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Abstract

The metabolome, the small molecule chemical entities involved in metabolism, has traditionally 

been studied with the aim of identifying biomarkers in the diagnosis and prediction of disease. 

However, the value of metabolomics has been redefined from a simple biomarker identification 

tool to a technology for the discovery of active drivers of biological processes. In this review, we 

describe the molecular mechanisms by which the active cell metabolome affects cellular 

physiology through modulation of other ‘omic’ levels, including the genome, epi-genome, 

transcriptome and proteome. This concept of activity screening guided by metabolomics to 

identify biologically active metabolites, or “activity metabolomics”, is having broad impact on 

biology.

Introduction

In the middle of the last century, Fritz Kahn, a German physician, had immense success with 

a book series on the “man machine” 1. Driven by his admiration for both technology and 

physiology, he drew fascinating illustrations and analogies between the human body and the 
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recently developed industrial machines of the 20th century. Seventy years later we entered 

the multi-omics era, spurred by a massive advance in technology enabling the systematic 

quantitative characterization of the cells’ molecular “machinery” (genome, transcriptome, 

proteome and metabolome). The metabolome, a relatively recent entry into the omics 

spectrum, is represented by metabolites. These small molecular chemical entities transcend 

the genome and proteome, representing the most downstream stage in this dynamic system 

defined as metabolism. In a more visual manner, metabolism can be depicted as a machine 

with metabolic gears that are intertwined with the activity of genes and proteins 1. These 

gears are viewed as simply performing a function as an integral part of a larger system. The 

information flow through these different ‘omic’ levels of biochemical organization is 

described as the central dogma of molecular biology 2. Within this framework, the 

metabolome, the entity of metabolites, has become widely accepted as the dynamic and 

sensitive measure of the phenotype at the molecular level, placing metabolomics at the 

forefront of biomarker and mechanistic discoveries related to pathophysiological processes 
3.

However, the perception of metabolites mainly as a downstream product - biomarkers (of 

gene and protein activity) - has minimized the awareness of their far-reaching regulatory 

activity. Metabolite activity is a fascinating aspect of metabolism given that the metabolome 

interacts with and actively modulates all other ‘omic’ levels (Figure 1). Through this 

interaction metabolites also serve as direct modulators of biological processes and 

phenotypes. This concept has been investigated for decades, especially through the seminal 

discoveries of glucose, fatty acids and other lipids as regulators of insulin secretion and 

sensitivity 4, the lac operon in bacteria 5, and nutrient and energy sensing by the mTOR 

kinase6. These findings have already shown the significant impact metabolites can have on 

biological systems.

However, more recently, with the advent and evolution of metabolomics’ technologies, the 

discovery of active metabolites that have the capability to change cell physiology has grown 

rapidly. Examples of metabolite phenotype modulation include the NAD+ boosting of sirtuin 

activity to protect against age-associated alterations 7, lactate modulation of neuronal 

excitability and plasticity 8, α-ketoglutarate mediated orchestration of macrophage 

activation and immunity 9, malonyl-CoA controlling neurogenesis in adults 10, nitrogen 

metabolite balance used to enhance pertussis toxin production 11, and taurine-induced 

myelin basic protein expression12. Additional studies in cancer metabolism have unraveled 

the important and multiple roles of “oncometabolites” 13 that include fumarate, 2-

hydroxyglutarate, and succinate and others. These studies highlight the intrinsic biological 

activity of metabolites and provide new import to the value of metabolomics as it can be 

harnessed to identify metabolites that act as drivers of biological processes and thus better 

understand their physiological role.

We describe recent developments in the field and provide an overview on metabolite 

discovery strategies by combining metabolomics with orthogonal experimental and 

computational biology approaches 14,15. This review will illustrate examples of phenotype 

modulation driven by processes such as macromolecule-metabolite modification and 

interaction. We will summarize recent conceptual advances and workflows to characterize 
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the active metabolome in a variety of biological systems. We will also review recent 

technological advances that merge metabolomics with cognitive and cloud computing and 

further enable the activity metabolomics strategy.

Mechanisms of phenotype modulation by metabolites

Prototypes for active metabolites: Oncometabolites

How does the active metabolome drive phenotype modulation? Oncometabolites are one of 

the best examples of active metabolites because of their early discovery and established 

mechanisms of phenotype modulation in cancer cells. The accumulation of these 

oncometabolites in distinct types of cancer cells is a causal process in malignant 

transformation. Oncometabolites, including D-2 hydroxyglutarate, L-2-hydroxyglutarate, 

succinate and fumarate, were found in cancerous tumors that had mutations in the enzymes 

corresponding to the oncometabolites. Gain of function mutations were found in Isocitrate 

Dehydrogenase (IDH), and loss of function mutations were found in Fumarase (FH) and 

Succinate Dehydrogenase (SDH) (reviewed in 13). The accumulation of the oncometabolites 

in the tumor cells arising from these mutations resulted in a proliferative phenotype.

These oncometabolites are not only biomarkers of the diseases, depending on the activity of 

their respective enzymes, they can modify and interact with proteins and DNA thereby 

altering the proteome and the epigenome. Specifically, the activity of these oncometabolites 

stems from their inhibition of the α-ketoglutarate-dependent dixoxygenases, a class of 

enzymes that include prolyl hydroxylases 16. Inhibition of prolyl hydroxylases by the 

oncometabolites results in a phenotype mirroring hypoxia, known as “pseudohypoxia”, 

where the levels of transcription factor hypoxia inducible factor (HIF) are increased despite 

normal oxygen levels. In addition, oncometabolites inhibit alpha-ketoglutarate dependent 

TET (ten eleven translocation) enzymes and lysine demethylases. Both enzymes control 

removal of methyl-groups from chromatin 17, 5-methylcytosine is hydroxylated by TET in 

CpG dinucleotides (a step towards demethylation) and histones are demethylated by lysine 

demethylases 17. Thereby, histones and DNA are hypermethylated in cancer cells that have 

high abundances of these metabolites, illuminating the link from oncometabolites to the 

epigenome.

In addition to enzyme inhibition, other distinct biological activities for individual 

oncometabolites have been described. Fumarate can react with thiol groups of cysteine 

residues. This reaction results in acylation (succination) of the residue and therefore 

alteration of KEAP1 activity 18. Consequently, transcription factor NRF is activated, which 

can increase cyst size in renal cancer 18. Fumarate also mediates succination of other 

proteins involved in redox metabolism, a key system in cancer 19. Fumarate has also been 

suggested to modify other metabolites, such as glutathione 20, thereby increasing oxidative 

stress and senescence. Recently, D-2-hydroxyglutarate has also been shown to inhibit the 

activity of BCAT1, and BCAT2, two α-ketoglutarate - dependent enzymes 21. It should be 

noted that a number of additional metabolites have been classified as oncometabolites, 

including glycine, glucose, and lactate, and most of these metabolites are related to aerobic 

glycolysis, glutaminolysis, or one-carbon metabolism 22,23. While the full scope of the 

biological effects of oncometabolites is still an active area of investigation, it has been 
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demonstrated that they modulate proteinprotein interaction, alter enzyme activity, lead to 

changes in the protein posttranslational modifications and modify the epigenome, all with 

the effect of propagating cancer.

Therefore, oncometabolites are primary examples of active metabolites. From these 

examples, it emerges that active metabolite crosstalk to other “omes” occurs to a largely 

unanticipated extent 24,25. Recent mechanistic insights have revealed that active metabolites 

strongly impact all layers of the omics landscape, from the genome, epigenome and 

transcriptome to the proteome 26–28. Within this framework the metabolome has two 

overarching mechanisms to control the functions of DNA, RNA and proteins: chemical 

modification and metabolite-macromolecule interaction that are further detailed in the 

following two paragraphs.

Metabolic chemical modification of macromolecules

Metabolites drive pivotal covalent chemical modifications of DNA and RNA (such as 

methylation) and of proteins (post-translational modifications). The dynamic shape of these 

chemical modifications has been shown to significantly affect cellular function. Post-

translational modifications of proteins involve at least dozens of different small molecules 

that can be covalently bound to distinct amino acids as for instance lysine acetylation 

(derived from Acetyl-CoA) 29 or cysteine palmitoylation 30 (derived from Acyl-CoA). It 

should be noted that acetylation processes also occur non-enzymatically with low overall 

stoichiometry and unclear functional roles 31,32. Further acylation processes with other 

Acyl-CoA species occur as well 31. Other metabolites responsible for posttranslational 

modifications include succinyl-CoA (arginine succinylation), as well as activated sugar 

molecules (e.g. UDP-glucose) for glycosylation, and GlcNAcylation 33,34 (Fig. 2A). Other 

active metabolites have shown to control anti-inflammatory responses (via alkylation of 

cysteine residues 35,36) (Fig. 2B), proteostasis (via proteasome ADP-ribosylation37) (Figure 

2C) or enzyme activity (via lysine glutarylation 38). The active metabolites for these 

processes are itaconate, ATP-ribose and glutaryl-CoA, respectively. Notably, abundance of 

many of these metabolite-induced protein modifications are directly dependent on the 

metabolic state of the cell and as such represent a powerful means of phenotype modulation 
29,39. DNA methylation (or a transfer of a methyl group from S-Adenosyl Methionine to 

cytosine) starts during embryogenesis and continues throughout the lifespan, affecting 

chromatin states, lineage specialization, gene expression, genome stability, and self-renewal 

of stem cells 40,41 (Figure 2D). Further on, various metabolites, such as S-Adenosyl 

Methionine, glycine, pyruvate, galactose and threonine function as co-factors for 

posttranscriptional RNA modifications that act as sensors and transducers of information to 

control metabolic rate (oxygen consumption) and protein synthesis – yet their effect is still 

not completely understood 42,43. Enzymatic histone modifications such as lysine acetylation 

(derived from Acetyl-CoA), lysine and arginine methylation (derived again from S-

adenosyl-methionine), and serine phosphorylation (derived from ATP) are key controllers of 

the epigenome’s landscape directly influencing gene expression, chromosome packaging, 

DNA repair and changes in cell metabolic state 44,45.
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Metabolite-macromolecule interactions

Metabolite-macromolecule noncovalent interactions represent a second mode of cellular 

activity regulation. A classic example is competitive binding of a metabolite to an active site 

of an enzyme, or allostery - the alteration of enzyme activity by binding of a small molecule 

at a site other than the active center. These concepts apply not only to enzymes, but also to a 

variety of messengerRNAs (metabolite-controlled riboswitches46), proteins such as 

signaling receptors, and various other molecule classes. G-protein coupled receptors 

(GPCRs) are the sine qua non of metabolite-activated signaling molecules and they were 

among the earliest identified proteins which were developed as drug targets 47. Among many 

other receptors, G-protein coupled receptor 91 in mice (Gpr91) is activated by succinate to 

control blood pressure 48 and Gpr40 is activated by palmitic acid hydroxystearic acids 

(PAHSA), a recently discovered class of endogenous lipids 49,50 (Fig. 3A). Binding of these 

receptors invokes highly specific signaling responses that lead to specialized cellular 

activation of signaling networks. This concept also extends to transcription factors (e.g. non-

canonical activation of estrogen receptors by phytoestrogens 51), all of which crucially 

determine the system’s response to cues via control of expression of distinct genes (Fig. 3B). 

Metabolite-controlled transcription and translation is performed by riboswitches. 

Metabolites that control riboswitches include lysine, glutamine, cobalamin, thiamin 

pyrophosphate, and purines (Fig. 3C) 52. The active metabolome also controls uptake and 

availability of other essential nutrients: for instance, iron uptake in plants depends on the 

local presence of reducing agents within the roots 53. One noteworthy example is brain 

glucose sensing where glucose plays a pivotal signaling role controlling hormone secretion 

and neuronal activity as a means to regulate feeding, energy expenditure and its own 

homeostasis – the control of highly complex behavioral phenotypes 54. Many of these 

examples describe rather known biological facts of the role of active metabolites, yet they 

expand the active metabolome to metabolites that were typically considered common 

cellular building blocks: amino acids for proteins, pyrimidine and purine bases for nucleic 

acids biosynthesis 55 and phospholipids for cell membrane formation 14.

Metabolome-driven omics alternations

From these rather reductionist approaches, an entire new layer of metabolome-driven global 

gene and protein level activation emerges. Foundational studies used dietary restriction in 

mouse models to alter metabolism and found a dramatic change in gene expression 

alongside amelioration of the aging phenotypes 56. It has also emerged in the last decade that 

control of the epigenome is determined by the metabolic status 57. Yet, only a few studies 

have analyzed the impact of metabolic changes or metabolite supplementation on the other 

omic layers in a systematic manner. One study analyzed the effect of metabolite 

supplementation on various yeast strains that were deficient in histidine, leucine, methionine 

and uracil biosynthesis 58. Subsequently, transcriptome, proteome and metabolome analysis 

of these strains was performed. Integrated analyses revealed that gene expression (epistasis) 

and protein expression is largely controlled by metabolite supplementation, suggesting a 

systems-wide modulation by metabolites. Among these studies, metabolic flux analysis has 

gained a more important role in determining time-dependent activity of the respective 

enzymes and thus, biochemical pathways 59. Furthermore, recent large-scale studies have 

revealed that metabolites mediate proteome-wide complex formations (the interactome). 
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One recently found example is the galF complexes that are formed by the presence of ATP 

(galF is a UTP-glucose-1phosphate uridylyltransferase in E. coli) (Fig.3D) with yet to be 

determined biochemical consequences 25. The protein-metabolite interaction landscape has 

also been probed by protein-centric approaches in yeast and offers largely unexplored 

regulatory connections, including alteration of YPK, a mammalian AKT analogue by 

ergosterol 60.

By these means, the active metabolome empowers and mediates basic biological processes 

such as signal transduction, proteostasis and regulation of gene expression. This multitude of 

metabolite-induced and endowed omics modulations is a current focus of several 

investigations. Comprehensive approaches to study the metabolome, in particular the active 

metabolome, on a global scale have been developed only recently. Integration of 

metabolomics with other omics data provides a means to prioritize metabolites for 

functional testing and to predict metabolites with highest activity (see multi-omics 

integration section). Only very recently, methods have been developed to interrogate the 

interplay between the metabolome and the other omes, with focus on the proteome (see 

activity screening technology section). Further technological improvements are necessary to 

unravel the complexity of metabolite-induced macromolecule activity to ultimately control 

the phenotype. In any case, the current literature already shows that identified metabolites 

from metabolomic studies can modulate physiology, a concept that turns the tables on 

conventional omic technology thinking: metabolites are not providing a simple readout for 

the other omics’ layers but can act as master regulators of the biological system 26.

Discovering active metabolites

Metabolite detection, identification and quantification

Historically, metabolite detection, identification and quantification has been accomplished 

using biochemical approaches, however metabolomics offers a unique framework for 

discovery that can, and has been, applied at multiple levels (Figure 4). The identification 

process is one of the most important aspects in the discovery of active metabolites. Mass 

spectrometry-based metabolomics data acquisition and annotation is primarily defined by 

identifying features [G] with a specific mass-to charge-ratio (m/z). Annotation is a multi-

component and challenging aspect of feature data processing and has been extensively 

reviewed 61. A metabolome-based strategy for identifying candidates with biological activity 

would use a list of metabolites generated from statistical analysis of metabolomic datasets. 

Once metabolite abundance is quantified based on peak intensity, statistical filters can be 

adjusted depending on the experiment and data. Metabolites are typically selected for further 

activity screening based on specific statistical cutoff (e.g. a p-value less than 0.01 and a fold 

change greater than 2, as compared to control conditions). A multitude of peak detection and 

alignment softwares are available, including XCMS Online 62, MZmine2 63, Open-MS 64 

and MS-DIAL 65. The second component is the annotation of features and identification of 

metabolites. This includes the use of metabolite databases and spectral libraries 66, among 

these the Human Metabolome Database 67,68, METLIN 69, the Birmingham Metabolite 

Library Nuclear Magnetic Resonance database 70, BiGG 71, MassBank 72, LipidMaps 73, 

mzCloud 74, the Fiehn lab GC-MS Database75, and the Golm metabolomics database76. The 
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challenges in data analysis and sharing, especially for non-specialized labs, were recently 

addressed by the development of cloud-based technologies and databases (Box). 

Bioinformatic metabolic pathway and network analysis can be used to reduce the complexity 

of the data. This feature that has been recently incorporated into XCMS Online 77 and is 

available via MetExplorer 78 and other platforms 79–81. Aims of these approaches are to 

prioritize the metabolites involved in distinct modules of the metabolic network or locally 

enriched parts of the metabolic network, thus reflecting the true activity (while assuming 

that the false matches will be distributed randomly across the network). Once lists of 

candidates are established, their fate can be tracked using isotope based tracing through the 

metabolome (“flux analyses”) 82. Finally, metabolomics-guided activity screening can be 

performed using in vivo and in vitro phenotypic, omics and chemical biology strategies.

Metabolic Activity Screening Strategies

Identifying active metabolites that modulate phenotype can be achieved through multiple 

strategies. There is a host of examples where metabolomics in combination with orthogonal 

molecular biology and computational approaches has been successfully used to identify 

active metabolites 26. In each one of these examples the primary step in determining activity 

has been the use of an appropriate screening strategy. These include gene expression, protein 

expression and protein activity (e.g. enzyme activity), the modulation of desired cellular 

phenotypes, and performing in vivo phenotypic studies directly on an organism. Table 1 lists 

the principles behind these assays.

In contrast to in vivo studies, cell based assays can provide high throughput and allow for 

the analysis of cell morphology, biophysical cell function, chemical and physiological 

properties, and can leverage a latitude of molecular biology tools such as fluorescent or 

luminescent reporters. For the fields of metabolite-epigenome and metabolite-genome 

interactions, these tools comprise mainly nucleotide sequencing approaches such as 

chromatin-immunoprecipitation and sequencing (CHIP-SEq approaches), and detection of 

methylated DNA using bisulfite sequencing. More recently, the field of chemical proteomics 

has emerged to study metabolite/small molecule-protein interactions. This can be 

accomplished, for instance, via protein arrays [G] that interrogate chemical binding of 

distinct metabolites to various proteins 83,84 or, more recently, thermal proteome profiling 

(TPP), a method that relies on the principle that the temperature for thermal degradation of 

proteins (“melting point”) is shifted upon small molecular binding. TPP involves a thermal 

shift to denature proteins within living cells or a cell extract in the presence of different 

metabolites 85. Many other chemical proteomics approaches exist 86 that are either 

metabolite or protein centered, including protein stability assessed from rates of oxidation 

(SPROX) 87 or limited proteolysis 88.

It is worth noting that some screens can be time intensive and costly, and are largely limited 

to specialized laboratories. In order to effectively pre-select potential candidates following 

metabolomics data processing, a combination of more computationally oriented activity 

prediction strategies with chemical approaches can be adopted (thereby accelerating the 

general assays delineated in Table 1). Table 2 pinpoints features of in silico and in vitro 

approaches, including their limitations and advantages. Beyond these technologies, more 
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advanced prediction approaches are being adopted. Using neural networks[G] trained by 

large data sets of the activity, physico-chemical properties and structural information of 

small-molecules, which are available in the ChEMBL database89. As an example, for the 

enzyme cyclooxygenase 2 more than 6000 IC50 values [G] of small molecules and their 

physio-chemical properties are deposited in ChEMBL. Using this information to train a 

neural network might result in an algorithm capable of predicting the possible bioactivity of 

hundreds if not thousands of metabolites evolving from exploratory metabolomics. In turn, 

metabolomics data might be superimposed on activity constraints such as physico-chemical 

properties, or distinct functional groups, resulting from a neural network, thereby limiting 

the actual chemical space [G], which ultimately has to undergo in vitro and or in vivo 

bioactivity testing. Another interesting source of knowledge for such an endeavor stems 

from drug metabolism, where distinct molecular sites prone to metabolic activation can be 

predicted by specialized and highly evolved in silico approaches 90.

In addition to the use of cognitive computing (neural networks), closing mass balances of 

metabolic models might as well be an interesting approach. Closing mass balance means 

that input and output of the system are in line with the law of mass action [G]. As recently 

shown, closing the mass balance in metabolic models of Bordetella pertussis allowed the 

authors to gain significantly deeper insight into the bacteria’s biology by curating and 

completing their metabolic model. The metabolic model of Bordetella pertussis showed a 

significant nitrogen imbalance, leaving approximately 30% of nitrogen unaccounted for. 

Using LC-MS analysis eleven novel nitrogen containing metabolic end-products could be 

identified. Based on the nature of these metabolites, the authors suggested physiological 

roles for these alternative nitrogen sinks beyond mere nitrogen excretion. Next, the authors 

used their curated metabolic model to compute minimal nutrient inputs supporting the 

growth of Bordetella pertussis Tohama I in order to rationally design novel growth media. 

Most interestingly their model predicted thiosulfate as a possible sulfur source, including 

novel metabolic pathways for its conversion. Together with the identified nitrogen sinks, the 

presented approach shed light on possible host microbe interactions, as well as the metabolic 

flexibility of Bordetella pertussis and allowed rationally designing novel growth media, 

increasing pertussis toxin production 91.

It is also possible to imagine that comprehensive and diverse libraries of metabolites for high 

throughput could be used for testing, for example METLIN [G] currently has over 300,000 

individual small molecules including metabolites and small peptides. This approach using 

robotic acoustic dispensing devices coupled with multiple known biological screens is 

already widely used in pharmaceutical and biotechnology industries and could provide a 

brute force approach to metabolite activity screening.

Multi-omics integration for determining activity

Beyond metabolomics, multi-omic data correlation and integration will provide an 

additional layer of information to improve the metabolite selection process.92 For example, 

metabolite candidates could be integrated with transcriptomic and proteomic data as a 

follow-up to pathway analysis by deducing their overlap in the selected pathways of interest. 

A variety of integrated data sets consisting of proteome, transcriptome and metabolome data 
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have been generated in different research areas, ranging from cancer metabolism research 
93,94, plant physiology to microbiology 95,96. The aim of the multi-omic integration is to 

allow for the determination of the activity of distinct metabolites through quantitative 

modeling, thereby allowing a targeted intervention on a specific pathway. To this end, it is 

very important to reduce complexity of the vast amount of data. This can be done by 

multiple mathematical approaches, for instance by adding metabolite, and other omics data 

to curated pathways, or by modeling novel pathways and fluxes by the data. It has to be 

stated that the area of multi-omics integration is an ongoing effort and multiple approaches 

are currently being pursued.

In most of the studies, the multi-omics integration is based on gene nomenclature linked to 

unique metabolite identifiers, and involves combining previously generated pathway 

information (e.g. KEGG [G], Reactome [G], Biocyc pathways [G], Recon [G] or 

metabolomic set enrichments (available via MetaboAnalyst platform), and the newly 

generated ChemRICH platform 97–101,102). The advantage of using this pathway information 

is the ability to reduce complexity and to filter noise. The recently introduced metabolomics 

guided systems biology approach integrates multi-omics data, where all other omics data 

layers (on gene and protein expression) are mapped onto the untargeted metabolomics-

derived pathway activity information.77 Several other approaches for multi-omics pathway 

integration exist 94 and network-based and machine learning approaches are emerging.

Integrating the metabolome and other omic layers can be a challenging pursuit. In fact, many 

researchers acquire complex datasets without a preset integration strategy. Robustness of 

data acquisition, artefacts introduced by sample harvest (batch effects) and the distinct 

features of the different omic datasets must be adequately considered. The challenges in 

multi-omic data integration are reviewed elsewhere 103,104, yet the most important ones 

consist of noise removal, data prefiltering, matching of various identifiers, the selection of 

data dimensionality reduction methods, and finally, selecting computational approaches and 

mathematical models to apply to the acquired omic data, model validation, and the further 

integration into trans-omics network modules. The ability to streamline and efficiently 

advance these approaches is currently under development. Challenges also include the 

reality that metabolic networks cannot be sufficiently validated due to technology limitations 

(e.g. limited metabolite coverage as a consequence of analytical bias). Finally, as pointed 

out, the entirety of omics data is often not utilized in an adequate and comprehensive way 
103. One limitation on the metabolomics side is the lack of appropriate archives and data 

sharing strategies, these concerns however are gaining more and more attention, e.g. in the 

MetaboLights 105 and Metabolomics Workbench 106 repositories. Finally, in a large amount 

of high visibility reports, a reductionist experiment is conducted as a conclusive experiment 

that potentially increases the impact of the study. Yet, this commonly used procedure does 

not take advantage of the dataset as whole, and consequently, the majority of multi-omic 

data is not being used 103,107. However, once acquired and integrated, the multi-layered omic 

strategies can be useful, especially if applied to in vivo metabolism.

It is anticipated that genome scale modeling of metabolic processes, big data analysis and 

machine learning strategies 108109,110 will be integrated to further prioritize metabolite 

activity in a given biological system. In fact, the power of this integrative omics approach 
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has been already shown by in vivo and in vitro modeling studies that reconciled multi-

layered omic data acquisitions and metabolic and other phenotypes over a larger number of 

observations, and were able to accurately predict biological behavior. Yeast strains with 

various genetic deletions are successful model organisms to link genetic variation to 

metabolic phenotype, connecting the gene to its role in metabolism 111. In a machine 

learning approach, proteomic data was used to predict the yeast metabolome in various yeast 

strains that had kinome-wide knockouts 112. Multi-layered genome models, but also 

significantly smaller models have in fact been able to predict the entire metabolome from 

single datasets. One recent and successful examples was the accurately predicted growth of 

E. coli by metabolic and genetic interventions 113. The metabolomics-guided perspective is 

different: for example, mapping downstream metabolic changes onto metabolic pathways 

and biological networks can provide mechanistic insights, especially when associated with 

other ‘omic data. Within these platforms automated predictive pathway analysis enables 

straightforward and efficient metabolite mapping to background knowledge databases that 

can be either curated reference pathway databases or genome-scale networks. However, the 

available metabolic spectral databases only cover a fraction (up to 60%) of genome-scale 

metabolism, suggesting a general, yet addressable limitation of the metabolomics-guided 

strategy due to the “dark” metabolome 114. Flux analyses using pulsed isotope labeling of 

metabolites can complement traditional metabolomic studies to further decipher the 

numerous relationships between enzymes and metabolites, a topic reviewed elsewhere 59,82.

While the goal of these integrated approaches is the generation of accurate biological 

models, our ultimate goal is to use this information to identify the best candidates for 

activity screening. Therefore, the multidimensional integrated “omic” landscape yields 

unanticipated opportunities and out of the box solutions for predicting metabolites that 

modulate phenotype.

Perspective: Applications of activity metabolomics

The applicability of activity metabolomics is broad, for example Figure 5 illustrates how 

active metabolites alter phenotypes in a variety of organisms ranging from relatively simple 

prokaryotes to complex human physiology. For instance, activity metabolomics can enrich 

biotechnological applications bacteria where it has been shown to enhance the production 

Bordetella pertussis vaccine production or protein production in E.coli 11511,12. The 

microbiome is also susceptible to modulation by modifying the mammalian metabolome 116, 

or the reverse, where microbiome-derived metabolites can be used to impact immune cells 

and satiety117. Other examples of crucial metabolite activities come from the emerging field 

of immunometabolism where prostaglandin E2 promotes Th2, Th17 and regulatory T cell 

responses, whereas it suppresses macrophage and neutrophil activity. 118119,120. On an organ 

level, metabolites control pathophysiological reactions such as asthma via leukotrienes 121. 

In complex organisms, nutritional interventions such as supplementation of omega-3 fatty 

acids proved to have multiple benefits, while lacking severe side effects 122,123, and a 

plethora of studies has analyzed the phenotypic modulations evoked by feeding various 

supplemented diets to model organisms of ageing-associated diseases 124–126

Rinschen et al. Page 10

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2019 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the fields of pharmacology and toxicology, metabolites are administered to reduce 

toxicity (e.g. to reduce methanol poisoning by administration of ethanol, or to administer 

scavenger metabolites of toxic metabolites, e.g. Mercaptoethansulfonat-Na for certain 

chemotherapeutics or acetylcysteine in the case of paracetamol poisoning) and to take 

advantages of drug synergies with endogenous metabolite classes 127. Even very simple and 

inexpensive metabolites, such as glutamine, can be utilized to treat complex diseases such as 

sickle cell disease as recently investigated in a phase 3 clinical trial 128129.

These examples show the wide applicability of using active metabolites to modulate 

biological processes, induce shifts in cellular metabolic state and thus cell activation, 

differentiation or proliferation and complex tissue functions. Notably, the effect of a 

metabolite is determined by the context and its induced phenotype can vary largely with the 

biological system it is applied to. The goal of activity metabolomics is to provide the 

framework for this concept. α-ketoglutarate (AKG) is an example of an active metabolite 

that alters phenotypes in a context dependent manner: In bacteria, it regulates glucose 

metabolism and uptake 130. In Caenorhabditis elegans, it extends lifespan by mTOR 

inhibition 131. In immune cells, it supports regulatory T-cell differentiation from Th1 cells 
132. In humans it is reported to increase tissue and muscle regeneration via a multitude of 

processes involving ERK and others 133. Once binding to a G-protein coupled receptor 

Oxgr1 (localized chiefly in the kidney), it translates into increased synthesis of transporters 

to drive hypertension via salt reabsorption134,135. A common theme in these settings may be 

a modulation of anabolic cell activity, and this may be the “common denominator” of AKGs 

role in the activity metabolome. Thus, the current challenge of activity metabolomics is to 

link metabolites with an organism’s phenotype in a systematic and quantitative fashion 

(“phenome”). This goal will require comprehensive metabolomics and phenotypic data as 

well as computationally integrating other omic data.

Conclusions

The concept that metabolites can act as controllers – as opposed to a set of cogs in a system 

– is gaining new attention as metabolomics becomes more mainstream. The term “activity 

metabolomics” [G] is introduced here to describe how metabolomics technologies can be 

employed to identify active metabolites. Central to this metabolomics-driven concept is 

identifying these master metabolites [G], however resolving this challenge will be achieved 

not by any one approach alone, but instead by computationally combining metabolomics, 

systems biology and bioactivity data, allowing us to identify the most active metabolites that 

modulate biological processes and cell physiology. And while it is easy to get lost in the 

details of the problems (e.g. metabolite identification, metabolite annotation, et cetera) much 

of these issues are functionally solved or on their way to being solved. The most intriguing 

ultimate goal of these technological achievements is illustrated in Figures 1 and 5: using 

these metabolomics-driven screening methods as the main tool to identify these master 

manipulators. Once accomplished, activity metabolomics has the potential to impact a 

multiple scientific disciplines.
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Glossary

Items in this glossary are marked with a [G] in the text.

Activity Metabolomics

Activity screening guided by metabolomics, integration of metabolomics and activity 

screening technologies to identify bioactive metabolites controlling the phenotype

Biocyc

A database of organism specific metabolic and genomic pathways 97

Chemical space

The actual physico-chemical space (degree of freedom) defined by the chemical structure in 

which binding/activity might occur

Cloud computing

The use of computational resources that are not physically present but at a server at another 

place, via internet connection.

High resolution mass spectrometry

An Orbitrap or a quadrupole-time of flight mass spectrometer with high mass resolution and 

accuracy. A commonly used instrument for untargeted metabolomics acquisition.

Triple quadrupole mass spectrometry

A mass spectrometer consisting of three quadrupoles in a row for targeted metabolomics 

quantification.

KEGG

Kyoto encyclopedia of Genes and Genomes, a collection of database for pathways, genomes, 

small molecules and others. 102

Master metabolites

Key metabolites driving phenotypes in a fate determining way.

METLIN

A database of metabolite fragmentation spectral information to identify known and unknown 

metabolites, current size over 100,000 metabolites.

Neural networks

A machine learning technique. Neural networks consist of artificial neurons that translate an 

input into an output.

Recon

A genome-wide integration platform for metabolism, manually curated via community 

efforts and automated error checking 100,136

Systems Biology

The integration of various datasets and disciplines to understand the regulatory elements in 

an organism or cell as a whole.
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Metabolic flux analysis

Metabolic flux analysis is a mass spectrometry based technique that is used to examine 

production and consumption rates of metabolites by tracking isotopes.

IC50 value

The half maximal inhibitory concentration. This quantitative measure indicates how much of 

a molecule (e.g. metabolite or drug) is needed to inhibit a distinct biological process (e.g. 

enzyme activity).

Reactome

Reactome provides molecular maps of signal transduction, metabolism and other cellular 

processes. 99

Law of mass action

The law of mass action defines that a reversible chemical reaction in equilibrium is directly 

proportional to the concentrations of the reactants.

Protein arrays

Proteins spotted on an array to see which proteins bind a specific metabolite.

Feature

A peak or a set of peaks across samples with a unique m/z value and retention time
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Box 1:

Cloud Computing and Metabolomic Databases

Metabolomics, a multi-disciplinary technology that is now evolving at an increasingly 

rapid pace, nonetheless may still be regarded as an emerging discipline. Its initial slow 

progression stems from the intensive resource commitment a truly comprehensive 

metabolomics lab can require, including high sensitivity triple quadrupole mass 

spectrometers [G], nuclear magnetic resonance (NMR) technologies, and high resolution 

mass spectrometry [G] systems for untargeted analyses. This commitment limits 

metabolomics accessibility to biologists due to the required expertise, instrumentation 

and, most importantly bioinformatics support. And while data generation occurs mainly 

through collaborations or fee-for-service facilities, the challenge to identify the most 

meaningful active metabolites and interpret its function within a biochemical context 

remains. To address this challenge cloud-based bioinformatic platforms represent a novel 

paradigm of how resources can be made available on a global scale and large data 

amounts can be translated into biological insights.

The most significant value of the universal access options provided by the cloud is the 

fast and simple sharing of resources. Among many other algorithms (see metabolite 

identification section), XCMS was originally developed as a metabolomics data 

processing algorithm to extract metabolite features out of raw mass spectrometry data 

and perform statistical analysis. Today it is available as a cloud-based online resource 

with over 27,000 users allowing them to upload mass spectrometry data files and share 

the processed results with an individual collaborator and/or make them publicly available. 

This type of cloud-based platform increases the field’s ability to compare results with 

those available from public repositories, and to perform metabolomic meta-analyses. 

Because of the conserved nature of metabolites across evolution, these analyses are 

transposable over a variety of phyla and species, e.g. ranging from bacteria to plants to 

higher organisms 137. The cloud has also addressed the issue of metabolite identification 

with multiple databases available, specifically databases that contain tandem mass 

spectrometry (MS/MS) data from defined compounds. Other cloud based approaches in 

metabolomics exist 138 or are emerging 139, and public online databases such as 

MetaboLights 105 and Metabolomics Workbench 106 enable first cloud-based analyses 

that will further improve in the future.

Cloud computing [G] is therefore gaining prominence in metabolomics however there are 

some limitations. The user of the cloud needs an efficient web connection for data 

uploading and processing, and may have limited flexibility and control over the 

resources. The provider of the cloud requires server resources that expand according to 

the ever-growing amount of data and, in addition, high-level security. However, even with 

these challenges, it appears that biology and cloud computing have already become 

irrevocably intertwined. This is particularly true in conjunction with the omic disciplines, 

that deal with data sets reaching the terabyte range and are driven by the increasing 

performance of high throughput methods, such as next generation sequencing or high 

resolution mass spectrometry-based metabolomics and proteomics. Beyond these obvious 

practical advantages, cloud-based computing in activity metabolomics also readily offers 
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the ability to integrate a rich source of archived data from the multiple repositories 

available 79, which remains one of the key challenges of systems biology [G].
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Figure 1. 

Metabolites – active modulators of gene and protein activity. Metabolites actively control 

protein activity via allosteric regulation of transmembrane receptors and transcription 

factors, as enzyme co-factors and co-substrates in the catalysis of biochemical reactions, and 

via post-translational modifications. They also significantly influence RNA metabolism via 

sensing (small molecule ligands are sensed by riboswitches) and post-transcriptional 

modifications. Moreover, it is well known that metabolites serve as signaling molecules to 

control transcription factors and thus gene expression. Finally as co-factors and co-substrates 

of chromatin modifying enzymes they are actively involved in epigenetic regulation.
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Figure 2: 

Examples of macromolecule modification by the active metabolome. A. Examples for 

macromolecule modifications by the tricarboxylic acid cycle (TCA) intermediates and 

related products. Acetyl-CoA, α-ketoglutarate, Succinyl-CoA, UDP-glucose and ATP are 

energy-rich molecules that can directly modify proteins, or nucleic acids. B. Cysteine 

alkylation by itaconate, a branched fatty acid. Recently, it was shown that itaconate is an 

anti-inflammatory metabolite that directly alkylates cysteine residues at KEAP1 to control 

expression of NRF2. KEAP1 is the primary negative regulator of NRF2. This results in 
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increased expression of anti-oxidant and anti-inflammatory gene expression. C. ADP-

ribosylation of proteasome unit PI31 to control proteostasis. By the TNKS enzyme, PI31 is 

ADP-ribosylated to promote proteasome 26S assembly (from the 20S subunit). This results 

in increased proteasome activity. D. S-Adenosylmethionine is a central methyl donor for 

DNA, RNA and histone methylation, thereby controlling gene expression at the level of the 

genome, transcriptome and epigenome.
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Figure 3. 

Mechanisms for non-covalent modification of macromolecules by the active metabolome. A. 

Palmitic hydroxystearic acid (Pahsa) activates GPR40 to induce calcium signaling and 

augmentation of insulin and GLP1 release. B Phytoestrogenes activate transcription factors 

that control programs involved in cell metabolism and cell proliferation. C. Riboswitches are 

controlled by metabolites. D. Metabolites assemble higher molecular proteins, e.g. of the 

bacterial protein galF, a glucose-1-phosphate uridylyltransferase.
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Figure 4. 

Metabolomics-guided identification of bioactive metabolite candidate(s) followed by activity 

assessment. Workflow to elucidate the metabolite activity and role at the system’s level 

starts with the comparative metabolome analyses - a discovery-oriented untargeted or broad-

scale targeted profiling analysis is followed by data mining to select the metabolite 

candidate(s) based on the significance (p-value), amplitude (fold change) and direction of its 

change (i.e. accumulation or depletion) in the studied system (e.g. cell media, mice/human 

plasma, etc.). To this end, statistical approaches are applied, and the metabolite is identified 
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using spectral libraries (i.e. MS/MS matching). Protein and gene expression data (as a result 

of proteome and/or transcriptome analyses) are then used to support and help filter the 

candidate metabolites involved in the locally enriched part of the metabolic network, i.e. the 

same module or biochemical pathway. For example, the depletion of one a metabolite will 

usually be coupled by the significantly higher increased expression of its converting 

enzyme(s)) responsible for metabolite consumption. To gain further insights into the 

metabolic fate of the “metabolite-candidates” metabolite, the next step involves stable 

isotope-assisted (13C or 15N) tracing experiments to identify the active pathways used for 

metabolite catabolism. Different conditions can be tested in a longitudinal assay to gather 

the information about the metabolite uptake and conversions (i.e. label-enriched metabolites 

based on MS-based isotopologue abundance analyses, or NMR based flux analysis). Lastly, 

the metabolite supplementation experiments are performed using in vitro cell or organoid 

models, and in vivo models. These assays provide the direct information about how the 

phenotype is affected or modified via endogenous metabolite supplementation (ingestion 

through diet, drinking water or by addition to cell culture medium).
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Figure 5. 

A. Metabolite Activity for Phenotype Modulation. Metabolomics has already made a 

significant impact in a wide variety of scientific areas through discovery of active, mainly 

endogenous metabolites that can regulate different biological processes and thus modulate 

the phenotype in health and disease. B-F. Metabolic activity of α-ketoglutarate (AKG) in a 

variety of prokaryote to eukaryote systems. AKG accumulates in exercise, but can also be 

supplemented. Direct supplementation has a wide effect on various systems via different 

mechanisms. Common primary AKG sensors may be ATPase b subunit (as revealed by 
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DARTs proteomics) or PII (in plants/prokaryotes). B. In C. elegans, AKG addition leads to 

binding of the ATPase b subunit to inhibit ATP production, oxygen consumption, and 

thereby stimulating mTOR dependent autophagy. All of these mechanisms result in an 

extended life span of the worm. C. In embryonic stem cells, an increased AKG/Succinate 

ratio drives activation of JMJD3 and TET1/2 to perform epigenetic changes. These include a 

reduced trimethylation at H3K27Me3 and also a reduced methylation of DNA (5-

methylcytosine reduced). This enables increased gene expression required for pluripotency. 

D. In specialized mammalian organs such as the kidney, AKG is being secreted to control 

organ function in a paracellular manner. Urinary AKG derived from metabolic stress results 

in activation of Oxgr1 and subsequent activation of salt transporters to regulate electrolyte 

balance and, presumably, hypertension. E. In bacteria, intracellular AKG induced by 

nitrogen limitation inhibits Enzyme 1 to decrease glycolytic flux and to couple nitrogen 

consumption to glucose consumption. F. In T-cells, AKG induces activity of mTOR and the 

T-cell specific transcription factor TBET via unknown mechanism to promote differentiation 

to TH1 cells over TH2 cells.
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Table 1.

General Principles for activity screening strategies

Technology Mode Principle Application examples

Cell based assays In vitro Metabolite-induced cellular phenotype (e.g. cell migration) is 
quantified

140

Expression screening In vitro Metabolite-induced protein or transcript expression is 
quantified

14

Metabolite binding screening on 
protein arrays

In vitro Metabolite-protein interactions are profiled 83,84

Chemical proteomics In vitro Metabolite-protein interactions are profiled 83–86

In vivo administration and phenotype 
screening

In vivo Metabolite-induced molecular and patho-physiological 
phenotypes of model organisms are quantified

141

Mathematical modeling In silico Mass balance or neuronal networks are used to predict most 
active metabolites

91

Cognitive computing In silico Active metabolites are predicted based on previous studies 142
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Table 2.
Chemical biology and computational technologies to study metabolite activity.

This table delinates recently developed technologies that can be used to identify the primary target(s) and 

activities of a metabolite.

Approach Description Advantage Limitations Example

Purification and isolation 
from a complex mixture

Fractionation of complex 
biological mixtures by 
chromatography (e.g. 
HPLC) and subsequent 
activity testing using 
biological assays

Universal, flexible 
regarding the 
biological assay

Tedious, signal overlap, 
minor components might 
be missed

Identification of PGE2 as 
immune modulator 
derived from Trichuris 
suis worm eggs 143, 
identification of 
bioactive drug 
metabolites 144,145

Affinity selection mass 
spectrometry

Incubation of metabolite 
mixture and target 
enzymes/proteins, size 
exclusion separation of 
bound and unbound 
components, MS based 
characterization of bound 
fraction

Universal 
approach, no 
protein 
immobilization 
necessary

High grade of non-
specific binding may be 
obtained. Ligand binding 
and not activity is 
assessed.

Identification of protein-
metabolite and protein-
protein interactions in 
Arabidopsis thaliana 
146,147

Affinity purification 
(chromatography) – mass 
spectrometry

Affinity based protein 
purification and MS 
based characterization of 
components. Pulldown is 
done from complex 
cellular or metabolite 
mixtures

Universal approach 
which under 
certain 
circumstances can 
be used in vivo 
(e.g. yeast cells)

Antibody-dependent. 
Ligand binding and not 
activity is assessed.

Identification of several 
small molecule 
interaction partners 
within ergosterol 
biosynthesis. 60

Thermal proteome profiling Binding of a ligand to a 
protein in vivo or in vitro 
results in increased 
thermal stability

Universal 
approach, physical 
stabilization of 
proteins

Low throughput, and 
potentially significant 
amount of non-specific 
binding. Requires 
absolute metabolite 
concentrations, and 
binding is not necessarily 
bioactivity.

Identification of the 
protein metabolite 
interaction between 
STING and 2’3’-
cGAMP 148

Metabolite profiling 
combined with orthogonal 
molecular biology approaches

Integration of 
metabolomics data with 
the data obtained from 
orthogonal molecular 
biology experiments (i.e. 
gene silencing, enzyme 
inhibition, etc.)

Identification of 
mechanism of 
action of a 
(bio)active 
signaling 
metabolite

Long-term, fastidious Various examples 26

Integrated network analysis 
(GAM)

Combination of 
transcriptional and 
metabolomics data for 
the identification of 
active metabolic sub-
networks

Comprehensive 
network analysis 
allowing for a 
systems wide 
comparison of two 
biological states, 
e.g. control and 
experiment 
conditions

Transcriptional data 
mandatory, preassembled 
metabolic networks 
(species dependent)

Integration of metabolic 
and transcriptional data 
to understand 
macrophage immune 
metabolism. 24149

Flux balance analysis Mathematical approach 
for the calculation of the 
metabolic flux through a 
network, in silico 
approach.

Easily computable. 
No kinetic 
parameters needed.

In silico approach based 
on genome scale 
metabolic network 
reconstructions. Only 
predicts steady state.
Does not predict 
metabolite concentrations.

Determination of 
Metabolite balance to 
determine behaviour and 
composition of 
engineered microbial 
communities 150151

Metabolite set enrichment 
and network analysis

Computational approach 
based on 
overrepresentation and 
probability analysis of 
metabolomics data to 
identify the active 

Rapid, allows for 
direct association 
with biochemically 
relevant 
information

In silico approach, 
significant amount of false 
positive metabolite IDs 
due to high levels of 
redundancy and noise in 
metabolomics data

Multi-omics discovery of 
RCC6-encoded protein 
CSB to potentailly alter 
defects in DNA-repair 
mechanisms in 
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Approach Description Advantage Limitations Example

biochemical pathways or 
locally enriched parts of 
the metabolic network 
associated with 
phenotype

Huntington’s disease 
-98,152,153

Bioactive Natural Products 
Prioritization using massive 
multi-informational 
Molecular Networks

Molecular networks 
embedding known 
bioactivity and 
taxonomical data to 
highlight potentially 
bioactive scaffolds in 
crude extracts

Computational 
approach that 
facilitates the 
identification of 
potentially 
bioactive 
compounds using 
databases and 
molecular/
fragmentation 
similarity in mass

Complete structural 
elucidation of active 
compounds remains a 
challenge

Isolation of new 
cytotoxic prenylated 
stilbenes of the 
schweinfurthin series 
from Macaranga tanarius 
154,155
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