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Identification of C3 as a therapeutic
target for diabetic nephropathy
by bioinformatics analysis

ShuMei Tang, XiuFen Wang, TianCi Deng, HuiPeng Ge & XiangCheng Xiao™*

The pathogenesis of diabetic nephropathy is not completely understood, and the effects of existing
treatments are not satisfactory. Various public platforms already contain extensive data for deeper
bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples,
we identified 345 genes through differential expression analysis and weighted gene coexpression
correlation network analysis. GO annotations mainly included neutrophil activation, regulation

of immune effector process, positive regulation of cytokine production and neutrophil-mediated
immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades,

cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional
datasets were analysed to understand the mechanisms of differential gene expression from an
epigenetic perspective. Differentially expressed miRNAs were obtained to construct a miRNA-mRNA
network from the miRNA profiles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/
ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels
of the 345 genes were also tested based on the gene methylation profiles of the GSE121820 dataset.
The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation
analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and
KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identified as
potential therapeutic drugs using Connectivity Map.

It is estimated that a total of 451 million people suffered from diabetes by 2017, and the number is speculated to
be 693 million by 2045'. As one of the most serious microvascular complications, diabetic nephropathy (DN)
has been a major cause of end-stage renal disease (ESRD) in many countries. The congregation of advanced
glycation end-products, oxidative stress and activation of protein kinase C are the major pathogeneses of DN.
A new viewpoint holds that tubular injury plays an important and even initial role’. Current treatment strate-
gies for DN aim at controlling blood glucose and blood pressure levels and inhibiting the RAS system to reduce
albuminuria and delay the progression of DN®. However, considering the high incidence of DN-related ESRD,
the effect is not entirely satisfactory. Therefore, there is a critical need to identify new therapeutic targets and
improve clinical management.

High-throughput sequencing technology offers an effective method to study disease-related genes and pro-
vides promising medication goals in many fields*. To date, several studies have screened genes or miRNAs
involved in DN°. Integrating these data could overcome the heterogeneity of studies and provide more accurate
information. This study identified target genes that may improve the understanding of the molecular mecha-
nisms of DN and provide a resource to build new hypotheses for further follow-up studies. We suggest that the
complement system may serve as a therapeutic target in DN.

Results

Differential expression analysis of genes in the GSE30529 dataset. Differential expression analy-
sis of genes in the GSE30529 dataset® was performed to obtain differentially expressed genes (DEGs) that may
be involved in DN. First, the GSE30529 dataset was subjected to quality examination to detect batch effects and
determine the principal component of the dataset that contributed the most to the variance. The boxplot showed
that the overall gene expression levels of the samples in the GSE30529 dataset were approximately the same
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Figure 1. Differential expression analysis of GSE30529. (a) Boxplot of GSE30529. (b) PCA of GSE30529. The
two main components contributed 25.7% and 25.4%. (c) Volcano map of DEGs. A total of 386 upregulated
DEGs and 71 downregulated DEGs were identified between the DN group and the control group with the
criteria of |log2 FC| greater than 1 and adjusted P value less than 0.05. (d) Heatmap of the top 25 DEGs.

(Fig. 1a), suggesting that there was no batch effect. In addition, the two main components contributed 25.7% and
25.4% in principal component analysis (PCA) (Fig. 1b), suggesting that there are obviously different components
between the DN group and the control group. These different components may be biologically significant DEGs.
After the quality inspection, differential expression analysis was performed by the limma package'® to acquire
DEGs with the criteria of [log2-fold change (FC)| greater than 1 and adjusted p value less than 0.05. As a result,
386 upregulated DEGs and 71 downregulated DEGs were identified between the DN group and the control
group. The volcano map in Fig. 1c displays the general distribution of these genes, and the top 25 DEGs (PART1I,
IGJ, IGLC1, IGLV1-44, FCERIA, HDACY, VCAN, TNC, PDLIM1, PXDN, C3, LTF, CXCL6, MMP7, LYZ, MID1,
TRIM22, PTPRE, MARCKSL1, QPCT, TNFAIP8, SPARC, NMI, PLK2 and KDELC1) are shown in the hierarchi-
cal clustering heatmap in Fig. 1d.

Weighted gene coexpression network analysis of the GSE30529 dataset. Compared with dif-
ferential analysis that focuses on the differential expression of genes, the advantage of weighted gene coexpres-
sion network analysis (WGCNA) is that it uses expression correlation information between multiple genes to
identify genes of interest. Therefore, we applied two analytical methods to screen the target genes. Similarly, we
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Figure 2. WGCNA of GSE30529. (a) Sample clustering of GSE30529. (b) Analysis of soft-thresholding powers
to fit the scale-free topology model and the mean connectivity of the soft-thresholding powers; 10 was chosen
as the value to construct a scale-free network. (c) Dendrogram of the gene modules. The branches represent
different gene modules, and each leaf represents a gene in the cluster dendrogram. (d) Clustering and heatmap
of 22 gene modules. (e) Heatmap of the weighted gene coexpression correlations of all genes.

performed sample cluster analysis first to learn sample similarity. The results showed that there were 3 outliers
(Fig. 2a); therefore, three samples (GSM757025, GSM757027 and GSM757034) were removed. When perform-
ing WGCNA, to construct a scale-free network, the scale-free topological fitting index reaches 0.85 and the
mean connectivity reaches 100 by setting the soft threshold power value to 10 (Fig. 2b). Based on the weighted
gene coexpression correlation, hierarchical clustering analysis was carried out to obtain different gene modules,
which are represented by branches of the clustering tree and different colours. A total of 22 modules were found
in the network, with module sizes ranging from 30 to 10,000 and merge cut hights of 0.25 (Fig. 2¢). The 22 mod-
ules were divided into two clusters in general according to the relationships between the modules (Fig. 2d). In
addition, the weighted coexpression correlations of all genes were displayed in a heatmap plot (Fig. 2e). Finally,
3,538 highly related genes were selected in the TOM matrix with a threshold greater than 0.1. The results of the
two analyses can be combined to obtain more accurate targets. Therefore, a list of 345 target genes was obtained,
and these genes may play a regulatory role in DN (Fig. 3a).
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Figure 3. Enrichment analysis. (a) Venn diagram of the DEG list and highly related gene list. A total of 345
target genes were obtained. (b, ¢) GO annotation and KEGG pathway enrichment analysis. GO annotations
mainly included neutrophil activation, regulation of immune effector process, positive regulation of cytokine
production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and
coagulation cascades, cell adhesion molecules and ECM-receptor interaction and focal adhesion.

Functional enrichment analysis of the target genes. The pathogenesis of diabetic nephropathy is
very complex, and understanding the functions of the target genes could guide the direction of new research.
Functional enrichment analysis of the target genes was performed with the clusterProfiler package!! to explore
the Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in
which target genes are involved. The top 12 GO terms were identified and mainly included neutrophil activa-
tion, regulation of immune effector process, positive regulation of cytokine production and neutrophil-mediated
immunity (Fig. 3b). The KEGG pathways mostly included phagosome, complement and coagulation cascades,
cell adhesion molecules (CAMs), ECM-receptor interaction and focal adhesion (Fig. 3c). The AGE-RAGE sig-
nalling pathway in diabetic complications was also found. It is interesting that the immune system seems to play
an important role.

Potential epigenetic regulatory mechanism. It has now been recognized that the occurrence and
development of DN are the result of complex interactions between genetic and environmental factors. Envi-
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Figure 4. Differential expression analysis of GSE51674. (a) Cluster dendrogram of GSE51674. (b) Principal
component analysis of GSE30529. The two main components contributed 62.71% and 15.68%. (c) Volcano map
of differentially expressed miRNAs. Sixty-seven upregulated miRNAs and 16 downregulated miRNAs were
identified between the DN group and the control group with the criteria of [log2 FC| greater than 3 and adjusted
p value less than 0.01. (d) Heatmap of the downregulated DEGs.
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ronmental signals could change intracellular pathways through chromatin modifiers and regulate gene expres-
sion patterns leading to diabetes and its complications'?. After determining the target genes, we studied more
datasets to understand the potential mechanisms of the differential expression of the target genes, including the
GSE51674 dataset’, which contains miRNA profiles, and the GSE121820 dataset, which contains DNA methyla-
tion profiles.

Generally, gene expression could be inhibited by miRNAs via base pairing with mRNA. Differential expres-
sion analysis was performed on the miRNA profiles of the GSE51674 dataset’. Similarly, quality examinations
of GSE51674 were performed. There were no very heterogeneous samples in the sample cluster dendrogram
(Fig. 4a). PCA showed that the two main components contributed 62.71% and 15.68%, respectively (Fig. 4b).
Next, 16 downregulated miRNAs and 67 upregulated miRNAs were found with the criteria of |log2 FC| greater
than 3 and adjusted p value less than 0.01 (Fig. 4c). The 16 downregulated miRNAs are shown in the hierarchical
clustering heatmap in Fig. 4d. To construct a downregulated miRNA-mRNA network, the TargetScan, miRWalk,
miRBase and miRTarBase databases'*~'¢ were used for target gene prediction of the miRNAs. Eighty-eight down-
regulated miRNA-mRNA pairs were obtained according to the miRNA target webtools (Fig. 5a). Among them,
TGFBI, SH2B3 and ZNF652 were upregulated in the GSE30529 dataset (Fig. 5b). Therefore, the miR-1237-3p/
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Figure 5. miRNA-mRNA network. (a) Venn plot of four prediction results. (b) miRNA-mRNA network. In this
network, TGFBI, SH2B3 and ZNF652 in red were upregulated in GSE30529.

SH2B3, miR-1238-5p/ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. Similar
work was carried out on the upregulated miRNAs, but their predicted genes did not overlap with the target
genes from GSE30529.

DNA methylation is the main epigenetic form of gene expression regulation. To understand the methylation
level changes of the target genes, the GSE121820 dataset was downloaded as a validation dataset. Among 345
target genes, 227 genes had methylation differences between the DN group and the control group (Supplemental
Table 1).

PPl network and identification of hub genes.  First, the list of target genes was exported to the STRING
database. By setting the interaction confidence score at the highest level at 0.9, a protein-protein interaction
(PPI) network was constructed, which contained 190 nodes and 680 edges (Fig. 6a). Each node represents a
protein, and an edge represents an interaction between proteins. The size and gradient colour of the nodes are
adjusted by the degree, while the thickness and gradient colour of the edge are adjusted by the interaction score.
To search for important nodes in the networks, all nodes were ranked by the 12 topological analysis methods
provided by CytoHubba. Each algorithm computed all node scores, and then 1-50 points were assigned based on
the rank. According to all points, the top 20 nodes (KNG1, C3, FN1, SYK, HLA-E, EGE ITGB2, CXCL1, CXCLS,
ITGAV, LYN, VWE RHOA, HLA-DQA1, ITGAM, SERPINGI, P2RY13, ANXA1, P2RY14 and FCER1G) were
identified (Fig. 6b). Because the products of genes were at the core of the PPI network, these hub genes were
considered potential therapeutic targets.

Clinical data validation and drug prediction. To verify the potential roles of the hub genes in DN,
clinical data including two datasets (Woroniecka and Schmid) from Nephroseq were obtained, and Pearson cor-
relation analysis was performed between the hub genes and clinical data. The gene expression of SYK, CXCLI,
LYN, VWF, ANXA1I, C3, HLA-E, RHOA and SERPINGI in DN tubule samples was negatively related to GFR,
suggesting a pathogenic role of the upregulated genes (Fig. 7a, c, ). Conversely, the gene expression of EGF and
KNGI in DN tubule samples was positively related to GFR, suggesting a protective role of the downregulated
genes (Fig. 7b, d, f).

Given that the effectiveness of existing treatment strategies is not entirely satisfactory, it is necessary to pro-
pose new strategies and develop new therapeutic methods. Connectivity Map'” was used to compare the DEG
list with the database reference dataset, and a correlation score (— 100 to 100) was obtained. Negative numbers
indicate that the DEG list and the reference gene expression spectrum may be opposite; that is, the expression
spectrum of drug disturbance is negatively correlated with the expression spectrum of disease disturbance.
Twenty-three upregulated DEGs (logFC greater than 2.5) and 13 downregulated DEGs (logFC less than 1.5) were
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Sae(:llelgl)lle HEPG2 HAIE A375 HT29 PC3 HCC515 A549 VCAP MCF7 Summary
VEGF-receptor-2-kinase-inhibitor-IV NaN —-97.65 NaN NaN -98.72 —-36.65 NaN 39.31 NaN -95.76
GPR158 -99.67 -99.54 -87.54 -85.11 -95.37 -96.24 NaN 0.00 ~78.44 -99.00
CYP51A1 -96.01 -25.96 -98.71 66.44 -91.52 NaN —-99.55 NaN 0.00 -99.38
PTMS NaN 0.00 -98.98 -93.33 -78.99 -96.77 -98.10 -35.22 0.00 -97.04
Withaferin-A 0.00 0.00 -92.00 -14.15 -97.00 -98.40 0.00 -90.66 -96.15 -95.84
Digoxin NaN 0.00 -98.81 0.00 -76.95 -97.80 0.00 -91.20 -97.67 -96.35
Digoxin 0.00 0.00 -97.41 0.00 -96.72 —-83.92 -93.40 -98.91 -87.77 -95.77
Ouabain -91.46 —-25.32 -96.72 -88.99 -89.54 -53.35 -97.20 0.00 -92.89 -94.13
PHF15 64.27 -81.91 —-95.04 0.00 -96.29 NaN —-96.54 NaN 0.00 -95.50

Table 1. Small molecular compounds identified by connectivity map.

exported to Connectivity Map to search for potential drugs. Small molecule compounds with an average coef-
ficient of less than — 90 were sorted according to the correlation score of the reference gene expression spectrum.
As a result, 8 small molecule compounds were identified as potential therapeutic drugs (Table 1).

Discussion

As one of the microvascular complications of diabetes, DN is the main cause of ESRD. Existing treatments are
not sufficient to control the development of disease. New treatment strategies are needed. High-throughput
omics data have been widely used to study the mechanisms of disease and predict possible therapeutic targets.
We performed differential expression analysis and WGCNA of GSE30529 and obtained 345 target genes. GO
annotations mainly included neutrophil activation, regulation of immune effector process, positive regulation of
cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, comple-
ment and coagulation cascades, cell adhesion molecules (CAM:s), ECM-receptor interaction, focal adhesion and
AGE-RAGE signalling pathway in diabetic complications. The results supported that the immune response may
be involved in DN. Cytokine release and extracellular matrix deposition may be subsequent events and continue
with the development of disease. We also studied additional datasets to understand the potential mechanisms
of the differential expression of the target genes. The miRNA-mRNA network suggested that the miR-766-3p/
TGFBI, miR-1238-5p/ZNF652 and miR-1237-3p/SH2B3 axes may be involved in diabetic nephropathy and that
most target genes have differences in DNA methylation levels between the DN group and the control group.
Next, a PPI network was established, and the 20 hub genes were identified. Furthermore, correlation analysis
with clinical data demonstrated the disease-promoting effect of SYK, CXCLI, LYN, VWF, ANXAI, C3, HLA-E,
RHOA and SERPING1, which were upregulated in DN tubule samples. In contrast, EGF and KNG1, which were
downregulated in DN tubule samples, were suggested to have protective effects in DN.

To date, there have been some reports about hub genes and DN. Spleen tyrosine kinase (SYK) was reported
to mediate high glucose-induced TGF-f1 and IL-1p secretion'®". In a diabetic animal model, C-X-C motif
chemokine ligand 1 (CXCL1) was found to possibly serve as a proinflammatory mediator**?'. In addition, VWF
was reported to be involved in intrarenal thrombosis leading to the deterioration of renal function?. Purvis et al.
observed higher circulating plasma levels of ANXAL1 in T1D and T2D patients, whereas the exogenous sup-
plementation of ANXA1 improves insulin resistance and prevents the progression of subsequent microvascular
complications in mice?***. Previous studies have demonstrated that statins prevent DN by reducing the activity
of Ras homolog family member A (RhoA) protein activation®>~*%. Another study reported that the activation of
RhoA/ROCK may regulate the NF-B signalling pathway®. In addition, sinomenine, kaempferol, catalpol and
rutin have been shown to have protective effects through the RhoA/ROCK signalling pathway**-**. EGF was
considered a urine biomarker in two studies®*. Recently, the newest report about cytosine methylation differ-
ences in kidney tubule samples supported this viewpoint®. In addition, one large-scale linkage study revealed
polymorphisms in kininogen 1 (KNG1) associated with DN in European populations®.

C3 was the gene of interest through differential expression analysis and WGCNA. The KEGG pathways of the
target genes also included the complement and coagulation cascade. In addition, the selection of the core genes in
the PPI network also indicated that C3 was centrally located. These results may prove that complement C3 serves
as a therapeutic target in diabetic nephropathy. The results are consistent with knowledge that the complement
system participates in DN. The development of diabetes is intimately linked to low-grade inflammation?®. High
levels of inflammatory markers such as C-reactive protein and adiponectin proved this viewpoint**#’. Inflamma-
tion might promote the occurrence and development of diabetic complications such as DN. However, the under-
lying mechanisms of the initiation of low-grade inflammation are still poorly understood. Increasing research
evidence has proven that the innate immune system is closely involved in diabetes*'. Simultaneously, the roles
for pattern recognition receptors (PRRs) associated with DN have been discussed*>*’. The complement system is
not only involved in innate immune defence by PRRs (mannose-binding lectin and ficolin) but also considered
an important proinflammatory factor. Several studies have pointed out that the complement system is involved
in the pathogenesis of DN and might be a therapeutic target**~*¢. Significant differences in complement system
component levels in both plasma and urine were found between DN patients and diabetic patients. In addition,
Li et al. highlighted the relatively more important impact of C3a, C5a and sC5b-9 in the development of DN*’.
Sun et al. demonstrated that more severe kidney damage was associated with the deposition of C1q and C3c in

SCIENTIFIC REPORTS |

(2020) 10:13468 |

https://doi.org/10.1038/s41598-020-70540-x



www.nature.com/scientificreports/

S100A4 cen ces?
a ACKRT REps  STRAG
PLACS AGGH
ANXA2 sLPI
ADCY7CXCL6
MED17
RNASET2 -
MNDA Lyz LF2 N
CX3CR1 P2RY13 ASBO  poK
FABPS5 DOCK2
IFI16 gxCLe apcT APOH
@ coL19 CCR2 UBE2J1 ppa
pycarD ANXAT S FCGR2B PVALB SGRD
HTR28B PR rE KRT7 FTCD
XCL1ARPE 18
ccLs 7 ol CLECTA  GAD1
cD48 cxcLY
o HRH1 e |L10Ra  KRT1gMTHFD2 DOXR
IGLLS GHR
P& c3 GPRIE  vsics creg CERIA EVI2A
F11 KNG1 DN on
& CSF2RB TIR? EVI2B
er i FCGR2A
g TR Y e C1QB FCER1G gqg  LCP2 _ \FladL
PROC HLA-DPBY, \ oo
TIMP1 Hols1 HLA-DRA
CASP4 ST i
SRGN MRS\ (ITGAMS - NGIRSYIS STAT1 HLA-DQA1 HLA-F
HLA-DPA1
TUBA1A RN e FNT. AW ey IRF1  IRF8
A 4 LES F HLA-E LPGAT1
VCA! PECAM1 P oopi HLA-B asT2
TURAE RO PSSt TeFE EGF CD53 cD3D R LPCAT1
RS 2 HLA-C IFITM3
PDGFRA TRIMZ
MMP7 FAS
ARHGDIB  cHST15  LAMC2  ITGAV THY1 péliBo IFITM2
L - PSMB8
NCF2 cD14
CASP3
DSE SELPLG PSMB10
KDELR3 TLRT coLtsat BIRC3 X e Ccouss
DCN
VIM SPRY MRCA o
LAMA4 LY%6 SELL
COL4A1 WNTSA
COL4A2 coL1as PRKCB
comp s
MELK COLeAzo - PDK2  fzp7 CD69
L3A ZMK FZD2
RRM2 LUM
POSTN GZMA
b KIAAO101
KNGT g
c3 Fo
FN1 ©
SYK Y
HLA-E
EGF "
.0
ITGB2

CXcCL1
CXCL8
ITGAV
LYN
VWF
RHOA
HLA-DQA1
ITGAM
SERPING1
P2RY13
ANXA1
P2RY14
FCER1G

ONN

ssang

ssauusamjeg
ooNsMog
sseussOl)
Awouuenog
Ajerpey

Jelo06uL

Figure 6. PPI network. (a) PPI network of combined genes. There are 190 nodes and 680 edges. The size and
gradient colour of nodes are adjusted by degree. The thickness and gradient colour of the edge are adjusted by
the interaction score. (b) Heatmap of the CytoHubba analysis score.

renal histopathology assessment*®. Furthermore, a large-scale cohort study substantiated that diabetic patients
with high plasma levels of C3 are more prone to kidney damage than the general population®’. Another study
indicated that the serum levels of C3 may help to differentiate DN patients from diabetic patients without kidney
damage®. Blockade of C3a and C5a receptors in a TIDM model indicated a potential protective effect on renal
fibrosis by improving endothelial-to-myofibroblast transition through the Wnt/B-catenin signalling pathway®'.
Similarly, blockade of C3a receptors in rats with T2DM improved renal morphology and function by inhibiting
cytokine release and TGFp/Smad3 signalling®®. However, the best approach for targeting the complement system
to prevent the development of DN still needs to be explored. Therefore, 8 potential small molecule compounds
were identified by the Connectivity Map database in our study.

In summary, our study has important significance in understanding the underlying mechanisms of DN and
is helpful for developing new treatment strategies for DN. However, further molecular biological experiments
are needed to verify the association between the identified genes and DN.
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Figure 7. Pearson correlation analyses of GFR and target genes. (a) The gene expression of SYK (p=0.0022,
r=-0.8437), CXCLI (p=0.0016, r= —0.8554), LYN (p=0.0269, r= —0.6911), VWF (p=0.0452, r= —0.6423)
and ANXAI (p=0.0211, r= —0.7111) was negatively related to GFR. (b) The gene expression of EGF (p=0.0027,
r=0.8349) and KNG1 (p=0.0073, r=0.7838) was positively correlated with GFR. (c) The gene expression of

C3 (p=0.0459, r= -0.6109) and CXCLI (p=0.0061, r= —0.7645) was negatively correlated with GFR. (d) The
gene expression of EGF (p=0.0037, r=0.7919) was positively related to GFR. (e) The gene expression of C3
(p=0.0171, r=—-0.6970), HLA-E (p=0.0132, r= —0.7161), RHOA (p=0.0439, r= —0.6154) and SERPINGI
(p=0.0091, r= —0.7409) was negatively correlated with GFR. (f) EGF (p=0.0121, r=0.7221) and KNGI
(p=0.0153, r=0.7053) were positively related to GFR.

Materials and methods

Data download. The GSE30529 (expression profiling by array)® and GSE51674 (non-coding RNA profil-
ing by array)® datasets were downloaded by the GEOquery package® in R software version 3.6.2. GSE121820_
T2DN-CTL (methylation profiling by genome tiling array, unpublished) was downloaded from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/). The GSE30529 dataset based on the GPL571 platform includes 10
DN tubule samples and 12 control samples. The GSE51674 dataset based on the GPL10656 platform includes 6
DN tissue samples and 4 control samples. The GSE121820 dataset based on the GPL5082 platform contains 10
T2 DN blood samples and 10 control samples.

Data processing. All differential analyses were performed by the limma package!®. Adjusted p values less
than 0.05 and |log2-fold change (FC)| greater than 1 were considered statistically significant in the differential
analysis of GSE30529. Adjusted p values less than 0.01 and |log2 FC| greater than 3 were considered statistically
significant in the differential analysis of GSE51674. In addition, the TargetScan, miRWalk, miRBase and miRTar-
Base databases'*~!¢ were used for the target gene prediction of the differentially expressed miRNAs.

Weighted gene coexpression network analysis (WGCNA) allows biologically meaningful module information
mining based on pairwise correlations between genes in high-throughput data using the WGCNA package™.
The WGCNA workflow consists of gene coexpression network construction, module identification, module rela-
tionship analysis and the identification of highly related genes. The gene coexpression network was constructed
with the filtering principle that the soft threshold makes the network more consistent with a scale-free topol-
ogy. The modules were identified with the criterion of module size 30-10,000, merge cut height equal to 0.25
and verbose equal to 3. Highly related genes were obtained with thresholds greater than 0.1 in the topological
overlap matrix (TOM).

Functional enrichment analysis and hub gene screening. Gene Ontology (GO) annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed with the
clusterProfiler package!'. The STRING database® (version 11.0, https://string-db.org/) was used to search for
interactions between the candidate proteins based on laboratory data, other databases, text mining and pre-
dictive bioinformatics data. Cytoscape software was used to visualize the protein-protein interaction (PPI)
network and perform network analysis. CytoHubba, a built-in tool in Cytoscape, uses 12 methods to explore
important nodes in biological networks, such as the Degree method (Deg), Maximum Neighborhood Compo-
nent (MNC), Density of Maximum Neighborhood Component (DMNC), Maximal Clique Centrality (MCC),
Closeness, EcCentricity, Radiality, BottleNeck, Stress, Betweenness, Edge Percolated Component (EPC) and
ClusteringCofficient™.
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Clinical data analysis and drug analysis. The Nephroseq v5 analysis engine (https://v5.nephroseq.org)
provides access to gene expression signatures and clinical features. Pearson correlation analysis was performed
between genes and GFR>. Unpaired Student’s t test was used to compare two groups. P values less than 0.05
were considered statistically significant. Nonsignificant results are not displayed.

Connectivity Map17, an online database that relates disease, genes, and drugs based on similar or opposite
gene expression signatures, was used for potential drug prediction.

Data availability

The GSE30529, GSE51674 and GSE121820 datasets are available in GEO database (https://www.ncbi.nlm.nih.
gov/geo/). The R script data used to support the findings of this study are included within the supplementary
information file.
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