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Identification of C3 as a therapeutic 
target for diabetic nephropathy 
by bioinformatics analysis
ShuMei Tang, XiuFen Wang, TianCi Deng, HuiPeng Ge & XiangCheng Xiao*

The pathogenesis of diabetic nephropathy is not completely understood, and the effects of existing 
treatments are not satisfactory. Various public platforms already contain extensive data for deeper 
bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples, 
we identified 345 genes through differential expression analysis and weighted gene coexpression 
correlation network analysis. GO annotations mainly included neutrophil activation, regulation 
of immune effector process, positive regulation of cytokine production and neutrophil-mediated 
immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades, 
cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional 
datasets were analysed to understand the mechanisms of differential gene expression from an 
epigenetic perspective. Differentially expressed miRNAs were obtained to construct a miRNA-mRNA 
network from the miRNA profiles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/
ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels 
of the 345 genes were also tested based on the gene methylation profiles of the GSE121820 dataset. 
The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation 
analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and 
KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identified as 
potential therapeutic drugs using Connectivity Map.

It is estimated that a total of 451 million people su�ered from diabetes by 2017, and the number is speculated to 
be 693 million by  20451. As one of the most serious microvascular complications, diabetic nephropathy (DN) 
has been a major cause of end-stage renal disease (ESRD) in many countries. �e congregation of advanced 
glycation end-products, oxidative stress and activation of protein kinase C are the major pathogeneses of DN. 
A new viewpoint holds that tubular injury plays an important and even initial  role2. Current treatment strate-
gies for DN aim at controlling blood glucose and blood pressure levels and inhibiting the RAS system to reduce 
albuminuria and delay the progression of  DN3. However, considering the high incidence of DN-related ESRD, 
the e�ect is not entirely satisfactory. �erefore, there is a critical need to identify new therapeutic targets and 
improve clinical management.

High-throughput sequencing technology o�ers an e�ective method to study disease-related genes and pro-
vides promising medication goals in many  �elds4. To date, several studies have screened genes or miRNAs 
involved in  DN5–9. Integrating these data could overcome the heterogeneity of studies and provide more accurate 
information. �is study identi�ed target genes that may improve the understanding of the molecular mecha-
nisms of DN and provide a resource to build new hypotheses for further follow-up studies. We suggest that the 
complement system may serve as a therapeutic target in DN.

Results
Differential expression analysis of genes in the GSE30529 dataset. Di�erential expression analy-
sis of genes in the GSE30529  dataset5 was performed to obtain di�erentially expressed genes (DEGs) that may 
be involved in DN. First, the GSE30529 dataset was subjected to quality examination to detect batch e�ects and 
determine the principal component of the dataset that contributed the most to the variance. �e boxplot showed 
that the overall gene expression levels of the samples in the GSE30529 dataset were approximately the same 
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(Fig. 1a), suggesting that there was no batch e�ect. In addition, the two main components contributed 25.7% and 
25.4% in principal component analysis (PCA) (Fig. 1b), suggesting that there are obviously di�erent components 
between the DN group and the control group. �ese di�erent components may be biologically signi�cant DEGs. 
A�er the quality inspection, di�erential expression analysis was performed by the limma  package10 to acquire 
DEGs with the criteria of |log2-fold change (FC)| greater than 1 and adjusted p value less than 0.05. As a result, 
386 upregulated DEGs and 71 downregulated DEGs were identi�ed between the DN group and the control 
group. �e volcano map in Fig. 1c displays the general distribution of these genes, and the top 25 DEGs (PART1, 
IGJ, IGLC1, IGLV1-44, FCER1A, HDAC9, VCAN, TNC, PDLIM1, PXDN, C3, LTF, CXCL6, MMP7, LYZ, MID1, 
TRIM22, PTPRE, MARCKSL1, QPCT, TNFAIP8, SPARC , NMI, PLK2 and KDELC1) are shown in the hierarchi-
cal clustering heatmap in Fig. 1d.

Weighted gene coexpression network analysis of the GSE30529 dataset. Compared with dif-
ferential analysis that focuses on the di�erential expression of genes, the advantage of weighted gene coexpres-
sion network analysis (WGCNA) is that it uses expression correlation information between multiple genes to 
identify genes of interest. �erefore, we applied two analytical methods to screen the target genes. Similarly, we 
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Figure 1.  Di�erential expression analysis of GSE30529. (a) Boxplot of GSE30529. (b) PCA of GSE30529. �e 
two main components contributed 25.7% and 25.4%. (c) Volcano map of DEGs. A total of 386 upregulated 
DEGs and 71 downregulated DEGs were identi�ed between the DN group and the control group with the 
criteria of |log2 FC| greater than 1 and adjusted P value less than 0.05. (d) Heatmap of the top 25 DEGs.
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performed sample cluster analysis �rst to learn sample similarity. �e results showed that there were 3 outliers 
(Fig. 2a); therefore, three samples (GSM757025, GSM757027 and GSM757034) were removed. When perform-
ing WGCNA, to construct a scale-free network, the scale-free topological �tting index reaches 0.85 and the 
mean connectivity reaches 100 by setting the so� threshold power value to 10 (Fig. 2b). Based on the weighted 
gene coexpression correlation, hierarchical clustering analysis was carried out to obtain di�erent gene modules, 
which are represented by branches of the clustering tree and di�erent colours. A total of 22 modules were found 
in the network, with module sizes ranging from 30 to 10,000 and merge cut hights of 0.25 (Fig. 2c). �e 22 mod-
ules were divided into two clusters in general according to the relationships between the modules (Fig. 2d). In 
addition, the weighted coexpression correlations of all genes were displayed in a heatmap plot (Fig. 2e). Finally, 
3,538 highly related genes were selected in the TOM matrix with a threshold greater than 0.1. �e results of the 
two analyses can be combined to obtain more accurate targets. �erefore, a list of 345 target genes was obtained, 
and these genes may play a regulatory role in DN (Fig. 3a).

Sample clustering to detect outliers
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Figure 2.  WGCNA of GSE30529. (a) Sample clustering of GSE30529. (b) Analysis of so�-thresholding powers 
to �t the scale-free topology model and the mean connectivity of the so�-thresholding powers; 10 was chosen 
as the value to construct a scale-free network. (c) Dendrogram of the gene modules. �e branches represent 
di�erent gene modules, and each leaf represents a gene in the cluster dendrogram. (d) Clustering and heatmap 
of 22 gene modules. (e) Heatmap of the weighted gene coexpression correlations of all genes.
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Functional enrichment analysis of the target genes. �e pathogenesis of diabetic nephropathy is 
very complex, and understanding the functions of the target genes could guide the direction of new research. 
Functional enrichment analysis of the target genes was performed with the clusterPro�ler  package11 to explore 
the Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in 
which target genes are involved. �e top 12 GO terms were identi�ed and mainly included neutrophil activa-
tion, regulation of immune e�ector process, positive regulation of cytokine production and neutrophil-mediated 
immunity (Fig. 3b). �e KEGG pathways mostly included phagosome, complement and coagulation cascades, 
cell adhesion molecules (CAMs), ECM-receptor interaction and focal adhesion (Fig. 3c). �e AGE-RAGE sig-
nalling pathway in diabetic complications was also found. It is interesting that the immune system seems to play 
an important role.

Potential epigenetic regulatory mechanism. It has now been recognized that the occurrence and 
development of DN are the result of complex interactions between genetic and environmental factors. Envi-
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Figure 3.  Enrichment analysis. (a) Venn diagram of the DEG list and highly related gene list. A total of 345 
target genes were obtained. (b, c) GO annotation and KEGG pathway enrichment analysis. GO annotations 
mainly included neutrophil activation, regulation of immune e�ector process, positive regulation of cytokine 
production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and 
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ronmental signals could change intracellular pathways through chromatin modi�ers and regulate gene expres-
sion patterns leading to diabetes and its  complications12. A�er determining the target genes, we studied more 
datasets to understand the potential mechanisms of the di�erential expression of the target genes, including the 
GSE51674  dataset9, which contains miRNA pro�les, and the GSE121820 dataset, which contains DNA methyla-
tion pro�les.

Generally, gene expression could be inhibited by miRNAs via base pairing with mRNA. Di�erential expres-
sion analysis was performed on the miRNA pro�les of the GSE51674  dataset9. Similarly, quality examinations 
of GSE51674 were performed. �ere were no very heterogeneous samples in the sample cluster dendrogram 
(Fig. 4a). PCA showed that the two main components contributed 62.71% and 15.68%, respectively (Fig. 4b). 
Next, 16 downregulated miRNAs and 67 upregulated miRNAs were found with the criteria of |log2 FC| greater 
than 3 and adjusted p value less than 0.01 (Fig. 4c). �e 16 downregulated miRNAs are shown in the hierarchical 
clustering heatmap in Fig. 4d. To construct a downregulated miRNA-mRNA network, the TargetScan, miRWalk, 
miRBase and miRTarBase  databases13–16 were used for target gene prediction of the miRNAs. Eighty-eight down-
regulated miRNA-mRNA pairs were obtained according to the miRNA target webtools (Fig. 5a). Among them, 
TGFBI, SH2B3 and ZNF652 were upregulated in the GSE30529 dataset (Fig. 5b). �erefore, the miR-1237-3p/
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Figure 4.  Di�erential expression analysis of GSE51674. (a) Cluster dendrogram of GSE51674. (b) Principal 
component analysis of GSE30529. �e two main components contributed 62.71% and 15.68%. (c) Volcano map 
of di�erentially expressed miRNAs. Sixty-seven upregulated miRNAs and 16 downregulated miRNAs were 
identi�ed between the DN group and the control group with the criteria of |log2 FC| greater than 3 and adjusted 
p value less than 0.01. (d) Heatmap of the downregulated DEGs.
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SH2B3, miR-1238-5p/ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. Similar 
work was carried out on the upregulated miRNAs, but their predicted genes did not overlap with the target 
genes from GSE30529.

DNA methylation is the main epigenetic form of gene expression regulation. To understand the methylation 
level changes of the target genes, the GSE121820 dataset was downloaded as a validation dataset. Among 345 
target genes, 227 genes had methylation di�erences between the DN group and the control group (Supplemental 
Table 1).

PPI network and identification of hub genes. First, the list of target genes was exported to the STRING 
database. By setting the interaction con�dence score at the highest level at 0.9, a protein–protein interaction 
(PPI) network was constructed, which contained 190 nodes and 680 edges (Fig. 6a). Each node represents a 
protein, and an edge represents an interaction between proteins. �e size and gradient colour of the nodes are 
adjusted by the degree, while the thickness and gradient colour of the edge are adjusted by the interaction score. 
To search for important nodes in the networks, all nodes were ranked by the 12 topological analysis methods 
provided by CytoHubba. Each algorithm computed all node scores, and then 1–50 points were assigned based on 
the rank. According to all points, the top 20 nodes (KNG1, C3, FN1, SYK, HLA-E, EGF, ITGB2, CXCL1, CXCL8, 
ITGAV, LYN, VWF, RHOA, HLA-DQA1, ITGAM, SERPING1, P2RY13, ANXA1, P2RY14 and FCER1G) were 
identi�ed (Fig. 6b). Because the products of genes were at the core of the PPI network, these hub genes were 
considered potential therapeutic targets.

Clinical data validation and drug prediction. To verify the potential roles of the hub genes in DN, 
clinical data including two datasets (Woroniecka and Schmid) from Nephroseq were obtained, and Pearson cor-
relation analysis was performed between the hub genes and clinical data. �e gene expression of SYK, CXCL1, 
LYN, VWF, ANXA1, C3, HLA-E, RHOA and SERPING1 in DN tubule samples was negatively related to GFR, 
suggesting a pathogenic role of the upregulated genes (Fig. 7a, c, e). Conversely, the gene expression of EGF and 
KNG1 in DN tubule samples was positively related to GFR, suggesting a protective role of the downregulated 
genes (Fig. 7b, d, f).

Given that the e�ectiveness of existing treatment strategies is not entirely satisfactory, it is necessary to pro-
pose new strategies and develop new therapeutic methods. Connectivity  Map17 was used to compare the DEG 
list with the database reference dataset, and a correlation score (− 100 to 100) was obtained. Negative numbers 
indicate that the DEG list and the reference gene expression spectrum may be opposite; that is, the expression 
spectrum of drug disturbance is negatively correlated with the expression spectrum of disease disturbance. 
Twenty-three upregulated DEGs (logFC greater than 2.5) and 13 downregulated DEGs (logFC less than 1.5) were 
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Figure 5.  miRNA-mRNA network. (a) Venn plot of four prediction results. (b) miRNA-mRNA network. In this 
network, TGFBI, SH2B3 and ZNF652 in red were upregulated in GSE30529.
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exported to Connectivity Map to search for potential drugs. Small molecule compounds with an average coef-
�cient of less than − 90 were sorted according to the correlation score of the reference gene expression spectrum. 
As a result, 8 small molecule compounds were identi�ed as potential therapeutic drugs (Table 1).

Discussion
As one of the microvascular complications of diabetes, DN is the main cause of ESRD. Existing treatments are 
not su�cient to control the development of disease. New treatment strategies are needed. High-throughput 
omics data have been widely used to study the mechanisms of disease and predict possible therapeutic targets. 
We performed di�erential expression analysis and WGCNA of GSE30529 and obtained 345 target genes. GO 
annotations mainly included neutrophil activation, regulation of immune e�ector process, positive regulation of 
cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, comple-
ment and coagulation cascades, cell adhesion molecules (CAMs), ECM-receptor interaction, focal adhesion and 
AGE-RAGE signalling pathway in diabetic complications. �e results supported that the immune response may 
be involved in DN. Cytokine release and extracellular matrix deposition may be subsequent events and continue 
with the development of disease. We also studied additional datasets to understand the potential mechanisms 
of the di�erential expression of the target genes. �e miRNA-mRNA network suggested that the miR-766-3p/
TGFBI, miR-1238-5p/ZNF652 and miR-1237-3p/SH2B3 axes may be involved in diabetic nephropathy and that 
most target genes have di�erences in DNA methylation levels between the DN group and the control group. 
Next, a PPI network was established, and the 20 hub genes were identi�ed. Furthermore, correlation analysis 
with clinical data demonstrated the disease-promoting e�ect of SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, 
RHOA and SERPING1, which were upregulated in DN tubule samples. In contrast, EGF and KNG1, which were 
downregulated in DN tubule samples, were suggested to have protective e�ects in DN.

To date, there have been some reports about hub genes and DN. Spleen tyrosine kinase (SYK) was reported 
to mediate high glucose-induced TGF-β1 and IL-1β  secretion18,19. In a diabetic animal model, C-X-C motif 
chemokine ligand 1 (CXCL1) was found to possibly serve as a proin�ammatory  mediator20,21. In addition, VWF 
was reported to be involved in intrarenal thrombosis leading to the deterioration of renal  function22. Purvis et al. 
observed higher circulating plasma levels of ANXA1 in T1D and T2D patients, whereas the exogenous sup-
plementation of ANXA1 improves insulin resistance and prevents the progression of subsequent microvascular 
complications in  mice23,24. Previous studies have demonstrated that statins prevent DN by reducing the activity 
of Ras homolog family member A (RhoA) protein  activation25–28. Another study reported that the activation of 
RhoA/ROCK may regulate the NF-κB signalling  pathway29. In addition, sinomenine, kaempferol, catalpol and 
rutin have been shown to have protective e�ects through the RhoA/ROCK signalling  pathway30–33. EGF was 
considered a urine biomarker in two  studies34,35. Recently, the newest report about cytosine methylation di�er-
ences in kidney tubule samples supported this  viewpoint36. In addition, one large-scale linkage study revealed 
polymorphisms in kininogen 1 (KNG1) associated with DN in European  populations37.

C3 was the gene of interest through di�erential expression analysis and WGCNA. �e KEGG pathways of the 
target genes also included the complement and coagulation cascade. In addition, the selection of the core genes in 
the PPI network also indicated that C3 was centrally located. �ese results may prove that complement C3 serves 
as a therapeutic target in diabetic nephropathy. �e results are consistent with knowledge that the complement 
system participates in DN. �e development of diabetes is intimately linked to low-grade  in�ammation38. High 
levels of in�ammatory markers such as C-reactive protein and adiponectin proved this  viewpoint39,40. In�amma-
tion might promote the occurrence and development of diabetic complications such as DN. However, the under-
lying mechanisms of the initiation of low-grade in�ammation are still poorly understood. Increasing research 
evidence has proven that the innate immune system is closely involved in  diabetes41. Simultaneously, the roles 
for pattern recognition receptors (PRRs) associated with DN have been  discussed42,43. �e complement system is 
not only involved in innate immune defence by PRRs (mannose-binding lectin and �colin) but also considered 
an important proin�ammatory factor. Several studies have pointed out that the complement system is involved 
in the pathogenesis of DN and might be a therapeutic  target44–46. Signi�cant di�erences in complement system 
component levels in both plasma and urine were found between DN patients and diabetic patients. In addition, 
Li et al. highlighted the relatively more important impact of C3a, C5a and sC5b-9 in the development of  DN47. 
Sun et al. demonstrated that more severe kidney damage was associated with the deposition of C1q and C3c in 

Table 1.  Small molecular compounds identi�ed by connectivity map.

Cell ID
molecule HEPG2 HA1E A375 HT29 PC3 HCC515 A549 VCAP MCF7 Summary

VEGF-receptor-2-kinase-inhibitor-IV NaN  − 97.65 NaN NaN  − 98.72  − 36.65 NaN 39.31 NaN  − 95.76

GPR158  − 99.67  − 99.54  − 87.54  − 85.11  − 95.37  − 96.24 NaN 0.00  − 78.44  − 99.00

CYP51A1  − 96.01  − 25.96  − 98.71 66.44  − 91.52 NaN  − 99.55 NaN 0.00  − 99.38

PTMS NaN 0.00  − 98.98  − 93.33  − 78.99  − 96.77  − 98.10  − 35.22 0.00  − 97.04

Withaferin-A 0.00 0.00  − 92.00  − 14.15  − 97.00  − 98.40 0.00  − 90.66  − 96.15  − 95.84

Digoxin NaN 0.00  − 98.81 0.00  − 76.95  − 97.80 0.00  − 91.20  − 97.67  − 96.35

Digoxin 0.00 0.00  − 97.41 0.00  − 96.72  − 83.92  − 93.40  − 98.91  − 87.77  − 95.77

Ouabain  − 91.46  − 25.32  − 96.72  − 88.99  − 89.54  − 53.35  − 97.20 0.00  − 92.89  − 94.13

PHF15 64.27  − 81.91  − 95.04 0.00  − 96.29 NaN  − 96.54 NaN 0.00  − 95.50
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renal histopathology  assessment48. Furthermore, a large-scale cohort study substantiated that diabetic patients 
with high plasma levels of C3 are more prone to kidney damage than the general  population49. Another study 
indicated that the serum levels of C3 may help to di�erentiate DN patients from diabetic patients without kidney 
 damage50. Blockade of C3a and C5a receptors in a T1DM model indicated a potential protective e�ect on renal 
�brosis by improving endothelial-to-myo�broblast transition through the Wnt/β-catenin signalling  pathway51. 
Similarly, blockade of C3a receptors in rats with T2DM improved renal morphology and function by inhibiting 
cytokine release and TGFβ/Smad3  signalling52. However, the best approach for targeting the complement system 
to prevent the development of DN still needs to be explored. �erefore, 8 potential small molecule compounds 
were identi�ed by the Connectivity Map database in our study.

In summary, our study has important signi�cance in understanding the underlying mechanisms of DN and 
is helpful for developing new treatment strategies for DN. However, further molecular biological experiments 
are needed to verify the association between the identi�ed genes and DN.
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Figure 6.  PPI network. (a) PPI network of combined genes. �ere are 190 nodes and 680 edges. �e size and 
gradient colour of nodes are adjusted by degree. �e thickness and gradient colour of the edge are adjusted by 
the interaction score. (b) Heatmap of the CytoHubba analysis score.
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Materials and methods
Data download. �e GSE30529 (expression pro�ling by array)5 and GSE51674 (non-coding RNA pro�l-
ing by array)9 datasets were downloaded by the GEOquery  package53 in R so�ware version 3.6.2. GSE121820_
T2DN-CTL (methylation pro�ling by genome tiling array, unpublished) was downloaded from the GEO data-
base (https ://www.ncbi.nlm.nih.gov/geo/). �e GSE30529 dataset based on the GPL571 platform includes 10 
DN tubule samples and 12 control samples. �e GSE51674 dataset based on the GPL10656 platform includes 6 
DN tissue samples and 4 control samples. �e GSE121820 dataset based on the GPL5082 platform contains 10 
T2 DN blood samples and 10 control samples.

Data processing. All di�erential analyses were performed by the limma  package10. Adjusted p values less 
than 0.05 and |log2-fold change (FC)| greater than 1 were considered statistically signi�cant in the di�erential 
analysis of GSE30529. Adjusted p values less than 0.01 and |log2 FC| greater than 3 were considered statistically 
signi�cant in the di�erential analysis of GSE51674. In addition, the TargetScan, miRWalk, miRBase and miRTar-
Base  databases13–16 were used for the target gene prediction of the di�erentially expressed miRNAs.

Weighted gene coexpression network analysis (WGCNA) allows biologically meaningful module information 
mining based on pairwise correlations between genes in high-throughput data using the WGCNA  package54. 
�e WGCNA work�ow consists of gene coexpression network construction, module identi�cation, module rela-
tionship analysis and the identi�cation of highly related genes. �e gene coexpression network was constructed 
with the �ltering principle that the so� threshold makes the network more consistent with a scale-free topol-
ogy. �e modules were identi�ed with the criterion of module size 30–10,000, merge cut height equal to 0.25 
and verbose equal to 3. Highly related genes were obtained with thresholds greater than 0.1 in the topological 
overlap matrix (TOM).

Functional enrichment analysis and hub gene screening. Gene Ontology (GO) annotation and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed with the 
clusterPro�ler  package11. �e STRING  database55 (version 11.0, https ://strin g-db.org/) was used to search for 
interactions between the candidate proteins based on laboratory data, other databases, text mining and pre-
dictive bioinformatics data. Cytoscape so�ware was used to visualize the protein–protein interaction (PPI) 
network and perform network analysis. CytoHubba, a built-in tool in Cytoscape, uses 12 methods to explore 
important nodes in biological networks, such as the Degree method (Deg), Maximum Neighborhood Compo-
nent (MNC), Density of Maximum Neighborhood Component (DMNC), Maximal Clique Centrality (MCC), 
Closeness, EcCentricity, Radiality, BottleNeck, Stress, Betweenness, Edge Percolated Component (EPC) and 
 ClusteringCo�cient56.
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Figure 7.  Pearson correlation analyses of GFR and target genes. (a) �e gene expression of SYK (p = 0.0022, 
r =  − 0.8437), CXCL1 (p = 0.0016, r =  − 0.8554), LYN (p = 0.0269, r =  − 0.6911), VWF (p = 0.0452, r =  − 0.6423) 
and ANXA1 (p = 0.0211, r =  − 0.7111) was negatively related to GFR. (b) �e gene expression of EGF (p = 0.0027, 
r = 0.8349) and KNG1 (p = 0.0073, r = 0.7838) was positively correlated with GFR. (c) �e gene expression of 
C3 (p = 0.0459, r =  − 0.6109) and CXCL1 (p = 0.0061, r =  − 0.7645) was negatively correlated with GFR. (d) �e 
gene expression of EGF (p = 0.0037, r = 0.7919) was positively related to GFR. (e) �e gene expression of C3 
(p = 0.0171, r =  − 0.6970), HLA-E (p = 0.0132, r =  − 0.7161), RHOA (p = 0.0439, r =  − 0.6154) and SERPING1 
(p = 0.0091, r =  − 0.7409) was negatively correlated with GFR. (f) EGF (p = 0.0121, r = 0.7221) and KNG1 
(p = 0.0153, r = 0.7053) were positively related to GFR.
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Clinical data analysis and drug analysis. �e Nephroseq v5 analysis engine (https ://v5.nephr oseq.org) 
provides access to gene expression signatures and clinical features. Pearson correlation analysis was performed 
between genes and  GFR5,57. Unpaired Student’s t test was used to compare two groups. P values less than 0.05 
were considered statistically signi�cant. Nonsigni�cant results are not displayed.

Connectivity Map17, an online database that relates disease, genes, and drugs based on similar or opposite 
gene expression signatures, was used for potential drug prediction.

Data availability
�e GSE30529, GSE51674 and GSE121820 datasets are available in GEO database (https ://www.ncbi.nlm.nih.
gov/geo/). �e R script data used to support the �ndings of this study are included within the supplementary 
information �le.
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