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Simple Summary: The performance of genome-wide association studies with high-density
single-nucleotide polymorphism panels and next-generation sequencing is a robust approach to the
identification of genetic variants that can elucidate variation in complex diseases and economically
important traits in farm animals. We identified many markers associated with crucial traits, such as
muscle development in Simmental beef cattle. This information can be used to pinpoint candidate
genes affecting traits of interest. Our results contribute to the clarification of molecular mechanisms
underlying processes associated with hind-leg meat yield and carcass depth in beef cattle.

Abstract: Genome-wide association studies are a robust means of identifying candidate genes
that regulate economically important traits in farm animals. The aim of this study is to identify
single-nucleotide polymorphisms (SNPs) and candidate genes potentially related to carcass depth
and hind leg circumference in Simmental beef cattle. We performed Illumina Bovine HD Bead-
chip (~670 k SNPs) and next-generation sequencing (~12 million imputed SNPs) analyses of data
from 1252 beef cattle, to which we applied a linear mixed model. Using a statistical threshold
(p = 0.05/number of SNPs identified) and adopting a false discovery rate (FDR), we identified many
putative SNPs on different bovine chromosomes. We identified 12 candidate genes potentially anno-
tated with the markers identified, including CDKAL1 and E2F3, related to myogenesis and skeletal
muscle development. The identification of such genes in Simmental beef cattle will help breeders to
understand and improve related traits, such as meat yield.

Keywords: genome-wide association study; carcass depth; hind leg circumference; next-generation
sequencing; Simmental beef cattle

1. Introduction

Farm animals, particularly cattle, are of major economic importance in many parts of
the world [1]. Beef cattle breeds are being developed genetically to maximize the efficiency
of meat production [2] using breeding programs based on traits related to meat yield [3].
Recently, beef breeders have been inclined toward the augmentation of lean muscle mass
growth to meet rapidly changing consumer demand for lean meat [4]. Thus, in the past
several years, researchers have made more efforts to increase our understanding of genetic
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influences on economically important traits covering different aspects of meat production,
especially muscle growth and development.

Simmental beef cattle, distributed in nearly all parts of the world, are bred primarily
due to their high levels of growth and lean meat production under an appropriate diet [5–7].
Many studies have been conducted to examine the economically crucial traits of this breed,
such as meat production [8], meat quality [9], carcass characteristics [10], and growth [11].
An understanding of the effects of genetic variation on meat quality, meat yield, and
carcass quality will aid breeders’ implementation of methods to effectively address beef
market demands.

The search for candidate genes via genetic association studies, conducted for almost
all species [12], may be practical for the extension of our understanding of genes affecting
economically important traits. Candidate genes may affect particular biological actions
related to different aspects of a trait of interest, and their identification is an important step
in efforts to identify quantitative trait loci (QTLs) that regulate the genetic variation of traits
of interest [13].

The performance of genome-wide association studies (GWASs) using high-density
single nucleotide polymorphism (SNP) panels is a robust approach to the identification of
different parts of the genome and genetic variants that can elucidate variation in complex
diseases and prominent or economically important traits in farm animals [14–16] and
humans [17–19]. GWAS results can be sensitive to different factors, such as the sample
size and the number of genes affecting traits of interest [20]. Next-generation sequencing
(NGS) can be employed to access numerous genetic variants in close proximity to genes
affecting traits of interest. Sharma et al. [21] used NGS to identify 18 mutations associated
with Mendelian diseases in Hanwoo cattle; in addition, in the same cattle, 33 genes were
found to be associated with domestication [22]. In Simmental beef cattle, NGS has been
used to identify important genes that control hind leg width, such as PLXNA4, ASB15,
SLC13A1, NDUFA5, IQUB, LMOD2, and WASL [23], and a promising candidate gene that
controls net meat weight (MTPN) [24]. However, due to the high SNP density in NGS data,
the calculation of marker effects is challenging [23–25].

Hindquarters from beef carcasses include valuable cuts, and their properties are thus
important components of meat-related traits [23]. The hindquarter consists of connective
tissues; the femur, tibia, and fibula; muscles including the semitendinosus, vastus lateralis,
tensor fascia lata, gluteus medius, gastrocnemius, semimembranosus, and biceps femoris.
Most of these muscles are skeletal and supply large amounts of meat. Muscle quantity has
been reported to be closely related to the hind leg dimension [26]. In addition, the hind-leg
muscle thickness correlated positively with the growth rate of European beef cattle [26].

In the past several years, genetic selection for carcass conformation traits has been
practiced in most beef cattle populations. Carcass depth is an important carcass conforma-
tion trait that covers the principal muscle and bone tissues and thus is profitable in the beef
industry. Han et al. [27] illustrated that it was associated with the IGF2 gene, a key gene for
muscle development and growth in farm animals [28]. However, the literature on carcass
depth is limited, and more research is needed.

In this GWAS, we detected SNPs for the identification of candidate genes (via QTLs
and markers) associated with hind leg circumference and carcass depth in Simmental
beef cattle. Our results can contribute to the clarification of the molecular mechanisms
underlying hind-leg meat yield and carcass depth.

2. Material and Methods
2.1. Ethics Statement

All procedures were conducted in accordance with the guidelines of China’s Council
on Animal Care, and the study protocol was approved by the Institute of Animal Sci-
ence of the Chinese Academy of Agricultural Science, Beijing, China (approval number:
RNL09/07). Analyses associated with animals adhered to the rules of China’s Council on
Animal Welfare.
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2.2. Animal Resources and Phenotype Data

The Simmental beef cattle population examined in this study comprised 1346 cattle
born between 2009 and 2015 in Ulgai, Xilingol League, Inner Mongolia, China. Following
weaning, the cattle were transferred to the Jinweifuren Farm feedlot in Beijing. All calves
were raised under standard conditions and fed a total mixed ration based on the nutritional
requirements of beef cattle (NRC, 2018). At 16–18 months of age, the animals were slaugh-
tered. Immediately after bloodletting, the target carcasses were refrigerated at 4◦C until
trait measurement (about 9 h after slaughter). The carcasses were hanged, and the carcass
depth and hind leg circumference were measured in centimeters using a tape (Figure 1).
Trait means, standard deviations, and ranges are shown in Table 1.
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Table 1. Mean carcass depth and hind leg circumference.

Trait Mean (cm) Standard
Deviation (cm) Maximum (cm) Minimum (cm)

Carcass depth
Circumference of hind leg

63.88
68.01

4.62
16.58

82
110

13
22

2.3. Genotype Examination and Quality Control

Illumina Bovine HD SNP Beadchip (770 k) and genotype examinations were performed
using Illumina Genome Studio (Illumina Inc., San Diego, CA, USA). For quality control,
individuals with high Pi-Hat values (representing sample duplication) were excluded,
and animals and SNPs were excluded if the SNP call rate <90%, minor allele frequency
(MAF) <5%, deviation from Hardy–Weinberg equilibrium detected (p < 10−6), or >10%
genotype data missing. These criteria were assessed using PLINK software (ver. 1.07) [29].
After the exclusion of 94 cattle, 671,204 autosomal SNPs from 1252 cattle were analyzed.

2.4. Resequencing

Using genomic relationship data and Pi-Hat values, we chose 44 unrelated cattle
for resequencing. The TIANamp Blood DNA kit (Tiangen Biotech Company Limited,
Beijing, China) was used to extract genomic DNA. DNA concentrations and purity were
quantified using the NanoPhotometer N50 device (Implen GmbH, Munich, Germany).
DNA (1.5 µg) with an A260/280-nm absorbance ratio of 1.8–2 and A260/230-nm absorbance
ratio of 2.0–2.2 was splintered using the Ultrasonicator S2 (Covaris, Woburn, MA, USA).
Sequencing libraries were prepared using the Truseq Nano DNA HT sample preparation kit
(Illumina Inc.) according to the manufacturer’s instructions of manufacturers. Each sample
was given an index code for sequence recognition. The DNA samples were splintered
into ≤350–base pair fragments by sonication, and DNA fragments were chosen for end
polishing, addition of A-tailing, and sequencing with further PCR amplification using a full-
length adapter. Sequencing libraries were prepared using the Illumina HiSeq 2500 system
(Illumina Inc.). We obtained 9,621,765,847 reads and subjected them to quality control;
low-quality reads with >10% unrecognized bases, >10% mismatches, or >50% poor-quality
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bases were removed. To facilitate down-stream analysis, SAM files were converted to BAM
files. Then, we performed variant calling using samtools-0.1.19 mpileup [30]. Variants were
excluded if an overall quality (QUAL) score of <20, a mapping quality (MQ) score of <30,
and a read depth of <10. Moreover, we used the following proximity filters: if a variant was
within 3 bp of another variant, the variant with the lower QUAL score was also excluded.
Only bi-allele SNPs were retained for subsequent analyses. The average sequencing depth
(representing the number of sequences for each base) of the samples was about 20×.

2.5. Variant Imputation

NSG-derived variants with MAFs > 0.05 (21,043,398 sequence variants from 44 animals)
were subjected to imputation using BEAGLE (ver. 4.1) [31] with the default settings, based
on algorithms determined by population data to infer genotypes for animals with missing
information and haplotypes. We labeled genotypes for imputed sequence variants as 0
(homozygotes), 1 (heterozygotes), and 2 (alternative homozygotes). In total, 12,468,401
SNPs were obtained for chromosomes 1–29 from the RNA sequencing data with the use of
the standard of imputation quality >0.1 [32].

2.6. Statistical Analysis

We employed a general mixed linear model based on the formula y = 1µ + Xb +
mjbj + Zu + e, where y is a vector phenotypic value and µ represents the population
mean. We applied two fixed-effect variables for single marker regression; b reflects noise
associated with fixed effects (weight, sex, fattening days, and birth year) and bj reflects
SNP effects. mj is the vector for the ith marker and u reflects the polygenic effect assumed
with N (0, σ2K), where K corresponds to the kinship matrix and σ2 is the additive genetic
variance. Although all SNPs on autosomal chromosomes were qualified for inclusion in the
analysis, SNPs on chromosomes with mj were excluded. X and Z are the incidence matrices
connecting the phenotypic values to fixed and polygenic effects, respectively. e represents
random residual effects assumed with V(e) = Iσ2

e , where I is an identity matrix and σ2
e is

the residual variance.
Associated SNPs were identified using GenABEL (ver. 1.8-0) [33] in R, with the

application of the significance criterion of Bonferroni-corrected p < 0.05 in accordance
with division by the number of SNPs. For carcass depth, dependable QTLs and putative
candidate genes were identified with a stringent significance threshold of 7.45 × 10−8. To
obtain p values for the SNPs, t values were calculated. Considering the fact that Bonferroni
correction outcomes are too stringent with low statistical power [34], we determined the
threshold values for GWAS by adopting false discovery rate (FDR). The FDR was defined
as 0.01, and the threshold p value was computed based on the formula P = FDR × n/m,
where n is the number of p < 0.01, and m represents the total number of SNPs [35].

To detect candidate genes of interest, we used the UCSC genome browser (http:
//www.genome.ucsc.edu, Bos_taurus_UMD_3.1, accessed on 2 October 2020).

NGS dataset analysis is complex due to the enormous number of markers, which
can make conventional p-value computation for SNPs difficult [23,24]. We coped with
this problem by dividing chromosomes into the following segments: segment 1 consisted
of chromosomes 1–10 with 5,830,727 SNPs, segment 2 consisted of chromosomes 11–20
with 4,063,690 SNPs, and segment 3 consisted of chromosomes 21–29 with 2,573,984 SNPs.
Dependable QTLs and putative candidate genes were detected using the significance thresh-
olds of p = 8.58 × 10−9 for segment 1, p = 1.24 × 10−7 for segment 2, and p = 1.95 × 10−7

for segment 3, based on the number of markers in each segment.

2.7. Heritability Estimation

The heritabilities for carcass depth and hind leg circumference were estimated using
GCTA v1.93.1 software in accordance with Bovine HD SNP array and imputed NGS. The
genomic heritability of each trait was calculated using h2 = σ2

α / σ2
α + σ2

e .

http://www.genome.ucsc.edu
http://www.genome.ucsc.edu


Animals 2022, 12, 1103 5 of 14

3. Results
3.1. SNPs Associated with Carcass Depth

The estimated heritability for carcass depth was high (0.41 ± 0.06). With beadchip
analysis, we identified several SNPs associated significantly with carcass depth (Table 2), in-
cluding BovineHD0200025561 (p = 1.49 × 10−14) in candidate gene CLK1 on chromosome 2
and BovineHD0200025553 (p = 3.4 × 10−13) and BovineHD0200025550 (p = 8.3 × 10−13)
in candidate gene BZW1. Exploration of the region that is about 10 kb upstream of the
marker BovineHD0200025562 (p = 1.49 × 10−14) led to the identification of candidate
gene PPIL3. The marker BovineHD0500023139 (p = 2.17 × 10−8) was found in the gene
CCDC91 on chromosome 5. In addition, the candidate genes DIP2B and LARP4 were
identified about 3 kb upstream and 24 kb downstream of the marker BovineHD0500008673
(p = 1.3 × 10−13), respectively. On chromosome 17, the gene c17h22orf31 was identified
about 14 kb downstream of the SNP BovineHD1700020542 (p = 3.47 × 10−8). We also
identified two significantly associated SNPs on chromosomes 10 (BovineHD1000031388;
p = 1.17 × 10−8) and 26 (BovineHD2600013096; p = 5.58 × 10−8), but no associated candi-
date gene. Figure 2 shows the Manhattan plot for putative QTLs related to carcass depth.

Table 2. SNPs associated with carcass depth, determined by GWAS analysis.

SNP Chromosome Position p-Value

BovineHD0200025561
BovineHD0200025562
BovineHD0200025553
BovineHD0200025550
BovineHD0500008673
BovineHD0500023139
BovineHD1000031388
BovineHD1700020542
BovineHD2600013096

2
2
2
2
5
5

10
17
26

89923045
89926675
89896059
89887085
29582709
81891942
44213755
70557785
46267236

1.49 × 10−14

1.49 × 10−14

3.4 × 10−13

8.3 × 10−13

1.3 × 10−13

2.17 × 10−8

1.17 × 10−8

3.47 × 10−8

5.58 × 10−8
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3.2. SNPS Associated with Hind Leg Circumference

The estimated heritability for hind leg circumference was high (0.52 ± 0.12). Of the
9,621,765,847 raw reads acquired, 9,584,920,309 reads were examined after the application of
quality control measures. In segment 1, we identified one SNP (rs91327124; p = 1.23 × 10−9)
in BTA5 related to hind leg circumference, but no candidate gene in the vicinity of this
SNP. In segment 2, several associated SNPs were identified (Table 3). The candidate gene
ZBTB16 was identified about 50 kb downstream of the most strongly associated SNP in this
segment (rs25168454; p = 1.31 × 10−10), NXPE4 was identified about 4.7 kb downstream
of the SNP rs25439719 (p = 4.14 × 10−8), and the candidate gene RBM7 was found about
20 kb upstream of the SNP rs25237349 (p = 1.12 × 10−7).

Table 3. SNPs in segment 2 associated with hind leg circumference, as determined by NGS
dataset analysis.

SNP Chromosome Position p-Value

rs84436800
rs84450386
rs84441028
rs84429941
rs84428499
rs25168454
rs25439719
rs25457101
rs25237349
rs25224780

12
12
12
12
12
15
15
15
15
15

84436800
84450386
84441028
84429941
84428499
25168454
25439719
25457101
25237349
25224780

2.17 × 10−8

3.45 × 10−8

6.93 × 10−8

8.13 × 10−8

8.24 × 10−8

1.31 × 10−10

4.14 × 10−8

4.14 × 10−8

1.12 × 10−7

1.22 × 10−7

In segment 3, we found many putative QTLs on chromosomes 23, 26, and 29 (Table 4).
Exploration around flanking SNPs in BTA26 and BTA29 revealed no related candidate genes.
The only associated SNP in BTA23 (rs37207517; p = 8.61 × 10−8) was located in the gene
CDKAL1, which might be a crucial gene for Simmental beef cattle. About 47 kb upstream
of this gene, the candidate gene E2F3 was identified. Figure 3 shows the Manhattan plots
for putative QTLs in segments 1–3 related to hind leg circumference.

Table 4. SNPs in segment 3 associated with hind leg circumference, as determined by NGS
dataset analysis.

SNP Chromosome Position p-Value

rs37207517
rs12211246
rs12211363
rs12211411
rs34314488
rs34314780
rs34329034
rs34330397
rs34417763
rs34423556
rs34376791
rs34381008
rs34381454
rs34381516
rs34416372

23
26
26
26
29
29
29
29
29
29
29
29
29
29
29

37207517
12211246
12211363
12211411
34314488
34314780
34329034
34330397
34417763
34423556
34376791
34381008
34381454
34381516
34416372

8.61 × 10−8

1.54 × 10−7

1.54 × 10−7

1.54 × 10−7

6.32 × 10−8

6.32 × 10−8

6.32 × 10−8

6.32 × 10−8

9.3 × 10−8

9.3 × 10−8

1.27 × 10−7

1.27 × 10−7

1.27 × 10−7

1.27 × 10−7

1.5 × 10−7
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4. Discussion

GWASs have been conducted for many animals (e.g., [36]) and plant (e.g., [37]) species,
contributing to a better understanding of molecular mechanisms underlying economi-
cally important traits in farm animals, including beef and dairy cattle [15,23,24,38–44].
GWASs are a powerful approach to the detection of genome regions that carry causative
genes [45–47]. We anticipate that NGS technology will aid scientists’ detection of currently
unknown genetic variants [48]. In this study, NGS analysis yielded no results related to
carcass depth, but the use of an SNP array did yield such results; the opposite was true for
hind leg circumference.

Beadchip analysis revealed that the CLK1 gene harbors the SNP BovineHD0200025561
in BTA2, associated most strongly with carcass depth. This gene codes for a protein kinase
with binary specificity that phosphorylates tyrosine and serine/threonine residues [49]. Its
N-terminal includes a regulatory portion containing receptors for EGF and other growth
elements [50]. EGF plays a key role in cellular development by promoting cell proliferation
and differentiation. CLK1 has been reported to play a role in cancer due to the associations
among CLK1, ASF/SF2, and SRp20 [49] and in muscular dystrophy [51]. The CLK1 inhibitor,
TG693, is a splicing modulator with therapeutic potential for patients with Duchenne
muscular dystrophy [51]. In pigs, high expression levels of the full-length splice form of
CLK1 were observed in the kidney, small intestine, and longissimus dorsi tissues [52]. In
a rat model, CLK gene expression showed downregulation related to muscle fat during
lactation [51]. In a gene ontology analysis, Lee et al. [53] detected a negative association
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between CLK1 and the intermuscular fat content in Hanwoo cattle. In another study of Han-
woo cattle, CLK1 was associated significantly with marbling (i.e., intramuscular fat) [54].
However, information on the effects of CLK1 on meat quality and its relationship to cellular
(especially muscle and bone) development in Simmental beef cattle is lacking. We hypoth-
esize that CLK1 plays a role related to meat quality and likely muscle cell development
in Simmental beef cattle, but more research is needed to validate the relationship of this
candidate gene to these traits.

In BTA2, we identified the candidate gene BZW1, which harbors two SNPs associated
significantly with carcass depth (BovineHD0200025553 and BovineHD0200025550). This
gene has been reported to be a proliferation regulator that promotes the progression of
many aggressive cancers, such as salivary mucoepidermoid carcinoma [55]. BZW1 plays
an important role in cell cycle processes and transcriptionally manages the histone H4 gene
in the G1/S phase. Chiou et al. [56] reported that its downregulation can repress lung
adenocarcinoma metastasis. The roles of BZW1 in tumor growth [57] and Alzheimer’s
disease progression [58] have also been well demonstrated. However, very few studies
have examined the function of this gene in farm animals. BZW1 has been associated with
bovine endometriosis [59], and Hoelker et al. [59] showed that its downregulation could
influence the dynamic progression of embryos from cattle with subclinical endometritis.
We hypothesize that BZW1 is associated with carcass depth in Simmental beef cattle. More
research is warranted to validate this association. We also identified the gene PPIL3 about
10 kb upstream of the SNP BovineHD0200025562. PPIL3 has been associated with estrogen
receptor-negative breast cancer [60], but information on its function in farm animals is
lacking. Thus, our identification of the potential association of PPIL3 with carcass depth in
Simmental cattle is novel. Further research is needed to corroborate this association.

In BTA5, we identified the candidate gene CCDC91, which harbors the SNP
BovineHD0500023139, associated significantly with carcass depth. This gene is expressed
in numerous cancer cell lines. CCDC91 has been identified as a candidate gene associated
with production traits (fat percentage) in dairy cattle [61], but few studies have examined
this gene in farm animals. We hypothesize that this gene is associated with carcass depth
in Simmental beef cattle. Moreover, we identified the candidate gene DIP2B about 3 kb
downstream of the SNP BovineHD0500008673. In cattle, this gene has been associated
with fatty acid content [62], an important trait affecting meat quality. DIP2B has also been
associated with lipid metabolism, skeletal system development, and insulin signaling [62].
Information on its associations with traits in Simmental beef cattle is lacking; we hypothe-
size that it is related to carcass depth. We also identified the candidate gene LARP4 about
24 kb upstream of the SNP BovineHD0500008673. This gene may be able to suppress cancer
cell migration and invasion [63]. Egiz et al. [64] reported that LARP4 repressed the motility
and metastatic development of ovarian cancer cells. This gene has also been shown to
control mRNA solidity and translation [65]. Zhou et al. [66] identified several candidate
genes, including LARP4B, that influence milk protein composition traits in Holstein cattle.
We hypothesize that LARP4 is associated with carcass depth in Simmental beef cattle.

In the NGS analysis, we found that the SNP rs25168454 in BTA15 was associated
most strongly with hind leg circumference. The candidate gene ZBTB16 was located about
50 kb downstream of this SNP in segment 2. This conserved gene, broadly expressed in
normal tissues such as cardiac and skeletal muscle [67,68] and also recognized as PLZF
and Zfp145, acts as a crucial transcriptional suppressor or activator [69] that is required for
various biological and developmental processes, including cellular apoptosis [70], hind
limb construction [71], spermatogenesis [72], and anti-tumorigenesis activities [73]. It is
also involved in processes such as metabolism regulation [74] and mesenchymal stem
cell (MSC) differentiation [75], which is important during bone regeneration. In addition,
ZBTB16 controls homeostasis and the fate of hematopoietic stem cells [76]. Epigenomics
and transcriptomics research has revealed its role in adipogenesis, as it controls fat accumu-
lation [77,78], and it has been found to control thermogenics in brown fat and muscle [79].
Wei et al. [80] reported that the overexpression of ZBTB16 enhances white adipogenesis
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and brown-like adipocyte formation in intramuscular preadipocytes in cattle. The bovine
hind leg contains important muscles and bones, and its circumference is a good criterion
for the assessment of traits related to bone and muscle development. Thus, we hypothesize
that ZBTB16 plays a role in bone and muscle development in Simmental beef cattle, but
more research is needed to validate this hypothesis. In BTA15, about 4.7 kb downstream of
SNP rs25439719, we found the candidate gene NXPE4. This gene has been recognized as a
potentially promising prognostic biomarker for colorectal cancer [81]. Sarghale et al. [82]
reported that NXPE4 was a candidate gene located near SNPs related most closely to
methane emission and fat traits in Holstein cattle. The candidate gene RBM7 was also
identified in BTA15, almost 20 kb upstream of the SNP rs25237349. The literature contains
little information about this gene. A GWAS revealed that it was a candidate gene associated
with milk production in Iranian buffalo [83]. We hypothesize that NXPE4 and RBM7 are
associated with hind leg circumference in Simmental beef cattle.

In segment 3, we identified the very promising candidate gene CDKAL1, which harbors
the only SNP associated with hind leg circumference in BTA23 (rs37207517). Several
GWASs have revealed the role of CDKAL1 in type 2 diabetes [84–86]. In addition, CDKAL1
encodes the CDK5 regulatory subunit–associated protein 1-like 1. This protein results from
the translation of CDKAL1 and is homologous to cyclin-dependent kinase 5 regulatory
subunit–associated protein, a neuronal protein that can hamper CDK5 activation [87].
CDK5 can act as a myogenic protein kinase; it is required for myoblast differentiation
and thus plays a key role in muscle myogenesis [88]. CDKAL1 has also been associated
with mitochondrial morphology and adipogenesis [89]. Thus, we hypothesize that it is
associated with muscle development and hind leg circumference in Simmental beef cattle.
We identified E2F3, another important candidate gene, about 47 kb upstream of CDKAL1.
As a promoter of the muscle cell cycle, E2F is related to myogenesis [88]. Importantly, E2F3
can induce myogenic differentiation [90]. Ma et al. [91] reported that microRNA-432 could
hamper myogenesis by targeting E2F3 in muscle cells. E2F3 is associated with various
other processes and plays an important role in the progression of a variety of cancers, such
as bladder, breast, and prostate cancers [92–94]. Information about E2F3 in Simmental beef
cattle is lacking; we hypothesize that this gene is related to myogenesis in this breed.

5. Conclusions

Using the Illumina Bovine HD Beadchip and NGS dataset analyses, we identified
many putative QTLs on several chromosomes that were associated with carcass traits in
1252 Simmental beef cattle. Several candidate genes related to carcass depth and hind leg
circumference were identified. Among them, CDKAL1 and E2F3 may be associated with
myogenesis and muscle development. Although the data were obtained by analyzing the
genome of the Simmental breed, they can also be extended and validated in other cattle
breeds. The identification of such genes helps breeders to understand and improve traits
such as carcass depth and hind leg circumference.
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