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Abstract

Background: Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of

resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer

preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity,

although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is

inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and

wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete

lack of knowledge of the regions of the Arachis genome that control disease resistance.

Results: In this work we identified candidate genome regions that control disease resistance. For this we

placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of

the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These

marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map

to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced

genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.

Conclusion: Candidate genes and QTLs were distributed on all linkage groups except for the smallest,

but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance

were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating

that these regions are likely to control disease resistance.
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Background
The legume genus Arachis is of exclusively South American
origin, and contains 80 described species [1,2]. By far the
most economically important member of this genus is
peanut, Arachis hypogaea. World annual production is
about 35 million tonnes, more than 90% being grown by
small farmers [3]. It is particularly important in Africa,
where production greatly exceeds that of any other leg-
ume, and in Asia, where it provides more calories than
soybean [4].

Diseases are important reducers of yield worldwide. Fun-
gal foliar diseases of peanut such as rust (Puccinia arachidis
Speg.), web blotch (Phoma arachidicola Marasas, Pauer, &
Boerema) and early leaf spot (Cercospora arachidicola S.
Hori) are important, but worldwide, late leaf spot (Cer-
cosporidium personatum Berk. & M.A. Curtis) has the great-
est impact. Sources of resistance against these and other
diseases are available in cultivated peanut genotypes,
although often not in farmer preferred varieties [5,6].
Wild species generally harbor greater levels of resistance
and even apparent immunity, although the linkage of
agronomically un-adapted wild alleles with wild disease
resistance genes is inevitable.

In plant genomes disease resistance genes tend to occur in
clusters. It seems likely that this distribution, which favors
unequal crossing over and gene duplication and deletion,
is an important factor in the evolution of the gene family
and of new disease specificities [7,8]. Disease resistance
gene clusters can comprise substantial portions of plant
genomes, and understanding resistance gene clusters
helps in the understanding of the structure and evolution
of a plant genome as a whole. It also has implications for
breeding because knowledge of the localization of resist-
ance gene clusters would aid in the combination of dis-
ease resistances and alleles conferring desirable
agronomic characters using marker-assisted selection
(MAS) [9].

The map used in this work is based on a cross between the
two A-genome species A. duranensis Krapov. & W.C. Gre-
gory and A. stenosperma Krapov. & W.C. Gregory, the
former being the most probable A-genome donor to culti-
vated peanut [10-12]. The aim of using these highly poly-
morphic wild diploids was to provide a reference map for
peanut. This high level of polymorphism means a high
percentage of candidate DNA markers are informative,
thus facilitating the map's cross-referencing to other
genetic maps. The map is based on microsatellite and leg-
ume anchor markers. Microsatellites were chosen because
they are based on PCR, easy to use, and co-dominant. In
addition they are highly transferable within the genus Ara-
chis allowing the map to be integrated to other Arachis
maps including the first recently constructed linkage map

for cultivated peanut [13,14]. Legume anchor markers
were chosen because they are transferable to other leg-
umes and allow the alignment of this A-genome map with
the maps of other crops and model legume species [15-
18]. The A-genome map can thus serve as a "bridge"
between, for instance, a low density map for cultivated
peanut and the maps of other legumes, allowing informa-
tion from different genetic maps to be accumulated.

In the present study we begin to define, on this map, the
genomic regions that control disease resistance. For this,
we placed candidate disease resistance genes and quanti-
tative trait loci (QTLs) for resistance against late leaf spot
on the map.

Methods
Mapping population

The mapping population of 93 F2 plants was derived from
a cross between A. duranensis accession K7988 and A. sten-
osperma V10309, the same population used by [13]. DNA
was extracted essentially as described by [19].

Resistance gene analog marker development and 

genotyping

The nucleotide binding site domain (NBS) is found in
numerous plant genes, and, to date has been exclusively
associated with disease resistance. Therefore regions that
encode NBS domains are excellent disease resistance gene
candidates, and most of our focus was on homologs of
genes encoding this domain, known as RGA (resistance
gene analogs) markers. In addition, homologs of other
genes known to be involved in defense resistance as well
as genes that are induced upon challenge with pathogens
[20] were mapped (full details and sequences of the
mapped markers are in Additional file 1).

Southern blot

Nine clones representing all phylogenetic clades of NBS
encoding regions described previously [21] were initially
tested as probes for Southern hybridizations [22] with
DNA from the parents and a limited number of F2 plants.
Probes that showed higher polymorphism and easily
scorable fragments were chosen for genotyping.

SCAR (sequence characterized amplified region) markers

Two primer pairs that amplify specific NBS encoding
regions, both sequence confirmed [23], and one domi-
nant SCAR marker derived from a bacterial artificial chro-
mosome clone (Ad25F09-1; [24]) identified as containing
a NBS encoding region by filter hybridization with clone
S1_A_36 (Genbank ref. AY157808; [21]) were used for
genotyping.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY157808
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NBS profiling

For generation of markers derived from NBS encoding
sequences we also used a modified AFLP (amplified frag-
ment length polymorphism) technique known as NBS
profiling. This was performed essentially as described by
van der Linden and coworkers (2004) [25]. One hundred
ng of genomic DNA was digested with PstI and MseI.
Adapters were ligated to the restricted fragments using the
following reaction mix: 500 nM PstI adapter, 5 μM MseI
adapter, 1 mM ATP, 0.25 U/μl PstI and MseI restriction
enzymes, 1 U/μl T4 DNA ligase and 1× the manufacturer's
recommended reaction buffer, in a total volume of 10 μl.
Fragments were pre-amplified by PCR with 300 nM of
each primer P00 and M00, 200 nM of each dNTP, 0.5 mM
MgCl2, 1× of manufacturer's supplied PCR buffer, 3.5 μl
of template and 1 U of Taq DNA polymerase in a 50 μl
volume. Dilutions (1:20) of these pre-amplifications were
used as templates for amplification with primers designed
for the kinase-2 motif of the NBS region of plant disease
resistance genes, with varying levels of degeneracy, com-
bined with primers designed to one of the adapters with
varying numbers of selective bases (one, two or three). All
primer sequences for NBS-profiling are described in Addi-
tional file 1. PCRs were performed with 1.5 μM of each
primer, 1 μl of the ligation, 1× PCR buffer (as supplied by
manufacturer of Taq), 200 nM of each dNTP, 1.5 mM
MgCl2 and 1 U HotStar Taq (Qiagen) or Platinum Taq
DNA polymerase (Invitrogen) in a 20 μl volume reaction.
Thermocycling was as follows: 15 min 95°C, 30 cycles of
30 s 95°C, 1 min 55°C, and 1 min 72°C. Amplification
products were resolved on silver stained 4% polyacryla-
mide gels [26]. Alternatively, DNA was digested with the
blunt-end restriction enzymes AluI, HaeIII or RsaI. Frag-
ments were ligated to the GenomeWalker™ Adapter
(Clontech) as recommended by the manufacturer and
NBS5 and AP2 primers were used in PCR using the same
conditions as described above.

In order to confirm that the amplification products were
NBS encoding regions, fragments were excised from the
gel, soaked in 100 μl of autoclaved deionized water over-
night, and heated at 95°C for 5 min. A 5 μl aliquot was
used as template for a PCR, under the same conditions as
the original amplification. PCR products were sequenced
on ABI automated DNA 377 or 3700 sequencers (Applied
Biosystems). Sequences were processed and assembled
using the Staden Package [27], with base calling per-
formed by Phred [28]. Sequence similarities were identi-
fied using Blastx against local databases of predicted
Arabidopsis proteins, Arabidopsis resistance genes, and
Fabaceae proteins [29]. To aid in the translation of NBS
encoding sequences, domains were searched using Est-
Wise [30].

SNP marker development and genotyping

Twenty-four Arachis expressed sequence tag (EST)
sequences of interest were selected for marker develop-
ment. Fifteen of the ESTs are homologs of NBS encoding
sequences, eight have diverse homologies and are respon-
sive to late leaf spot or nematode inoculation ([20,31]
and unpublished data), and one is a homolog of a dehy-
dration responsive element (see Additional file 1). Prim-
ers were developed for the sequences using Primer3 http:/
/frodo.wi.mit.edu/. PCR products were resolved on 6%
nondenaturing polyacrylamide gels and visualized by sil-
ver staining [26]. Amplification products that showed
length polymorphism between the parents of the map-
ping population were used directly as markers. Size mon-
omorphic products were sequenced and SNPs (single
nucleotide polymorphisms) identified using the Staden
Package software. SNP genotyping was performed using
the SNaPshot™ single base extension method (Applied
Biosystems).

AFLP analysis

In order to increase the number of sequence characterized
markers on the map and diversify the type of markers,
AFLP was used [32]. PCR amplifications and electro-
phoresis were carried out as described above in NBS pro-
filing (iii). Reactions were performed using PstI and MseI
with 19 primer combinations. Primer information and
sequences of mapped markers are provided in Aditional
File 1.

Linkage mapping

Linkage analysis was performed using all novel markers
developed during this work plus the 204 microsatellites
previously described [13]. The development of anchor
markers and the analysis of synteny with other legumes is
described elsewhere [15]. Segregation ratios of 1:2:1 or 3:1
of all segregating markers on the 93 F2 individuals were
checked using a χ2 test. The significance level was deter-
mined by using the false discovery rate (FDR) test at a
level of 0.05 [33], which allows type-I error detection. The
distortion types, if zygotic or gametic, were analyzed on
the distorted markers using two χ2 tests, according to [34].
Linkage analysis was done using Mapmaker Macintosh
version 2.0 [35]. Linkage groups (LG) were established,
using a minimum LOD score of 10.0 and a maximum
recombination fraction (θ) of 0.35 with only the co-dom-
inant, non-distorted markers [13]. The LOD score was
then decreased to 3.0 in order to include new markers in
the groups, using two-point analysis ("group" command).
The new marker order within each LG was estimated by
the matrix correlation method using the "first order" com-
mand. Alternatively, the exact position of new markers
within each group was determined by using the "try" com-
mand, which compares the maximum-likelihood of each
marker order after placing markers, one by one, into every

http://frodo.wi.mit.edu/
http://frodo.wi.mit.edu/
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interval of the established order. Marker orders were con-
firmed by permuting all adjacent triple orders ("ripple"
command). Recombination fractions were converted into
map distances in centimorgans (cM) using the Kosambi's
mapping function.

Bioassays

Phenotyping for resistance to C. personatum was per-
formed on the parents of the mapping population, the F1

hybrid, individuals composing the mapping population
itself, and A. hypogaea cv. IAC-Tatu-ST as susceptible con-
trol. The architecture of the wild derived diploid plants is
not suitable for the application of standard field assays
that are used on cultivated peanut, therefore a different
approach was needed. Bioassays were done using
detached leaves. This technique relies on the ability of
peanut petioles to root into moistened cotton wool in a
Petri-dish and thus remain alive for an extended period
[36,37]. Plants were maintained over multiple years by
pruning and when necessary making cuttings. An isolate
of C. personatum collected from peanut in a field in
Campinas (São Paulo State, Brazil) in the 2002/2003 sea-
son was maintained in Oat-agar medium. To avoid the
isolate being attenuated, it was passaged through A.
hypogaea leaves before use in bioassays. Leaves inoculated
with fungal spores were maintained at 23–25°C and pho-
toperiod of 10 h light and 14 h dark. Four replicates of
each individual were analyzed 45 days after inoculation.
Disease severity (susceptibility) was measured through
the percentage of diseased leaf area (DLA). Statistical anal-
yses were performed using Sigmastat (Jandel Scientific).
Two bioassays were done, one in the 2003/2004 season
and the other in the 2004/2005 season.

QTL identification

Average diseased leaf area (DLA), in percentage, for the
four replicates per individual in each bioassay was used
for QTL mapping. The two bioassays were considered sep-
arately. QTLs were mapped by using the composite inter-
val mapping method (CIM) [38,39] in the WinQTL
Cartographer, version 2.5 [40]. CIM analysis was per-
formed using Model 6, scanning intervals of 1 cM between
markers and putative QTLs with a window size of 10 cM.
The genetic effects and the gene action (dominance/addi-
tive effects) of significant QTL were obtained from multi-
ple interval method (MIM) using all significant QTL from
CIM [41]. Putative interactions between significant QTLs
were analyzed using MIM. Graphic presentation of the
LGs and QTLs was obtained by using MapChart, version
2.1 [42].

Analysis of synteny

SSR markers in common between Arachis maps were con-
sidered as corresponding map points. Some SSR markers
on this A-genome map were already in common with the

SSR based map of cultivated peanut [14]. To increase the
number of shared markers, selected SSRs placed in the cul-
tivated map that had not been screened earlier for poly-
morphisms in the A-genome parents were screened and,
when possible, genotyped and mapped in the A-genome.

The methodology for determining synteny of the A-
genome map with Lotus and Medicago are described in
detail elsewhere [15]. Briefly, all legume anchor markers
[16-18,43] and most other markers mapped in the A-
genome were sequence characterized. These sequences
were used in BLAST as queries against the Lotus database
from Kazusa DNA Research Institute (Japan), and against
the pseudomolecules of Medicago using CViT blast (Chro-
mosome Visualization Tool, http://www.medicago.org/
genome/cvit_blast.php).

Results
Bioassays

The observations of diseased leaf area did not follow a
normal distribution within the population, being strongly
biased towards resistance to the fungus. The susceptible
parent A. duranensis K7988 had an average of 4.53% DLA
(sd = 1.68), and differed significantly from the susceptible
control A. hypogaea cv. Tatu, with 16.08% DLA (sd = 4.32),
according to Tukey test, with P < 0.05. Seventy-three F2

plants had lower %DLA than the resistant parent A. steno-
sperma V10309 (0.15% DLA, sd = 0.00), of which 47 had
no lesions (Figure 1).

Development of markers and sequence analysis

Southern blot and SCAR markers

All nine RGA probes hybridized with both A. stenosperma
V10309 and A. duranensis K7988, generating polymorphic
markers. Four probe/enzyme combinations producing
nine scorable markers were chosen for genotyping
(S1_A_36/EcoRI; S1_A_37/EcoRI; S1S2_A_152/HindIII,
and S4_A_164/HindIII). The SCAR markers were easy to
score, but dominant.

NBS profiling

Initially a number of tests were done. Amplifications per-
formed with common Taq polymerases (without hot
start) produced a much larger number of fragments than
with the hot start Taq polymerases. However, the consist-
ency was lower and the polymorphic fragments when
sequenced did not show similarity to any RGA from the
Genbank. Tests were performed varying the number of
selective bases at the end of the primers. As expected, the
larger the number of selective bases, the fewer fragments
were produced (on average 43, 26 and 12 for one, two or
three selective bases, respectively; Additional file 2). Prim-
ers with two selective bases were mostly used, because
they produced an apparently good combination of specif-

http://www.medicago.org/genome/cvit_blast.php
http://www.medicago.org/genome/cvit_blast.php
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icity, total number of fragments and number of polymor-
phic fragments.

Twenty-four primer combinations were chosen, amplify-
ing 765 fragments, of which 138 were polymorphic and
could be genotyped. Of these 138 fragments, 100 gener-
ated good quality sequences and 19 could be confirmed as
being homologs to NBS containing genes. Some of the
fragments were almost identical to RGAs previously iso-
lated from Arachis [21]. The non-RGA fragments showed
diverse homologies including for instance, kinases and an
amylase (Aditional File 1). Some pairs of fragments were
deduced by sequence and genotyping data to be co-dom-
inant, and were scored as such.

SNP marker development and genotyping

Two of the 24 amplification products from ESTs were size
polymorphic and SNPs were identified in all the other 22
sequences, with an average of one SNP per 210 bp. Single
base extensions led to easy scorable, reliable co-dominant
markers. Only one marker failed to genotype successfully.

AFLP

Standard AFLP using MseI with the methylation sensitive
PstI was used to further enrich the map with sequence
characterized markers. From the 19 primer combinations
used, 144 fragments could be genotyped. Almost all of the
mapped markers were sequence characterized and pre-
sented diverse homologies (see Additional file 1). Some
pairs of fragments were deduced by sequence and geno-
typing data to be co-dominant, and were scored as such.

Linkage map

Using a minimum LOD score of 3.0 and a maximum
recombination fraction (θ) of 0.35, 369 markers mapped
into 10 LGs. These markers included 188 microsatellites,
80 legume anchor markers, 46 AFLPs, 32 NBS profiling,
17 SNP, four RGA-RFLP and two SCAR markers. In total,
35 sequence confirmed candidate disease resistance genes
were mapped, 21 being homologs to NBS-encoding genes
and 14 homologs to other genes involved in plant
defense, or genes induced by challenge with pathogens.
LGs were numbered according to the first version of this
map [13]. However, the inclusion of new markers resulted
in 10 LGs instead of 11. The former LGs 8 and 11 joined,
and were together named LG 8 (Figures 2 and 3).

Frequency distribution of disease symptoms in bioassaysFigure 1
Frequency distribution of disease symptoms in bioassays. Frequency distribution of percentage of diseased leaf area 
(%DLA) in F2 lines derived from the cross between A. stenosperma V10309 (As) and A. duranensis K7988 (Ad), 45 days after 
infection with C. personatum. The susceptible control was A. hypogaea cv Tatu (Ah).
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A total of 142 (38.4%) out of the 369 mapped markers
deviated from the expected F2 ratio of 1:2:1 (102 markers)
or 3:1 (40 markers) at p < 0.05 level. A few distorted mark-
ers were found on seven of the 10 LGs (Figures 2 and 3).
In contrast, LGs 3, 4 and 5 were basically composed of dis-
torted markers. LGs 1, 2, 4 and 6 had markers with an
excess of A. stenosperma alleles, while LGs 3, 5, and 9 were
distorted toward the A. duranensis alleles. LGs 7, 8 and 10
showed distorted markers with an excess of heterozygotes.

QTL identification

By using the permutation tests, the minimum LOD scores
to declare as significant the putative QTL for resistance to
C. personatum were estimated as 8.7 and 18.5 for the

2003/2004 and the 2004/2005 trials, respectively. The
reason for these high values is the non-normal distribu-
tion of the phenotypic data, which is highly skewed
towards resistance, and the presence of markers with dis-
torted segregation in some regions of the genome (about
40% of distorted markers). Therefore, we have considered
a QTL with LOD scores above 2.5 as significant, as sug-
gested by [44].

Four QTLs were consistently identified in both bioassays,
with LOD scores ranging form 9.9 to 17.3 (Table 1). These
QTLs were mapped on LG 2 (cp2), LG 4 (cp4.1 and
cp4.2), and LG 6 (cp6) (Table 1, Figure 2). The QTL cp2
showed the highest LOD in the position 226.7 cM with

A genetic linkage map of the A-genome of peanut – Linkage Groups A1 to A5Figure 2
A genetic linkage map of the A-genome of peanut – Linkage Groups A1 to A5. A genetic linkage map, obtained 
through the analysis of 93 F2 plants, generated from a cross between two diploid wild A-genome Arachis species, A. duranensis × 
A. stenosperma. Segregation ratios deviating significantly from the expected ratios are indicated with # (P ≤ 0.05), ## (P ≤ 0.01) 
or ### for highly distorted markers. Numbers on the left of each group are Kosambi map distances. Markers that amplified 
two loci have numbers _1 and _2 after the marker name. Disease resistance candidates marker names that are homologs to 
Arabidopsis NBS encoding genes are highlighted in bold and red, other disease resistance candidate marker names are high-
lighted in bold and blue. QTLs are indicated as bars running alongside linkage groups. Marker correspondences with the chro-
mosomes of the model legumes Lotus japonicus and Medicago truncatula are indicated as colored blocks.
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A genetic linkage map of the A-genome of peanut – Linkage Groups A6 to A10Figure 3
A genetic linkage map of the A-genome of peanut – Linkage Groups A6 to A10. A genetic linkage map, obtained 
through the analysis of 93 F2 plants, generated from a cross between two diploid wild A-genome Arachis species, A. duranensis × 
A. stenosperma. Segregation ratios deviating significantly from the expected ratios are indicated with # (P ≤ 0.05), ## (P ≤ 0.01) 
or ### for highly distorted markers. Numbers on the left of each group are Kosambi map distances. Markers that amplified 
two loci have numbers _1 and _2 after the marker name. Disease resistance candidates marker names that are homologs to 
Arabidopsis NBS encoding genes are highlighted in bold and red, other disease resistance candidate marker names are high-
lighted in bold and blue. QTLs are indicated as bars running alongside linkage groups. Marker correspondences with the chro-
mosomes of the model legumes Lotus japonicus and Medicago truncatula are indicated as colored blocks.

Table 1: Quantitative trait loci for Cercosporidium personatum resistance identified by the multiple interval mapping (MIM) method.

QTL LG Nearest marker(s) Position
(cM)

2003/2004 bioassay 2004/2005 bioassay

LOD a (%) d (%) d/a LOD a (%) d (%) d/a

cp1 A1 Leg034 328.4 - - - - 11.8 4.2 1.7 0.40

cp2 A2 AdH8A* 226.7 10.7 9.7 2.1 0.22 11.9 12.1 5.2 0.43

cp4.1 A4 P25M46-2*/As26A* 106.4 14.1 22.6 7.6 0.34 12.7 14.2 4.5 0.32

cp4.2 A4 RN5H02/TC9E08 165.4 9.9 43.8 4.7 0.13 17.3 41.8 11.2 0.27

cp6 A6 Leg346 81.5 12.3 5.4 0.6 0.10 12.0 4.5 0.1 0.02

Legends: QTL = QTL name, LG = linkage group, LOD = maximum LOD score obtained for the QTL, (a) = additive and (d) = dominance effects (in 
percentage) and gene action obtained for the two bioassays.
*Markers AdH8A P25M46-2/As26A are RGAs
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the closest marker being AdH8A, a homolog of NBS
encoding disease resistance genes. The QTL cp4.1 was
mapped within a cluster of candidate genes, while cp4.2
mapped between two candidate genes. QTL cp6 was
located close to the anchor marker Leg346. An additional
QTL was mapped only in the 2004/2005 trial, in LG 1
(cp1) close to the anchor marker Leg034.

Five identified QTLs showed ratios of dominant to addi-
tive effects (d/a) less than 0.55, which might be inter-
preted as expression additive or only partially dominant
[45]. For all the five identified QTLs, alleles from the
resistant progenitor A. stenosperma increased resistance to
late leaf spot. The QTL 4.2 showed the highest additive
effect in the two trials, explaining almost half of the phe-
notypic variance observed. The other two QTLs detected
close to RGA markers (cp2 and cp4.1) also showed signif-
icant additive and dominant effects in both trials. The
QTL cp1, which was detected only in the 2004/2005 trial,
and cp6 showed minor but significant additive effects
(Table 1).

Analysis of synteny

Both LGs 2 and 4 which contained mapped clusters of
candidate genes and QTLs had poor or "shattered" syn-
teny with the model legumes Lotus and Medicago (Figure
2). However, LG 3, on which mapped three candidate
resistance genes, showed clear syntenies with Lotus and
Medicago, and we chose this to illustrate how the diploid
map can be integrated to the map of cultivated peanut and
Medicago (Figure 4).

Using shared markers, alignments between LG3, LG6 and
cultivated peanut linkage groups were possible. Therefore
we chose to illustrate the integration of this diploid Ara-
chis map, the map of cultivated peanut and Medicago using
LG3 (Figure 4; for an alignment of LG6 see [14]).

Discussion
Little is known about the genomic structure of Arachis and
which regions control disease resistance. To the best of
our knowledge in peanut, only markers linked to root-
knot nematode resistance, resistance to the vector of
groundnut rosette disease, rust and Sclerotinia blight have
been published to date [46-50]. Markers linked to nema-
tode resistance are integrated into a RFLP map, which is
difficult to transfer to other populations, and the markers
linked to aphid resistance are in an AFLP linkage map,
which is sparse and difficult to transfer.

In this study we aimed to increase the information con-
tent of a previously published SSR-based Arachis map,
begin to define the genomic regions that confer disease
resistance and perhaps reveal major resistance gene clus-
ters. For this we used two approaches: the mapping of can-

didate disease resistance genes, and the mapping of QTLs
for resistance against one of the most important peanut
diseases, late leaf spot.

For mapping candidate genes, we mainly focused on
homologs of NBS domain encoding genes, and genes that
respond to challenges with late leaf spot or nematodes
([1], unpublished data). We used four methods for
marker development and genotyping, Southern blot,
SCAR markers, NBS profiling and genotyping of SNPs
using SNaPShot®. Although we were successful with all of
these methods, we found marker development and geno-
typing with SNaPShot® to be the most efficient, generating
easy to score co-dominant markers. In total 35 sequence-
confirmed candidate disease resistance genes were
mapped, 21 being homologs to NBS-encoding genes.

For phenotyping we needed to use a method that was suit-
able for the distinct architecture of the wild diploids
plants; standard field-based protocols for cultivated
plants were not appropriate. Therefore, we used detached
leaf bioassays [36], a method that measures one of the
major components of late leaf spot resistance as defined
for cultivated peanut. Plants were maintained for multiple
years by pruning, transplanting, and by taking cuttings if
necessary, this allowed the performance of bioassays on
the same population in different years.

For QTL analysis we used CIM and MIM methods.
Although these methods are designed for data where phe-
notypic variation is normally distributed, they work with
non-normal distributed traits [51-55]. Of the QTLs iden-
tified, four of the five QTLs were consistent between bio-
assays done in different years. All QTLs had LOD scores
above 9.9, well above the 2.5 limit suggested for signifi-
cance by [44]. In one of the trials (2003/2004), LOD
scores exceeded the minimum threshold calculated by
permutation – a method that is known to overestimate
significant scores for non-normal data. Therefore, the sup-
port for the QTLs is good, though clearly, the aim of bio-
assays was not to identify QTLs that could immediately be
used with confidence in cultivated peanut. Rather the aim
was to give indications of what parts of the Arachis
genome are involved in disease resistance, and to consider
these results together with the map positions of candidate
genes.

The comparison of RGA map positions and QTLs is strik-
ing. The markers closest linked to two of the five QTLs
were RGAs. This strongly suggests the involvement of NBS
encoding genes in the resistance response. The best
known cases of NBS encoding disease resistance genes are
monogenic and dominant. However, in this study the
resistance seems to be polygenic and possibly partially
dominant. These results are broadly consistent with previ-
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An example of synteny between cultivated peanut, the A-genome Arachis map and MedicagoFigure 4
An example of synteny between cultivated peanut, the A-genome Arachis map and Medicago. Synteny between a 
linkage group from cultivated peanut (fAhIII, meaning AhIII "flipped"), an A-genome linkage group (Ar3) developed here and 
two chromosomes of Medicago (Mt4 and Mt7). Synteny of the cultivated linkage group to Medicago can be inferred by using the 
A-genome map as a bridge, in addition the position of candidate genes on the map of cultivated peanut can be inferred. Marker 
names in Medicago are BAC clone identification codes. Genetic distances in Arachis are in cM, and in Medicago in Mbp of DNA. 
Candidate genes are highlighted in bold and red.
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ous data on the inheritance of late leaf spot resistance in
cultivated peanut (reviewed by [3]). The sum of the
genetic effects of the QTLs calculated using MIM was close
to 100% in both trials. Although these effects are probably
overestimated, they provide a good comparison between
the genetic effects of each QTL and the major QTLs could
be identified. For the two trials, the QTL cp4.2 showed
additive effects that explained almost half of the total phe-
notypic variance (Table 1). This QTL was located between
the microsatellite markers RN5H02 and TC9E08 (Figure
2), close to a QTL for seed-weight (data not shown). In
consequence, after validation in other mapping popula-
tions, it is a good candidate for MAS. Two additional QTLs
(cp2 and cp4.1) showed considerable additive effects that
explained, together, ~30% of the variance. Both QTLs
were located close to RGA markers (AdH8A and As26A,
respectively). The upper portion of LG 4, where this QTL
was mapped is RGA-rich (Figure 2). Many authors have
reported close associations between RGAs and disease
resistance loci and QTL (e.g., [40,56-58]). Therefore, such
RGAs can also be useful for MAS of resistant genotypes.
Recombinant inbred lines generated from a tetraploid
population {A. hypogaea × (A. ipaënsis × A. duranensis)4×}
are being phenotyped for resistance/susceptibility to late
leaf spot, aiming at the validation of the results obtained
here.

The best characterized legume genomes are those of the
model plants Lotus and Medicago, which thus serve as use-
ful references for comparison with Arachis. The Medicago
genome harbors two "super-clusters" of resistance gene
analogs, one in the upper region of chromosome 3 and
one in the lower region of chromosome 6; clusters are also
present in the upper regions of chromosomes 4 and 8
[59]. In Lotus, clusters of resistance gene analogs are
present on chromosomes 1, 2 and 3 [60]. Interestingly,
synteny between Medicago and Lotus appears to be poor in
many of the genomic regions that harbor major resistance
gene clusters [59-61]. Therefore, it is notable that Arachis
A-genome LGs 2 and 4, which harbor the most prominent
clusters of candidate genes and QTLs, showed shattered
synteny with both Lotus and Medicago. It is possible that
the breakage of synteny in resistance gene clusters may be
due to their fast evolving nature, and their clustering with
another fast evolving component of the genome, retro-
transposons [15]. However, not all candidate disease
resistance genes containing regions of this A-genome map
have poor synteny, and an example of the integration of
LG III of cultivated peanut, LG 3 of the A-genome map
and Medicago chromosomes is shown in Figure 4. The
ability to integrate different maps in this way will increase
with future work and increased marker densities.

Conclusion
The present study mapped 35 candidate genes and five
QTLs for late leaf spot disease resistance. The study indi-
cated several regions within the Arachis genome as being
involved in controlling disease resistance. In particular,
clustering of the candidate genes and QTLs suggests that
the upper region of LG 4 and the lower region of LG 2 are
likely to control disease resistance and to harbor clusters
of disease resistance genes in Arachis.
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