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Abstract

Background: Cancer cells undergo global reprogramming of cellular metabolism to satisfy demands of energy and

biomass during proliferation and metastasis. Computational modeling of genome-scale metabolic models is an

effective approach for designing new therapeutics targeting dysregulated cancer metabolism by identifying

metabolic enzymes crucial for satisfying metabolic goals of cancer cells, but nearly all previous studies neglect the

existence of metabolic demands other than biomass synthesis and trade-offs between these contradicting

metabolic demands. It is thus necessary to develop computational models covering multiple metabolic objectives

to study cancer metabolism and identify novel metabolic targets.

Methods: We developed a multi-objective optimization model for cancer cell metabolism at genome-scale and an

integrated, data-driven workflow for analyzing the Pareto optimality of this model in achieving multiple metabolic

goals and identifying metabolic enzymes crucial for maintaining cancer-associated metabolic phenotypes. Using

this workflow, we constructed cell line-specific models for a panel of cancer cell lines and identified lists of

metabolic targets promoting or suppressing cancer cell proliferation or the Warburg Effect. The targets were then

validated using knockdown and over-expression experiments in cultured cancer cell lines.

Results: We found that the multi-objective optimization model correctly predicted phenotypes including cell

growth rates, essentiality of metabolic genes and cell line specific sensitivities to metabolic perturbations. To our

surprise, metabolic enzymes promoting proliferation substantially overlapped with those suppressing the Warburg

Effect, suggesting that simply targeting the overlapping enzymes may lead to complicated outcomes. We also

identified lists of metabolic enzymes important for maintaining rapid proliferation or high Warburg Effect while

having little effect on the other. The importance of these enzymes in cancer metabolism predicted by the model

was validated by their association with cancer patient survival and knockdown and overexpression experiments in a

variety of cancer cell lines.

Conclusions: These results confirm this multi-objective optimization model as a novel and effective approach for

studying trade-off between metabolic demands of cancer cells and identifying cancer-associated metabolic

vulnerabilities, and suggest novel metabolic targets for cancer treatment.

Keywords: Cancer metabolism, Drug discovery, Genome-scale metabolic model, Flux balance analysis, Pareto

optimality
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Background
Metabolic reprogramming is recognized as an emerging

hallmark of cancer [1–4]. Besides the “wasteful” metab-

olism known as aerobic glycolysis or the Warburg effect

that was discovered almost a hundred years ago by Otto

Warburg [5, 6], metabolism of malignant cells is shifted

at the systematic level due to numerous factors including

nutrient and oxygen availability in the tumor micro-

environment, material and energy demands for rapid cell

proliferation, and dysregulated signal transductions in

malignant cells [7]. Targeting metabolic reprogramming

in cancer is hence a promising strategy for designing

highly selective anti-tumor therapeutics with several suc-

cessful examples [8–11]. However, the human metabolic

network covers thousands of enzymes, metabolites and

crosstalks, which are also highly context dependent. The

extreme complexity of human metabolic network greatly

limits our ability to efficiently and accurately identify

metabolic enzymes that serve as potential anti-tumor

targets.

Genome-scale metabolic model (GSMM) is a powerful

computational tool for studying metabolism [12–15] and

has enabled researchers to elucidate the plausible mech-

anism of cancer-associated metabolic features such as

the Warburg effect [16], quantify efficacies and side ef-

fects of cancer therapeutics [17–21], and unravel

context-dependent functionality of metabolic enzymes

during tumor progression [22–25]. Among various strat-

egies, flux balance analysis (FBA) exhibits itself as a

highly effective approach to analyze GSMMs [26]. FBA

commonly assumes that cells optimize certain objective

function by coordinating metabolic fluxes subjected to

upper/ lower limits and stoichiometric constraints, by

which both input and output fluxes are balanced to

maintain the steady state at the systemic level. In par-

ticular, the assumption of maximized biomass produc-

tion (representing for optimal cancer cell growth) has

been widely used in previous studies modeling cancer

metabolism [14, 15].

Despite the wide application of FBA-based compu-

tational methods, their fundamental assumption–

maximization of growth rate in cancer cells – is still

open to doubt. Although studies investigating the

metabolic objectives of cancer cells were scarce, sev-

eral studies focusing on unicellular organisms pro-

vided useful insights [27–29]. Interestingly, the

hypothesis of single-objective metabolic optimization

was challenged even in Escherichia coli which is signifi-

cantly less complicated than eukaryotes. Comparison of

experimentally-measured metabolic fluxes and the Pareto-

optimal surface defined by multiple metabolic objectives

revealed that cellular metabolism may be determined by

trade-off among three competing objectives: maximization

of biomass yield, maximization of ATP production, and

minimization of gross metabolic fluxes [30]. Similarly, the

trade-off between biomass yield and ATP production was

also considered as one plausible mechanism underlying

tumor-associated metabolic disorders [31].

In line with these findings, we present here a theoret-

ical strategy involving multi-objective optimality for

modeling cancer metabolism. Specifically, we developed

algorithms for sampling balanced flux configurations

with Pareto optimality and building individualized

models based on multi-omics datasets. To demonstrate

our methodology, we construct cell line-specific models

for NCI-60 cancer cell lines and predict the impact of

metabolic gene ablation on Pareto optimality, metabol-

ism, and cell viability. With this approach, we identify

several groups of metabolic enzymes essential for cell

proliferation or the Warburg effect, and further validate

these putative targets through survival analysis and

cell-based experiments. These results will likely im-

prove our understanding of cancer-associated metabolic

disorders and reveal potential targets for novel cancer

therapeutics.

Methods
Mathematical model and statistical analysis

The mathematical models and algorithms used in this

study are explained in detail in Supplementary Methods.

Statistical tests were performed using MATLAB. Algo-

rithms for sampling the Pareto surface, constructing in-

dividualized models, and identifying targets were

implemented in MATLAB code. For multiple hypothesis

testing, p-values were corrected using the Benjamini-

Hochberg procedure.

Experimental validation of identified metabolic targets

For the validation of proliferation-promoting enzymes,

cell lines were selected from the NCI-60 panel based

on their predicted changes of biomass production flux

using the NCI-60 individualized models as previously

constructed. The simulation of enzymatic perturba-

tions was performed using minimization of metabolic

adjustment (MOMA) [32]. Cell lines predicted to have

significant reduction of biomass production flux were

selected for further experimental validation. For the

validation of proliferation-suppressing and Warburg

effect-suppressing enzymes, cell lines were selected to

cover a range of different tissues of origin.

Cell culture

BT549, MDA_MB_231, A549, U87, SW_620, COLO205,

and RPMI_8226 cell lines were purchased from the

China Infrastructure of Cell Line Resources and cultured

in RPMI containing 10% FBS and antibiotics. Purchased

U251 and HeLa cells were cultured in DMEM contain-

ing 10% FBS. All cell lines were confirmed to be
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mycoplasma negative. shRNA constructs were trans-

fected into cells using Lipofectamine and selected with

corresponding antibiotics.

Immunoblot analysis

Cells were lysed with lysis buffer (25 mM Tris, 100 mM

NaCl, 1% Triton X-100, 1 mM EDTA, 1 mM DTT, 1

mM NaVO4, 1 mM b-glycerol phosphate, and 1 mg/mL

aprotinin), and then the lysates were resolved by SDS-

PAGE and proteins transferred to PDVF membranes.

The filters were incubated with various primary anti-

bodies diluted in TBST (20 mM Tris, 135 mM NaCl, and

0.02% Tween 20). The primary antibodies were detected

with horseradish peroxidase-conjugated secondary anti-

bodies followed by exposure to ECL reagent.

Cell growth and metabolic assays

Cells were plated in dishes at a density of 5 × 104 cells/dish

and cultured in low serum medium for 5 consecutive days.

Every other day one set of cells was collected and counted,

while the medium on the remaining sets of cells was

replenished. The oxygen consumption rate (OCR) and

extracellular acidification rate (ECAR) were determined

using a Seahorse XFe96 Analyzer (Agilent Technologies,

Inc) by following the manufacturer’s protocol.

Results
Four-objective optimization model for cancer metabolism

To develop a multi-objective optimization model for can-

cer metabolism, we hypothesized that metabolic flux con-

figurations in cancer cells are determined by the trade-off

among four biological objectives (Fig. 1a), including (1)

maximization of biomass synthesis, which is frequently

considered as the only objective of cancer cells in previous

studies [17, 19, 23, 33]; (2) maximization of ATP produc-

tion, which is considered as the objective of non-

malignant cells in some studies [17, 20]; (3) minimization

of total abundance of metabolic enzymes, which is an

analogue of the solvent capacity constraint (i.e. total abun-

dance of intracellular proteins is limited by molecular

crowding in the cytoplasm) [16, 34], and (4) minimization

of total carbon uptake [35]. These four objectives reflect

different metabolic demands of cancer cells, therefore cov-

ering both maximization of yield and minimization of cost.

Combining them with the human genome-scale metabolic

model Recon 1 [36] (Additional file 2: Table S1), we created

a multi-objective optimization model (Fig. 1a, Additional

file 1: Supplementary Methods), which lays the theoretical

foundation for our subsequent analysis.

Based on this model, we quantitatively describe trade-

offs among the four metabolic objectives by considering

metabolic flux configurations with Pareto optimality.

Pareto optimality is defined by the inability to simultan-

eously improve performances on all objectives. For

instance, if a metabolic flux configuration has Pareto

optimality with respect to the two objectives of maxi-

mizing biomass and maximizing ATP yield, there

shall be no other flux configurations that yield both

higher biomass synthesis and higher ATP production.

To uniformly sample from all flux configurations with

Pareto optimality (i.e. Pareto solutions), we designed

an algorithm based on the ε-constraint method [37].

Briefly, this method transformed the original multi-

objective optimization problem to a collection of

single-objective linear programming problems (e.g.

maximizing biomass synthesis subjected to constraints

on ATP production, enzyme abundance and carbon

uptake), which were then optimized to generate solu-

tions with Pareto optimality with respect to the four

objectives. Using this method, we have sampled 42,

930 Pareto solutions in total (Additional file 1:

Supplementary Methods). In line with potential ob-

jective trade-offs, these Pareto solutions exhibit sub-

stantial variabilities in each single metabolic objective

and coupling between different objectives (Fig. 1b, c). In

summary, these results confirm that the multi-objective

optimization model can simulate a broad spectrum of

metabolic flux configurations, yielding different amounts

of energy and building blocks with variable engagements

of metabolic enzymes and nutrients.

Pareto models accurately predict metabolic phenotypes

of cancer cells

To further validate the four-objective optimization

method in modeling cancer metabolism, we next inte-

grated the Pareto solutions with multi-omics datasets for

a collection of cancer cell lines to construct cell line-

specific models and validated these models with reported

experimental data. Briefly, we constructed specific

models by searching for a group of Pareto solutions

maximizing the similarity between metabolic enzyme

abundances or metabolite exchange fluxes and metabolic

fluxes in the corresponding Pareto solutions (Fig. 2a).

This was based on the assumption that for a particular

metabolic pathway, the total abundance of metabolic en-

zymes associated with it closely correlates with the

metabolic flux through this pathway. We used multi-

omics datasets including LC-MS/MS based proteomics

[38] and consumption-release (CORE) profiles of metab-

olites [39] to reconstruct Pareto models for NCI-60 cell

lines (Supplementary Methods).

We first validated the Pareto models by comparing

model-predicted biomass fluxes to the actual cell growth

rates. The model-predicted biomass production fluxes

significantly correlate with experimentally measured cell

growth rates (Fig. 2b, Spearman’s rank correlation coeffi-

cient = 0.68, p-value = 4.5 × 10− 9), demonstrating that

the cell line-specific Pareto models successfully
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recapitulate phenotypes of examined cancer cells. To

validate that all four metabolic objectives are indispens-

able in predicting cell growth rates, we repeated this

analysis with alternative models constructed with fewer

metabolic objectives (Additional file 1: Fig. S1a-d) or less

omics data input (proteomics only or exchange fluxes

only, Additional file 1: Fig. S1e, f) and found that the

prediction accuracy was significantly decreased in these

cases. We also compared our Pareto models with models

constructed using other computational approaches, in-

cluding E-Flux, which directly uses expression levels of

metabolic genes to adjust upper limits of associated

fluxes [40], and personalized reconstruction of metabolic

models (PRIME), which utilizes prior knowledge about

Fig. 1 Four-objective optimization model for cancer metabolism. (a) Illustration of the four metabolic objectives incorporated in this model and

mathematical description of its components. (b) The sampled Pareto surface projected on four ternary combinations of included objectives. Data

points are presented in shade to depict the shape of Pareto surface. (c) Distributions of values for binary combinations of objectives in the

sampled Pareto solutions
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correlations between metabolic gene expressions and

cellular phenotypes to improve prediction accuracy [19].

Using our input dataset, none of these approaches was

able to predict cell growth rates as well as our model did

(Additional file 1: Fig. S2a-d).

Next, we applied this model to predict cellular responses

to metabolic gene ablations and compared the calculated

results with experimentally measured, cell line specific

sensitivities to RNAi-mediated [41] and CRISPR/Cas9-

mediated [42] gene ablations in Achilles, a genome-scale

Fig. 2 Pareto models accurately predict metabolic phenotypes of cancer cells. (a) Illustration of the strategy used in constructing the cell line-

specific models based on multiple omics datasets. (b) Comparison between actual and model-predicted cell growth rates in the NCI-60 cancer

cell panel. The p-value was computed using permutation test. (c) Illustration of Pareto deviation score (PDS) as a metric quantifying the impact of

metabolic perturbation on cell viability. (d) Distribution of number of NCI-60 cell lines with non-zero PDS values after gene ablation in metabolic

genes. (e) Quantile-quantile (Q-Q) plots comparing distributions of experimentally measured sensitivity to gene ablations between essential and

nonessential metabolic genes. Left panel: CRISPR-based dataset; right panel: RNAi-based dataset. P-values were computed using one-sided

Kolmogorov-Smirnov test. (f) Distributions of Spearman’s rank correlation coefficients between experimentally measured sensitivity to gene

ablations and model-predicted PDS values in essential metabolic genes. P-values were computed using one-sided Wilcoxon’s signed rank test.

Left panel: CRISPR-based dataset; right panel: RNAi-based dataset
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gene essentiality database [43]. Based on the assumption

that cancer cells tend to adopt flux configurations with Pa-

reto optimality, we hypothesize that the deviation of a

metabolic flux configuration from the Pareto surface re-

flects the fitness of cells bearing such a flux configuration.

To quantify this deviation, we computed a Pareto devi-

ation score (PDS) defined as the Euclidean distance be-

tween the flux configuration and the Pareto surface (Fig.

2c, Additional file 1: Supplementary Methods). It is thus

straightforward that all PDS values are non-negative, and

a metabolic flux configuration has a PDS value equal to

zero only if it is a Pareto solution. For each metabolic gene

(1905 in total) included in the model, we evaluated its es-

sentiality in NCI-60 cell lines by computing the PDS

values for the flux configurations after genetic knockdown.

We found that most (1341 out of 1905) metabolic genes

were associated with zero PDS values in all NCI-60 cell

lines, suggesting that perturbation of these genes has min-

imal influence on fitness of the cells. We thus defined

these genes as nonessential metabolic genes and genes

with non-zero PDS values in at least one cell line as essen-

tial metabolic genes (Fig. 2d). Compared to nonessential

metabolic genes, essential genes predicted by the model

were associated with reactions carrying higher fluxes

(Additional file 1: Fig. S3b) and pathways known to be

important in energy and biomass production (Additional

file 1: Fig. S3c,d). Cell lines in the Achilles database were

also in general more sensitive to ablations of model-

predicted essential metabolic genes (Fig. 2e). These results

together demonstrate that PDS correctly predict metabolic

genes essential for survival in different cancer cell lines.

We next examined whether PDS also correctly pre-

dicted cell line specific response to metabolic perturba-

tions. We correlated model-predicted PDS values with

experimentally measured sensitivities to CRISPR/Cas9-

mediated and RNAi-mediated gene ablations in the

Achilles database and found that, for most of the examined

genes (293 out of 480 in the CRISPR/Cas9-based dataset

and 302 out of 486 in the RNAi-based dataset), the PDS

values positively correlated with experimentally-determined

sensitivity scores in cell lines shared by the NCI-60 panel

and the Achilles database (Fig. 2f, median Spearman correl-

ation = 0.061 for the CRISPR/Cas9-based dataset and 0.071

for the RNAi-based dataset, one-sided Wilcoxon’s signed

rank p-value = 1.2 × 10− 11 for the CRISPR/Cas9-based data-

set and 2.5 × 10− 9 for the RNAi-based dataset), suggesting

that model-predicted deviations from the Pareto surface

correctly predict cell line-specific sensitivities to metabolic

gene ablations. We also tested several other metrics includ-

ing model-predicted reduction in growth rates, mRNA ex-

pression levels and protein abundance. We compared them

with the PDS values in terms of their abilities to predict cel-

lular responses to metabolic gene ablation and found that

the PDS metric yielded the best results (Additional file 1:

Fig. S4). Moreover, model-predicted PDS values were also

consistent with a recent finding that combinatorial

inhibition of glycolysis and OXPHOS resulted was ne-

cessary to eliminate MDA-MB-231 cancer cells [44],

in which the combinatorial treatment resulted in a

larger PDS value compared to inhibiting either gly-

colysis or OXPHOS (Fig. 2g). These results demon-

strate that the Pareto models predict cellular

phenotypes more accurately than other computational

approaches examined and suggest that impairment of

Pareto optimality by perturbing expressions of meta-

bolic enzymes correlates with fitness reduction in

cancer cells. It is thus promising to apply this ap-

proach in designing potential therapeutics that select-

ively target cancer cells with aggressive metabolic

phenotypes.

Metabolic targets identified by Pareto surface analysis are

essential for cancer progression

Given that model-predicted impairment of Pareto opti-

mality reflects sensitivities to metabolic perturbation, we

next sought to identify anti-tumor metabolic targets

using this approach. The goal was to identify metabolic

genes and enzymes whose activation or inhibition lead

to selective impairment of viabilities in cells with cancer-

associated metabolic features such as rapid proliferation

and the Warburg effect. Therefore, we designed a per-

turbation strategy leading to larger Pareto deviation in

flux configurations with higher biomass production or

stronger Warburg effect, aiming to selectively reduce the

viability of malignant cells (Fig. 3a). This strategy was

achieved by activation or inhibition of metabolic en-

zymes, which can be quantified in our model as in-

creased or decreased metabolic fluxes governed by this

particular enzyme. Without loss of generality, we use cell

growth rate as a representative phenotype to illustrate

our strategy for target identification. First, we projected

the Pareto surface to a two-dimensional space spanned

by growth rate and one specific metabolic flux, in a way

that we can clearly define its lower and upper bounds

(Fig. 3a). After that, we examined how the upper bound

of metabolic flux varies with cell growth rate. If the

upper bound decreases with growth rate, activation of

this enzyme would lead to larger impairment of Pareto

optimality for flux configurations with higher growth

rate, thus resulting in selective fitness impairment to-

wards highly proliferative cells. In this case the enzyme

is considered to be tumor-suppressive (Fig. 3b). Con-

versely, inhibition of an enzyme would selectively impair

the viability of fast-growing cancer cells, if the lower

bound rises monotonously with their growth rates. This

enzyme is thus considered to be pro-oncogenic (Fig. 3b).

A correlation-based monotonousness score was defined

to assess the tendency of declining upper bound or rising
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Fig. 3 Metabolic targets identified by Pareto surface analysis correlate with cancer progression and patient prognosis. (a) Workflow of identifying

potential metabolic targets essential for cell proliferation and the Warburg effect. (b) Illustration of the criteria for target identification. (c) Venn

diagram showing the overlap between model-predicted proliferation-suppressing, proliferation-promoting, Warburg effect-suppressing and

Warburg effect-promoting enzymes. (d) Correlation between growth rate and the Warburg effect in NCI-60 cell lines. The p-value was computed

using permutation test. (e) Fraction of genes with different relationships to breast cancer patient survival in model-predicted tumor-suppressive

metabolic genes. (f) Same as in (e) but for model-predicted pro-oncogenic metabolic genes. (g) Same as in (e) cmetabolic genes
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lower bound (Supplementary Methods, Additional file 3:

Table S2). We also require that most of the individualized

models for NCI-60 cell lines locate close to the upper or

lower boundary, to allow the metabolic perturbation to

draw the flux configurations out of the Pareto surface and

confer significant impact on cell viability.

By analyzing the geometry of projected Pareto surface

as introduced above, we identified four groups of meta-

bolic enzymes that either suppress or promote cancer

cell growth or the Warburg effect (Fig. 3c, Additional file

4: Table S3). Notably, these four categories of enzymes

had little overlap with each other except between en-

zymes promoting proliferation and those suppressing

the Warburg effect (78 overlapped enzymes out of 89

Warburg effect-suppressing enzymes and 115

proliferation-promoting enzymes). No versatile target

was predicted to exist whose activation or inhibition is

able to inhibit both processes. This result seems to be

contradictory to several previous studies [45, 46]. How-

ever, it is worth mentioning that our modeling results

only reflect the direct consequence of metabolic perturb-

ation. Metabolic enzymes often carry essential non-

metabolic functions, and inhibition of cell proliferation

may lead to metabolic shifts secondary to growth arrest,

which were not considered by our analysis or most other

theoretical methods. Nevertheless, we also found a sig-

nificant negative correlation between growth rate and

the Warburg effect in NCI-60 cell lines (Fig. 3d, Spear-

man’s correlation = − 0.2590, p-value = 0.0496), suggest-

ing a plausible trade-off between proliferation and the

Warburg effect. The finding about the contradictory

roles of the ambiguous enzymes in promoting cell prolif-

eration and suppressing the Warburg effect was also

supported by several lines of literature-based evidence.

For instance, the model-predicted ambiguous enzyme,

acetyl-CoA carboxylase (ACC), was shown to shift can-

cer metabolism from glycolysis-dependent to

lipogenesis-dependent in human head and neck squa-

mous cell carcinoma (HNSCC) cells [47] and suppress

whole-body glycolysis in high-fat-fed mice [48], while its

inhibition impaired proliferation of human prostate can-

cer cells [49]. Another model-predicted ambiguous en-

zyme, proline dehydrogenase (PRODH/POX), was

shown to suppress lactate production in human colon

cancer cells [50], while its inhibition impaired prolifera-

tion of human lung cancer cells [51] and breast cancer

cells [52]. Besides the 89 ambiguous enzymes, there are

18 enzymes predicted to inhibit either proliferation or

the Warburg effect, and 39 enzymes predicted to func-

tion in the opposite direction (Additional file 5: Table

S4). We reasoned that the latter two groups of enzymes

may serve as a potential target pool for therapeutic

intervention, especially those harboring expression pro-

files significantly correlated with disease progression.

To validate the association between identified meta-

bolic targets and cancer progression, we conducted

Kaplan-Meier survival analysis on thousands of breast

cancer patients to systematically evaluate the connec-

tion between metabolic enzymes and patient survival

[53]. Specifically, we analyzed the correlation between gene

expression levels and relapse-free survival of breast cancer

patients for all metabolic genes, and divided these genes to

three categories whose up-regulation positively, negatively or

non-significantly correlates with patient prognosis

(Additional file 6: Table S5). Consistent with model predic-

tions, expression levels of tumor-suppressive metabolic genes

were more likely to associate with better patient survival (Fig.

3e), and model-predicted pro-oncogenic genes generally as-

sociate with worse prognosis (Chi-squared test p-value = 3 ×

10− 12, Fig. 3f). For the ambiguous gene set, the trends of sur-

vival correlations were lying in between the cases of pro-

oncogenic and tumor-suppressive ones (Fig. 3g). Taken to-

gether, these integrated analyses of omics datasets validated

the close association between model-predicted targets and

cancer progression. Altering the cutoff parameters used in

the Pareto surface analysis had little effects on the correlation

between model-predicted putative targets and patient sur-

vival (Additional file 1: Fig. S5), suggesting that the Pareto

surface analysis approach is robust to parameter selections.

Notably, targets identified by the Pareto surface analysis had

little overlap with and showed better concordance with pa-

tient survival than targets identified from previously-

applied metrics, including reduction of growth rate simu-

lated using minimization of metabolic adjustment

(MOMA) [32], correlation between cancer cell prolifera-

tion and mRNA expression, and correlation between can-

cer cell proliferation and protein abundance (Additional

file 1: Fig. S6, Additional file 1: Supplementary Methods),

suggesting that our analysis may identify more novel tar-

gets potentially exploited for cancer therapeutics.

Experimental validation of identified metabolic targets

Based on above analyses, we have identified several groups

of metabolic enzymes whose up- or down-regulation is po-

tentially essential for cancer progression. These enzymes

may serve as novel targets for designing anti-tumor thera-

peutics. We next sought to validate these targets in cell-

based experiments. Since only two metabolic enzymes,

lactate dehydrogenase (LDH) and monocarboxylate trans-

porter (MCT), were predicted to promote the Warburg ef-

fect (Fig. 3c) and consistent with their well-established

functions, we decided to validate metabolic targets falling in

the other three categories, i.e. proliferation-promoting en-

zymes, proliferation-suppressing enzymes, and Warburg

effect-suppressing enzymes.

We first examined the group of proliferation-promoting

metabolic enzymes. Pathway enrichment analysis revealed

that these enzymes were enriched in many metabolic
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pathways known to be up-regulated in tumors, such as

glycolysis, TCA cycle, oxidative phosphorylation, nucleo-

tide metabolism and serine, glycine and one carbon me-

tabolism (Fig. 4a), thus supporting the effectiveness of the

Pareto approach in identifying anti-tumor metabolic tar-

gets. Moreover, among this class of targets, there are also

some novel candidates whose functions in cancer have not

been thoroughly investigated, including three enzymes in

Fig. 4 Experimental validation of proliferation-promoting targets. (a) KEGG pathways enriched in model-predicted proliferation-promoting targets.

(b) Monotonousness scores for model-predicted proliferation-promoting enzymes. Enzymes selected for experimental validation are highlighted

in red. (c-h) Relative number of cells after 4 days upon shRNA knockdown of (c) RPIA; (d) PHGDH; (e) PSAT1; (f) FTCD; (g) HAL; (h) UROC1 in the

tested cell lines. P-values were computed using Wilcoxon’s rank sum test. P-value< 0.05 was considered as significant
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the histidine degradation pathway, formimidoyltransferase

cyclodeaminase (FTCD), histidase (HAL), and urocanase

(UROC). We chose these enzymes for experimental valid-

ation, as well as three other enzymes that have been inves-

tigated in recent cancer studies, namely ribose-5-

phosphate isomerase (RPI), phosphoglycerate dehydrogen-

ase (PHGDH) and phosphoserine transaminase (PSAT) as

positive controls. All these enzymes were highly scored in

the Pareto surface analysis (Fig. 4b). Most cell lines used

in our experiments were selected from the NCI-60

panel, whereas some unavailable lines were replaced

by alternatives with identical cancer types. HeLa was

also included as a control. Efficiencies of gene abla-

tions were validated by RT-PCR (Additional file 1:

Fig. S7). Knockdown of each individual target was

associated with strong anti-proliferative effects in

examined cell lines (Fig. 4c-h). These results demon-

strated that the model-predicted proliferation-

promoting enzymes, including those involved in

histidine degradation, are indeed essential for cancer

cell proliferation.

Activation of lysine degradation pathway impairs cancer

cell proliferation

Besides the putative proliferation-promoting metabolic

enzymes we have identified and validated, this study

also highlighted several novel pathways functioning in

the opposite direction. In particular, our model pre-

dicted 7 metabolic enzymes to be potentially

proliferation-suppressing, indicating that up-regulation

of these enzymes may help restrain tumor growth.

These enzymes are enriched within metabolic path-

ways related to carbohydrate anabolism and lysine

degradation (Fig. 5a). Among them, the top-scored

three are aminoadipate-semialdehyde dehydrogenase

(NAD- or NADP-dependent) and 2-aminoadipate

transaminase (Fig. 5b). These enzymes catalyze the

first few steps (1st, 2nd and 4th steps) of lysine deg-

radation pathway, thus potentially controlling the

metabolic flux through this route. To validate the

prediction that activating these enzymes may help re-

duce cancer cell growth, we over-expressed two re-

lated genes, AASS and AADAT, in a series of cancer

cell lines with different tissues-of-origin and genetic

backgrounds. Efficiencies of over-expressions were

confirmed by Western blot analyses (Additional file 1:

Fig. S7). In line with the predictions of our computa-

tional model, over-expression of AADAT or AASS

significantly inhibited proliferation in 3 out of the 5

tested cell lines (Fig. 5c, d), corroborating the model-

predicted rationality of suppressing cancer cell prolif-

eration via activation of the lysine degradation

pathway.

Over-expression of selective metabolic enzymes inhibits

the Warburg effect

Another interesting prediction by our Pareto model is the

wide existence of putative Warburg effect-suppressing

metabolic enzymes. Pathway enrichment analysis

showed that these enzymes were related to the TCA

cycle, amino acid metabolism and several other func-

tional categories (Fig. 6a). Many of them can direct

metabolic fluxes away from lactate production, thereby

inhibiting the Warburg effect. We selected three of the

top-scored enzymes including mitochondrial malate de-

hydrogenase (MDH2) in the TCA cycle, CTP synthase

(CTPS) in pyrimidine metabolism, and pyrroline-5-

carboxylate reductase (PYCR) in arginine and proline

metabolism for experimental validation (Fig. 6b). We

quantitated the magnitude of the Warburg effect by the

ratio of extracellular acidification rate (ECAR) to oxy-

gen consumption rate (OCR) (Additional file 1: Fig. S8

and Supplementary Methods) in 7 cell lines after the

individual over-expression of MDH2 (Fig. 6c), CTPS1

(Fig. 6d), CTPS2 (Fig. 6e), PYCR1 (Fig. 6f) or PYCR2

(Fig. 6g). Indeed, we found that over-expression of

these metabolic genes, especially PYCR1, PYCR2 and

CTPS2, resulted in a great inhibition of the Warburg

effect in multiple cell lines. These metabolic enzymes

have not been extensively characterized in the field of

cancer metabolism, thus representing interesting tar-

gets for future investigation. Moreover, up-regulation

of these metabolic genes did not increase cell growth

rate except for the SW620 cell line (Additional file 1:

Fig. S9), which is consistent with our predictions that

these enzymes did not serve as putative proliferation-

promoting factors.

In summary, using the multi-objective optimization

model of cancer metabolism and the Pareto surface ana-

lysis strategy, we have identified an array of metabolic

enzymes that significantly regulate cancer-associated

phenotypes including cell proliferation and the Warburg

effect. We have validated predicted results using cell-

based assays, demonstrating that these enzymes may

serve as metabolic targets for exploiting novel cancer

therapeutics.

Discussion
In this study, we developed a novel strategy to model

cancer metabolism based on the assumption of multi-

objective optimization. Specifically, we applied the con-

cept of Pareto optimality to predict metabolic flux con-

figurations with optimality in balancing the demands for

maximization of yields (growth and energy) and

minimization of costs (enzymes and nutrients). By inte-

grating these metabolic objectives with multi-omics

datasets, we were able to construct cell line-specific

models that correctly predicted multiple phenotypes of
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cancer cells including cell growth rates and responses to

metabolic perturbations. This is the first attempt, to our

best knowledge, to incorporate multiple objectives in

modeling cancer metabolism, which demonstrates that

theoretically estimated deviations from Pareto optimality

with respect to different metabolic goals closely resemble

impairments of cell viability.

In our current model, we selected 4 most commonly

utilized metabolic objectives for FBA analysis, including

maximization of biomass production, maximization of

ATP hydrolysis, minimization of total abundance of

metabolic enzymes, and minimization of total carbon

uptake. Nevertheless, some other objectives may also be

considered, such as minimization of redox imbalance,

maximization of resistance to cytotoxic agents,

minimization of reactive oxygen species (ROS) produc-

tion, etc. Incorporating additional objectives in our

model may further improve the fitting accuracy of Pa-

reto surfaces to the actual metabolic configurations of

cells and tissues under different circumstances. Strat-

egies to deduct the best combinations of objectives [54,

55] may be combined with our modeling method, and

provide new insights to the reprogramming mechanism

of cancer metabolism.

Our theoretical model successfully dissects the cancer

metabolic network and identifies its vulnerabilities from

a global perspective. More specifically, we determined

several groups of novel metabolic targets controlling

cancer cell proliferation or the Warburg effect by analyz-

ing the geometry of the Pareto surface. Some of these

targets were not identified by previously reported ap-

proaches, suggesting that the assumption of multiple

metabolic goals is essential for identification of these

novel targets in the metabolic network. The model-

predicted associations between these targets and cancer

progression were not only consistent with their correla-

tions with patient survival, but also experimentally vali-

dated in a series of cancer cell lines with different

backgrounds. Investigation of these target categories re-

vealed several metabolic pathways with important yet

understudied functions in cancer progression, such as

histidine and lysine metabolism. Activity of histidine

Fig. 5 Activation of lysine degradation pathway impairs cancer cell proliferation. (a) KEGG pathways enriched in model-predicted proliferation-

suppressing targets. (b) Monotonousness scores for model-predicted proliferation-suppressing enzymes. Enzymes selected for experimental

validation are highlighted in red. (c) Relative numbers of cells after 4 days upon AADAT over-expression in the tested cell lines. OE: over-

expression. P-values were computed using Wilcoxon’s rank sum test. P-value< 0.05 was considered as significant. (d) Relative numbers of cells

after 4 days upon AASS over-expression in the tested cell lines. P-values were computed using Wilcoxon’s rank sum test. P-value< 0.05 was

considered as significant
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degradation pathway has recently been shown to posi-

tively correlate with sensitivity to methotrexate [56], sug-

gesting that activating this pathway could be beneficial

by enhancing effectiveness of related chemotherapies.

However, our study indicates that this pathway can also

be pro-oncogenic by promoting cancer cell growth. The

exact roles of these pathways in different cancer types

need further investigation. Taken together, our

Fig. 6 Over-expression of metabolic enzymes inhibits the Warburg effect. (a) KEGG pathways enriched in model-predicted Warburg effect-

suppressing targets. (b) Monotonousness scores for model-predicted Warburg effect-suppressing enzymes. Enzymes selected for

experimental validation are highlighted in red. (c-g) Relative values of ECAR/OCR ratio after 4 days upon (c) MDH2; (d) CTPS1; (e) CTPS2;

(f) PYCR1; (g) PYCR2 over-expression in the tested cell lines. P-values were computed using Wilcoxon’s rank sum test. P-value< 0.05 was

considered as significant
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theoretical and experimental results suggest that novel

roles of metabolic enzymes in cancer progression can be

uncovered by analyzing the landscape of Pareto surface

under the framework of four-objective optimization.

Moreover, our model highlighted a contradictory role

played by several metabolic enzymes in affecting cell

growth and the Warburg effect. For a group of enzymes

identified as potential targets for rapid proliferation,

their activations were predicted to inhibit the Warburg

effect (ambiguous enzymes in Fig. 3c). The conflict be-

tween inhibiting cell proliferation and the Warburg ef-

fect reflects the intrinsic robustness of cancer as a

complex disease. However, this could also be due to the

fact that our modeling approach only considers the dir-

ect influence of metabolic perturbation, not the second-

ary effects derived from primary manipulations. In

addition, our method only incorporated the stoichiomet-

ric constraints of metabolic fluxes, and ignored nonlin-

ear factors such as the allosteric regulation of metabolic

enzymes for modeling feasibilities. Further experimental

investigation is needed to characterize the precise roles

of those enzymes in cancer. Nevertheless, we presented

a comprehensive strategy to identify cancer-associated vul-

nerabilities with much-improved accuracies, as supported

by our survival analyses and cell-based experiments.

Conclusions
To summarize, we have developed a novel method to

model cancer metabolism based on Pareto optimality

under the framework of multi-objective optimization.

This approach created an integrated workflow from

omics-based mathematical models to metabolic target

identification, and predicted metabolic hubs essential for

cancer cell proliferation and/or the Warburg effect. The

high concordance between predicted roles of metabolic

enzymes in cancer and tumor ‘omics’ data suggests that

the overall effect of a specific enzyme during tumor de-

velopment should be determined by its comprehensive

functions in multiple cellular tasks, rather than a single

task such as cell proliferation. In addition to modeling

cancer metabolism, this methodology may also be ap-

plied to explore other disease-related metabolic abnor-

malities with accessible omics datasets.
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