matching including one of top 8 highest fragment ion peaks

in the observed spectrum. The selected speci¯cations follow program settings pre-

viously used to evaluate the ability of the database search programs to identify

peptides.7

1.2. Observed spectra, target and decoy databases

The performance of alternative indicators to assign the statistical signi¯cance to

spectra matches was investigated on a murine linear ion trap (LTQ) tandem spectra

dataset.22 Spectra and peptide identi¯cation were obtained from the SwePep data-

base (http://www.swepep.org).22 The tandem spectra dataset consisted of 80 ob-

served tandem spectra from neuropeptides without post-translational modi¯cations.

The majority of the peptides (92%) had precursor charge states þ2 or þ3. The target

database included the 80 peptides with observed spectra studied and all other pep-

tides that could have been produced from the known 95 mouse prohormones in-

cluding those that produced the 80 peptides studied. The exhaustive list of target

peptides was obtained from the PepShop23 database (http://stagbeetle.animal.uiuc.

edu/pepshop) including information from the SwePep, UniProt,24 and NeuroPred.25

To understand the performance of the software under best conditions, optimal

spectra (that contains all expected b- and y-fragment ions) were simulated for the

peptides in the target database using corresponding precursor charge states. For

each spectrum, all b- and y-fragment ions with þ1 charge state were simulated

with uniform intensity. Additional peaks due to loss of a single ammonia or water

M. N. Akhtar et al.
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molecule were simulated when the b- or y-ion sequence contained water or ammonia

losing amino acids.7 Due to the presence of all expected fragment ions, the optimal

spectra should be detected by the database search programs with high con¯dence.

The characterization of the spectral match signi¯cance is based on various indi-

cators (such as the number of matched ions, Sp score, and E-values) obtained from a

decoy database generated using permutation.26 A single target database was created

for all database search programs by selecting all peptides within 12 Da (corre-

sponding to 3m/z ion tolerance with a þ4 charge state) of the precursor mass for

each tandem spectrum. This mass limit results from the database search programs

preselecting candidate peptides based on peptide mass and user-de¯ned mass tol-

erances. Permutations of each target candidate sequence residues at the N- and C-

terminal ends were used to populate the decoy database. The N- and C-terminal ends

(one, two, or three positions on both peptide ends) in the target sequences were

exhaustively substituted with all mono-, di-, or tri-mer combinations of the 19

standard amino acids to generate decoy peptides. Leucine and isoleucine were treated

as the same amino acid in all permutations and comparisons between candidate and

permuted sequence. The substitutions only at the terminal ends kept the internal

amino acid composition of the target peptides unchanged in the resulting decoy

peptides. This terminal permutation strategy generated decoy peptides that were

more similar to their target peptides yet disrupted the pattern of b- and y-fragment

ions that are used in matching the observed and theoretical spectra. The terminal

regions were selected because the ions from the terminal regions had better sensi-

tivity than the ions from the central region of peptide.

For the accurate assessment of signi¯cance levels, the terminal permutation

strategy generates informative reference null distributions that are constituted by

truly random peptides (di®erent from target peptides). The exact permutation test

controls the probability of type I error below a selected alpha level due to the

consideration of all random sequences for a target peptide of given amino acid length.

However, an exact test can generate sizeable decoy databases and handling such

large databases remains challenging due to limitation of the current database search

programs.26 The terminal permutations o®er an alternative and computationally

feasible approach to generate an exhaustive set of decoy peptides. These decoys, that

are used to generate null distributions, are based on the permutation of few selected

positions that disrupt the b- and y-ion patterns of the target peptides.

From the termini permutation strategy, three decoy databases: Ends1, Ends2,

and Ends3 were evaluated. Ends1 encompasses 236 � ð19 N-terminal amino acidsÞ
� ð19 C-terminal amino acidsÞ ¼ 236 � 360 ¼ 84;960 decoy peptides; Ends2 encom-

passes 236 � ð19 � 19 N-terminal amino acidsÞ � ð19 � 19 C-terminal amino acidsÞ ¼
236 � x130;320 ¼ 30;755;520 decoy peptides; and Ends3 encompasses 236 � ð19 �
19 � 19 N-terminal amino acidsÞ � ð19 � 19 � 19 C-terminal amino acidsÞ ¼ 236 �
47;045;880 ¼ 1;120;027;680 decoy peptides. Separate permuted databases were

created for each observed spectra in Ends3 due to inability of the database

search programs to adequately handle the size of the permuted decoy database.

Identi¯cation of best indicators of peptide-spectrum match
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The target database was appended to each of the Ends decoy databases for the

combined target-decoy search strategy. The merging of the target and decoy

databases provided unbiased p-value estimates and avoided zero p-values.26

For each observed-theoretical spectra match indicator, the permutation p-values

were computed as the relative frequency of the sum of the matches in the target-

decoy database that had indicator values equal or better than the observed-target

spectra matches. A Bonferroni adjusted threshold p-value <1� 10�4 based on a 1%

experiment-wise error rate (0:01=80 � 1� 10�4) was used to compare performance

of the di®erent indicators. A sensitivity analysis enabled the assessment of the im-

pact of the p-value threshold on the capability of match indicators to detect the

peptides. The limited number of observed and annotated spectra prevented unbiased

analysis using receiver operating characteristic (ROC) curve.

2. Results and Discussion

A threefold-strategy was used to characterize the performance of spectra match

indicators from database search programs to detect peptides. First, optimal simu-

lated spectra were searched against the target database to obtain a baseline per-

formance in the absence of data quality issues such as presence of noise peaks, missing

signal peaks, and low signal-to-noise ratio. Second, real spectra were searched against

the target database to study the in°uence of data quality issues on peptide detection

signi¯cance levels relative to the baseline performance. Third, the performance of the

match indicators to detect peptides in realistic scenarios using End-permuted decoy

databases was demonstrated.

2.1. Peptide detection benchmarks using optimal and real spectra

against the target database

Table 2 summarizes the number of peptides detected by the three database search

programs at various signi¯cance E- or p-value thresholds when optimal uniform

simulated spectra and real tandem mass spectra were searched against the target

database.

For the optimal simulated spectra, the three programs accurately detected all

peptides at E- or p-value <2� 10�1. At E- or p-value <1� 10�4, the Crux,

OMSSA, and X! Tandem detected 9 (11.25%), 80 (100%), and 72 (90.0%) target

peptides, respectively. The signi¯cance levels of the X! Tandem E-values increased

linearly with the increase in peptide length and only peptides greater than 8 amino

acids in length (hyperscore >40) reached a signi¯cance level of E-value <1� 10�4.

OMSSA E-values were less correlated with peptide length or number of matched b-

and y-ions. The minimum E-value was 1� 10�6 and corresponded to an 11 amino

acid-long peptide that had a þ2 precursor charge state spectrum. The lower signif-

icance level of Crux peptide matches, relative to the OMSSA and X! Tandem, have

been con¯rmed previously.7 At a less stringent threshold p-value <1� 10�2, Crux

M. N. Akhtar et al.
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identi¯ed 73 (91.25%) peptides with seven peptides between 7 to 14 amino acids in

length undetected.

Crux, OMSSA, and X! Tandem correctly matched 10 (12.5%), 77 (96.35%), and

45 (56.3%) real spectra, respectively, at E- or p-value <1� 10�4. A large number of

peptides (44) were detected with a p-value <10�3 indicating the previously noted

di±culty of obtaining signi¯cant matched with Crux.7 The spectra quality features

such as missing peaks, noise peaks, and low intensity peaks tended to reduce the

positive correlation that was observed between peptide length and E-value in the

optimal simulated scenario.

Higher number of Weibull points (XCorr scores) were correlated with more

signi¯cant p-values in Crux.7 Consistent with prior work, the increase in the

number of Weibull points from 103 to 104, and 105 resulted in 24 and 10 more

peptides that reached p-value <1� 10�4 relative to the 103 scenario, respectively.

However, 17 and 40 more peptides had p-value >1� 10�2 with 104 and 105

Weibull points, respectively, than with 103 points (data not shown). Further in-

vestigation uncovered that peptides that did not reach the signi¯cance threshold

were a®ected by the \mz-bin-width" (fragment ion tolerance) parameter. In-

creasing the \mz-bin-width" values from 0.3 to 1.0005 increased XCorr scores, and

consequently, reduced the number of peptides that had p-value >1� 10�2

(Fig. 1). Thus, the 0.3 speci¯cation appears to provide more conservative results.

However, to use comparable search speci¯cation for the three database search

programs, from this point onwards, all Crux results were calculated using the more

conservative 0.3 \mz-bin-width".

2.2. Peptide detection using real spectra against

the End decoy database

The detection of peptides from observed real spectra when matched against the End-

permuted decoy database improved relative to the standard comparison against a

target database. Figure 2 depicts the distribution of the e®ective database size

Table 2. Number of peptides matched at various signi¯cance levels of the log10-transformed E-

or p-values (rounded down to the nearest integer) when the optimal simulated spectra and real
tandem spectra were searched against the standard target database.

Log10-transformed p-values

Program Spectra 0a 1 2 3 4 5 �6 Peptides (%) at <1� 10�4

Crux Optimal 2 5 12 52 3 1 5 11.3

Real 9 8 9 44 1 0 9 12.5
OMSSA Optimal 0 0 0 0 0 0 80 100.0

Real 0 0 1 2 1 3 73 96.3

X! Tandem Optimal 0 0 4 4 2 6 64 90.0
Real 1 8 11 15 16 11 18 56.3

aSigni¯cance threshold (t) for matches to be signi¯cant at p-value <1� 10�t.

Identi¯cation of best indicators of peptide-spectrum match
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corresponding to each observed spectra for the three database search programs when

two (Ends2) or three (Ends3) terminal residues were permuted. The patterns in these

box plots showed that X! Tandem evaluated more decoy sequences than the Crux

and OMSSA.

For each peptide, some matches of the observed spectrum against the decoy

database spectra were indistinguishable from each other in terms of all indicators

(e.g. the number of matched fragment ions, XCorr score, and Sp score). This is

because for each peptide, the Ends2 and Ends3 decoy databases had di-mer and tri-

mer residue combinations with similar total monoisotopic masses. These numerically

(a) (b)

Fig. 1. Box plots of Crux XCorr scores (a) and number of peptides correctly identi¯ed at di®erent

�1 � log10-transformed Weibull p-values (b) using \mz-bin-width" values of 0.3, 0.5, 0.7, and 1.0005.

(a) (b)

Fig. 2. Box plots depicting the distribution of number of candidate decoy peptides within precursor mass
tolerance per queried observed peptide considered by Crux, OMSSA, and X! Tandem for the (a) Ends2 and

(b) Ends3 permuted decoy databases.
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indistinguishable matches were counted as one when calculating the permutation

p-values to avoid biases toward any one database search program.

Table 3 summarizes the number of peptides matched at di®erent log10-trans-

formed permuted p-value signi¯cant levels across match indicators and database

search programs for the Ends1, Ends2, and Ends3 decoy databases. The searches

against Ends1 decoy database resulted in lower signi¯cance levels for all peptide

matches from the three database search programs across various match indicators.

The lower number of permuted sequences available in the Ends1 decoy database

resulted in permutation p-values that were not signi¯cant at the Bonferroni adjusted

threshold of <1� 10�4.

2.2.1. X! Tandem

The level of signi¯cance of the matches to the decoy databases increased from Ends1

to Ends2 and stabilized between Ends2 and Ends3 decoy databases (Table 3). The

Ends2 and Ends3 decoy databases enabled the detection of 34.95% to 38.70% more

peptides than the target database. Overall, the X! Tandem indicator convolution

score had the lowest detection rate among all indicators suggesting that the con-

volution score alone is inadequate to discriminate between true target and false

decoy matches. Detections and signi¯cance levels were similar for the hyperscore and

E-value indicators. Furthermore, detection rate was comparable between hyperscore

and the number of matched ions across the three End decoy databases. End decoy

databases improved peptides detection relative to the target database for number of

matched ions, hyperscore and E-value indicators.

The peptides that were not detected by the hyperscore were also not detected by

the number of matched ion indicator. The decoy database size was not correlated

with the signi¯cance level or capability to detect the peptide. Of the undetected

peptides, two peptides were not detected with the Ends2 and Ends3 databases.

Meanwhile ¯ve undetected peptides in the Ends2 database were signi¯cant with

the Ends3 database, four other peptides that were signi¯cant in the Ends2 data-

base were not detected (became nonsigni¯cant) in the Ends3 decoy database. The

nonsigni¯cant peptides in the Ends3 database were either nonsigni¯cant or mar-

ginally signi¯cant in the target database.

Table 4 summarizes the number of peptides detected in the target and Ends3

decoy databases, target only, Ends3 only, and missed by both databases when the

number of matched ions and hyperscore indicators are considered. The Ends3 decoy

database enabled the detection most peptides (42 out of 45) that were signi¯cant in

the target database in addition to the 32 peptides that were missed by the standard

target database. The performance of the number of matched ions and hyperscore

was comparable. The higher signi¯cance of the matches resulting from the consid-

eration of the hyperscore relative to all other X! Tandem indicators can be attrib-

uted to the use of peak intensity in the scoring and the theoretical spectrum

synthesis process.15

Identi¯cation of best indicators of peptide-spectrum match
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2.2.2. Crux

Peptide detection and signi¯cance levels were similar for the XCorr and �Cn across

Ends2 and Ends3 decoy databases. The XCorr and �Cn detected 33 (41.25%) and

35 (43.75%) peptides in the Ends2 and Ends3 decoy databases, respectively

(Table 3). The lower peptide detection rate of XCorr and �Cn with decoy databases

indicates that XCorr and �Cn are less suitable than the other indicators (Sp and

number of ions). Overall, the Sp indicator identi¯ed two and four more peptides

(p-value <1� 10�4) than the number of matched ions indicator in Ends2 and

Ends3, respectively (Table 3).

Table 3. Number of peptides detected by di®erent spectra match indicators within database search

programs across log10-transformed p-values levels (rounded down to the nearest integer) using End
decoy databases.

Log10-transformed p-values

Programs Databasea Indicators 0b 1 2 3 4 5 �6 Pep. <1� 10�4c

X! Tandem Ends1 # of ions 0 8 72 0 0 0 0 0

Convolution 0 25 55 0 0 0 0 0
Hyperscore/E-value 0 9 71 0 0 0 0 0

Ends2 # of ions 0 0 0 7 65 8 0 73

Convolution 0 2 20 41 17 0 0 17

Hyperscore/E-value 0 0 0 4 67 9 0 76
Ends3 # of ions 0 0 0 6 29 44 1 74

Convolution 0 0 1 26 31 22 0 53

Hyperscore/E-value 0 0 0 5 20 51 4 75

Crux Ends1 # of ions 0 20 60 0 0 0 0 0

Sp 0 19 61 0 0 0 0 0

XCorr/�Cn 4 30 46 0 0 0 0 0
Ends2 # of ions 0 0 0 15 65 0 0 65

Sp 0 0 0 13 67 0 0 67

XCorr/�Cn 1 6 12 28 33 0 0 33

Ends3 # of ions 0 1 1 24 27 27 0 54
Sp 0 1 1 20 28 30 0 58

XCorr/�Cn 0 3 17 25 23 12 0 35

OMSSA Ends1 # of ions 0 16 64 0 0 0 0 0

Lambda 2 29 49 0 0 0 0 0

p-value/E-value 0 14 66 0 0 0 0 0

Ends2 # of ions 0 0 0 22 58 0 0 58
Lambda 0 6 15 25 34 0 0 34

p-value/E-value 0 0 0 11 69 0 0 69

Ends3 # of ions 0 0 0 10 51 19 0 70

Lambda 0 0 0 17 43 20 0 63
p-value/E-value 0 0 0 7 33 40 0 73

aEnds1: the last one N- and C-terminal amino acids were permuted (decoy peptides: 236 �
360 ¼ 84; 960); Ends2: the last two N- and C-terminal amino acids were permuted (decoy peptides:

236� 130; 320 ¼ 30; 755; 520); Ends3: the last three N- and C-terminal amino acids were permuted

(decoy peptides: 47,045,880).
bSigni¯cance threshold (t) for matched to be considered signi¯cant at p-value <1� 10�t.
cThe number of peptides detected at p-value <1� 10�4.
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Combining the number of matched ions or Sp indicators with the End decoy

databases improved the peptide detection relative to the target database alone. The

Ends2 and Ends3 databases had 67.5% to 83.75% peptide detection rate compared to

12.50% with the target database with both indicators. The number of matched ion

indicator missed more peptides (23) than the Sp indicator (19). The Ends3 permuted

database detected 51 peptides missed by the standard target database using Sp

indicator (Table 4).

2.2.3. OMSSA

Table 3 summarizes the log10-transformed p-values for the OMSSA match indicators:

number of matched ions, lambda, Poisson p-value, and E-value. The Poisson p-value

and E-value indicators provided similar peptide detection rate and signi¯cance

levels. Therefore, results from the E-value indicator will be further discussed. The

lambda indicator overall detected lower number of peptides than the number of

matched ion and E-value indicators suggesting that the lambda alone is inadequate

to discriminate between target and decoy matches. The Ends2 and Ends3 decoy

databases provided further discrimination between the number of matched ions and

E-value indicators, with signi¯cance levels and peptide detection rate in the decoy

database higher than the target database when the E-value indicators was consid-

ered. The E-value indicator provided more true detections across signi¯cance

thresholds than the number of matched ions and lambda indicators.

2.2.4. Comparison among database search indicators

Table 4 lists the number of peptides identi¯ed by the target and Ends3 decoy, target

only, Ends3 decoy only, and not identi¯ed by either database when the number of

matched ions and E-value indicators are considered. Meanwhile the number of ions

and E-value indicators detected three peptides using the Ends3 decoy database that

were missed by the target database, these indicators detected 10 and 7 peptides,

respectively using the target database that were missed by the decoy database.

Table 4. Number of peptides detected by spectra match indicators from database search programs

using the target and Ends3 decoy databases.

Number of peptides detected in Ends3 permuted and target databases

Program Indicators PTa P T None

Crux # of ions 7 47 3 23

Sp 7 51 3 19

OMSSA # of ions 67 3 10 0
E-value 70 3 7 0

X! Tandem # of ions 42 32 3 3

Hyperscore 43 32 2 3

aPT: peptides detected at p-value <1� 10�4 in both target and Ends3 databases; P: peptides
detected at p-value <1� 10�4 in Ends3 database only; T: peptides detected at p-value <1� 10�4 in

the target database only; None: missed peptides (p-value >1� 10�4) in both databases.
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Approximately, 88% peptide detections were shared by the target and Ends3

databases using the E-value indicator.

2.3. Comparison of spectra match indicators and database search

software

Figure 3 depicts the number of peptides detected one, two or all three database

search programs when the number of matched ion and best score indicator from each

of the three programs was used to compute the permutation p-value. The best score

indicator was de¯ned as the indicator that exhibited the highest di®erence between

the target and decoy peptides. The best spectra match indicators were E-value for

OMSSA, hyperscore for X! Tandem, and Sp for Crux.

The Ends decoy databases supported higher consensus among the three programs

when compared to the target database. For the Ends3 decoy database, all three

programs detected slightly less peptides together when considering the number of

matched ions compared to the best indicator (50 versus 56). A similar number of

peptides were detected by any two programs using the number of matched ions than

the best score indicator (72 versus 73). OMSSA and Crux detected more peptides

with the best indicator than the number of matched ion indicator and X! Tandem

detected similar number of peptides with the number of matched ions and the

hyperscore. Using either the number of matched ions or best score indicator, X!

Tandem detected more peptides than OMSSA and Crux and OMSSA detected more

peptides than Crux.

The computational time of the searches was calculated on a computer with

3.40GHz Intel Core i7-3770 processor. Searching the target database only using

Crux (using 1,000 Weibull points), X! Tandem and OMSSA averaged 1.14, 0.013,

and 0.14 s per spectrum, respectively. Crux averaged 0.04, 3.54, and 40.65 s for

(a) (b)

Fig. 3. Distinct and shared number of peptide detected in the Ends3 decoy database using (a) the number
of matched ions or (b) the best indicator for each database search program (OMSSA E-value, Crux Sp

score, and X! Tandem hyperscore).
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Ends1, Ends2, and Ends3 decoy databases, respectively. X! Tandem averaged 0.15,

6.54, and 116.26 s per spectrum for Ends1, Ends2, and Ends3 decoy databases,

respectively. OMSSA averaged 0.34, 21.72, and 604.00 s per spectrum for Ends1,

Ends2, and Ends3 decoy databases, respectively. The longer search time for the X!

Tandem and OMSSA using the Ends3 decoy database relative to Ends2 database

could be due to the searching of separate decoy databases for each spectrum in

addition to the larger database size of the Ends3 decoy database. Furthermore, the

comparisons of the peptide detection rate between the Ends2 and Ends3 database

suggest that detection performance similar to the Ends3 database could be obtained

using a smaller random sample of the decoys in the Ends3 database. Overall, the

dramatic improvement in the peptide identi¯cation highlights the e±cacy of the

terminal residue permutation decoy database.

3. Conclusions

The present study demonstrated that the spectra match indicators Sp (Crux),

hyperscore (X! Tandem) and E-value (OMSSA) with a terminal residue permutation

decoy database enabled e®ective detection of peptides compared to target database.

The Ends decoy databases improved the consensus among database search programs

to identify peptides. The End decoy databases can be integrated to other database

search programs. The new candidate decoy peptides resulting from the permutation

can also be used to discover novel peptides.

In the present study, Ends decoy databases were generated from subset of target

database peptides that were within 12 Da of the observed spectra precursor masses

since database search programs initially ¯lter candidate peptides based on precursor

mass. The approach can be extended to any number of peptides, types of peptides

and other database search programs. This could be accomplished by generating the

required number of permuted peptides from peptide-spectrum matches obtained by

searching observed spectra against the target database using the desired database

search program.
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