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IMPORTANCE Substantial genome-wide association study (GWAS) work in Parkinson disease
(PD) has led to the discovery of an increasing number of loci shown reliably to be associated
with increased risk of disease. Improved understanding of the underlying genes and
mechanisms at these loci will be key to understanding the pathogenesis of PD.

OBJECTIVE To investigate what genes and genomic processes underlie the risk of sporadic PD.

DESIGN AND SETTING This genetic association study used the bioinformatic tools Coloc and
transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data
published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression
[GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples)
to uncover putative gene expression and splicing mechanisms associated with PD GWAS
signals. Candidate genes were further characterized using cell-type specificity, weighted gene
coexpression networks, and weighted protein-protein interaction networks.

MAIN OUTCOMES AND MEASURES It was hypothesized a priori that some genes underlying PD
loci would alter PD risk through changes to expression, splicing, or methylation. Candidate
genes are presented whose change in expression, splicing, or methylation are associated with
risk of PD as well as the functional pathways and cell types in which these genes have an
important role.

RESULTS Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38
[OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM
618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac
expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543],
NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM
116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis
revealed that gene expression was overall more prevalent in glial cell types compared with
neurons. The weighted gene coexpression performed on the GTEx data set showed that
NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein
ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus
accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules
in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell
communication. Protein interactor analysis and simulations using random networks
demonstrated that the candidate genes interact significantly more with known mendelian PD
and parkinsonism proteins than would be expected by chance.

CONCLUSIONS AND RELEVANCE Together, these results suggest that several candidate genes
and pathways are associated with the findings observed in PD GWAS studies.
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P arkinson disease (PD) is the second most common neu-
rodegenerative condition worldwide, characterized by
bradykinesia, rigidity, and tremor.1 Genome-wide asso-

ciation studies (GWASs) have discovered more than 40 loci sig-
nificantly associated with PD risk.2 However, these studies are
limited to narrowing PD risk down to a genomic region encom-
passing several candidate genes. The causal genes underlying
each locus, as well as the mechanism by which they confer PD
risk, often remain unclear. These issues can be resolved by
complementing GWAS data with quantitative trait loci (QTL) data
sets,whichdescribeassociationsofanindividual’sgenotypewith
gene expression (eQTLs), splicing or methylation. For ex-
ample, such efforts applied to the 7p15.3 locus have shown that
PD risk variants regulate GPNMB (OMIM 604368) expression.3

Improvements to the understanding of the genes and mecha-
nisms via which GWAS risk variants act may be instrumental to
our understanding of the pathogenesis of PD.

Several studies demonstrate that GWAS risk variants may
have an association with gene expression or splicing.4,5 In re-
cent years, there has been an increase in the number of pub-
licly available brain-derived QTL data sets, including those re-
leasedbytheUKBrainExpressionConsortiumandtheGenotype-
Tissue Expression (GTEx) Consortium used in this study.6-8 The
progressively increasing sample size, sequencing depth, and tis-
sue resolution of these data sets improves our power to detect
QTLs and, as a result, to interpret GWAS results in the context
of regulatory effects.9,10 This improved resource availability has
been accompanied by advances in statistical tools that permit
the systematic, genome-wide integration of QTL and GWAS data.
Because different methods have different limitations and as-
sumptions,weadoptedastringentapproachofapplyingthetools
Coloc and transcriptome-wide association study (TWAS), then
retaining only significant results present from both methods to
reduce the likelihood of false-positive results. Coloc is a method
that uses a bayesian framework to calculate a probability that 2
traits share a causal variant, whereas TWAS uses prediction mod-
els trained on reference QTL data to assess the association be-
tween gene expression and disease.11-13 The increased size and
comprehensiveness of publicly available brain QTL data sets,
coupled with advancements in bioinformatic tools, allow for a
more thorough investigation of which of the putative genes sug-
gested by GWAS underlie PD risk.

We present a systematic interrogation of all known PD risk
loci using a recent PD GWAS, the aforementioned data sets, and
methods to uncover the genes and mechanisms through which
GWAS risk variants are associated with PD risk. The candi-
date genes and resulting pathways presented in this study are
the result of stringent replication across multiple data sets and
bioinformatic methods. We anticipate that this work can serve
as a reference example to be applied to different neurodegen-
erative diseases.

Methods
PD GWAS Data
Summary statistics from the combined discovery and repli-
cation phases of a GWAS meta-analysis of PD were used,2 in-

cluding 8 055 803 genotyped and imputed variants in up to
26 035 patients with PD and 403 190 controls of European an-
cestry. For the purposes of this study, all alleles were aligned
on the forward strand, and all effect sizes and allele frequen-
cies were converted with respect to the nonreference allele in
build GRCh37. All genes overlapping the region 1 Mb up-
stream or downstream of a single-nucleotide variation (SNV)
with an association with PD of P ≤ 5 × 10−8 were selected for
the initial analysis. The analysis was then extended to in-
clude all genes in the genome, to identify candidate genes in
loci that have not reached genome-wide significance in the PD
GWAS but where the collective evidence with expression data
suggests a colocalized signal.

Braineac eQTL Data
The UK Brain Expression Consortium Braineac data set con-
tains data from 10 brain regions obtained from 134 control in-
dividuals: frontal cortex, temporal cortex, occipital cortex, hip-
pocampus, thalamus, putamen, substantia nigra, medulla,
cerebellum, and white matter, together with the mean expres-
sion across all 10 regions.6,8,14 Gene expression was quanti-
fied using Affymetrix Exon 1.0 ST arrays (Thermo Fisher Sci-
entific), and the genotyping was performed using Illumina
Infinium Human Omni1-Quad BeadChip microarrays (Illu-
mina Inc), then imputed to the European panel of the phase
1 1000 Genomes Project.15,16 The genotyped and imputed data
were restricted to approximately 5.88 million SNVs with mi-
nor allele frequency of 0.05 or more and imputation r2 > 0.5.
For each gene of interest, all SNV associations within 1 Mb up-
stream and downstream of the gene were collected.17

GTEx eQTL Data
The GTEx version 7 data set includes eQTL data from 13 brain
tissues with sample sizes ranging from 154 to 80: cerebellum,
caudate, cortex, nucleus accumbens, cerebellar hemisphere,
frontal cortex, putamen, hippocampus, anterior cingulate cor-
tex, hypothalamus, amygdala, spinal cord (cervical C1), and
substantia nigra.7 Gene expression in these samples has been
obtained using paired-end RNA-seq (Illumina TruSeq; Illu-
mina Inc) and genotype data from whole-genome sequenc-
ing. Full-summary eQTL data for the tissues of interest were
downloaded from the GTEx web portal.18

Key Points
Question What genes and genomic processes underlie risk of
sporadic Parkinson disease?

Findings This genetic association study integrated Parkinson
disease genome-wide association study data and brain-derived
gene regulation data using various complementary bioinformatic
tools and identified 11 candidate genes with evidence of
disease-associated regulatory changes. Coexpression and protein
level analyses of these genes demonstrated a significant functional
association with known mendelian Parkinson disease genes.

Meaning This study suggests that gene regulation data may be
used to identify candidate genes and pathways involved in
sporadic Parkinson disease.
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Brain Methylation Data
Genome-wide methylation profiles were obtained from both
the substantia nigra and the frontal cortex of 134 individuals
with PD from the Parkinson Disease UK Brain Bank, using the
Illumina Infinium HumanMethylation450 BeadChip (Illu-
mina Inc). Cis PD methylation quantitative trait loci were de-
fined as correlations between the target PD SNV genotype and
DNA methylation levels of CpG sites within a 500-kb window
of the SNV base position. Linear models were fitted to test
whether DNA methylation beta values for each CpG site were
predicted by SNV genotypes. We included covariates for age
at death, sex, population stratification, batch, and postmor-
tem interval. We retained the strongest SNV-CpG pair at a 5%
false discovery rate (FDR) to be used in downstream analy-
ses. The CpG sites were mapped to genes if they were within
10 kb of the gene transcription start or end base position ac-
cording to HG19 (human genome version 19) coordinates. In
total, 37 460 CpG sites were included in the final analysis.

Coloc Analysis
To assess the probability of the same SNV being responsible for
both changing PD risk and modulating the expression levels of
a gene, we used the Coloc method.11 Both the Braineac and GTEx
eQTL data sets were harmonized with the PD GWAS data set to
ensure that the regression coefficients were reported with re-
spect to the nonreference alleles in build GRCh37 and that the
variants overlapping with the PD GWAS data set were kept for
analysis. Coloc uses estimated approximate Bayes factors from
summary association data to compute posterior probabilities for
the following 5 hypotheses: no shared causal variant in the re-
gion, there is a causal PD variant but no eQTL variant, there is a
causal eQTL variant but no PD variant, both studies have a dif-
ferent causal variant within the analyzed region, and there is a
shared causal variant within the analyzed region.

We used the default Coloc priors of p1 = 10−4, p2 = 10−4,
and p12 = 10−5, where p1 is the probability that a given SNV is
associated with PD, p2 is the probability that a given SNV is a
significant eQTL, and p12 is the probability that a given SNV
is both a PD result and an eQTL.

For both the Braineac and GTEx data sets, we derived pos-
terior probabilities (PPH0-4) for each gene and considered
PPH4 of 0.75 or more as strong evidence for colocalization. For
Braineac, we also looked at genes for which there is strong evi-
dence of colocalization at the exon level for a given exon (exon
PPH4 ≥ 0.75), but evidence against colocalization for the whole
gene (gene PPH3>gene PPH4), to identify potential splicing
events causing PD.

Transcriptome-Wide Association Study
To assess the degree to which changes in gene expression or
splicing might be associated with PD case or control status, we
performed a TWAS or methylation-wide association study
(MWAS) using the method by Gusev et al.12 Expression refer-
ence weights were obtained from the CommonMind Consor-
tium dorsolateral prefrontal cortex RNA-seq and RNA-seq splic-
ing data sets, which are based on 467 samples (209 individuals
with schizophrenia, 206 controls, and 52 individuals with af-
fective disorder), and methylation data from our PD brain meth-

ylation data set.19 For all genes (or isoforms for splicing analy-
sis), TWAS and MWAS P values were obtained, and all genes and
isoforms passing multiple testing correction at the FDR 0.05
level, genome-wide, were considered significant. Where mul-
tiple genes were implicated within a region, we performed fur-
ther conditional analyses using Fusion12 to identify whether
there were single or joint TWAS and MWAS signals at each lo-
cus. Conditional analyses were performed independently across
gene expression and methylation data sets.

Weighted Gene Coexpression Network Analysis
Weighted gene coexpression network analysis (WGCNA) with
k-mean values was applied by Botía et al20 to transcriptomic data
from GTEx and Braineac to generate coexpression modules.21,22

We assessed whether the candidate genes in this study were im-
portantincertainmodulesusingthetoolCoExpNets.23 TheGTEx-
and Braineac-derived networks were used to assign each candi-
date gene to a cell type, while the GTEx networks alone were used
to assess the functional pathways associated with each gene. In
brief, each module is associated with a cell type based on the en-
richment of cell-type–specific genes within the module. The en-
richment is assessed by using the Fisher exact test to evaluate
whether we can find an overlap between the module genes and
the brain cell–type markers that is more significant than random
chance. Each gene of interest is then assigned to a primary cell
type based on its module membership, which is the correlation
of the expression of our gene of interest with the first principal
component of each module. This correlation is always between
0 and 1; we use module membership as a measure of how reliable
the assignment is of each gene to its module.

Cell-Type Specificity Analysis
We investigated the cell-type–specific expression of the Co-
loc prioritized genes, using the immunopanning data from hu-
mans and mice, and coexpression analysis of the GTEx and
Braineac data.15,16,24 From the immunopanning data, cell-
type–specific enrichment values were obtained or calculated
for each gene and for each cell type analyzed. Enrichment was
calculated as expression prevalence by dividing the mean ex-
pression of the gene in one cell type by the mean expression
across all other cell types. Each gene of interest was then as-
signed to a primary cell type of interest based on the highest
cell-type–specific enrichment value observed.

Literature-Derived Protein Interactor Networks
We extracted and quality-controlled currently known protein in-
teractors (PPIs) for the proteins (seeds) encoded by the genes pri-
oritized in this article (Coloc protein network), using a previously
describedcustom-weightedprotein-proteininteraction(WPPINA)
pipeline (eAppendix in Supplement 1), and performed functional
enrichmentanalysisontherelevantgenesprioritizedthroughthe
WPPINA.25 For comparison, a similar network (mendelian pro-
tein network) was prepared for mendelian PD and parkinsonism
genes (SNCA [OMIM 163890], LRRK2 [OMIM 609007], GBA
[OMIM606463],SMPD1 [OMIM607608],VPS35 [OMIM601501],
DNAJC13 [OMIM 614334], PINK1 [OMIM 608309], PRKN [OMIM
602544], DJ1 [OMIM 602533], FBX07 [OMIM 605648], SYNJ1
[OMIM 604297], DNAJC6 [OMIM 608375], WDR45 [OMIM
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300526], PLA2G6 [OMIM 603604], ATP13A2 [OMIM 610513],
RAB39B [OMIM 300774], SPG11 [OMIM 610844], PANK2 [OMIM
606157], C19orf12 [OMIM 614297], and PRKRA [OMIM 603424];
eTable 1 in Supplement 2). The number of interactions between
the Coloc protein network and the mendelian protein network
werequantified.Toassesstheprobabilitythatthenumberofcon-
nections between the 2 networks was more than would be ex-
pected by chance, we performed random simulations with 1000
control networks characterized by the same number of seeds as
the Coloc protein network. Control networks were built by using
random combinations of seed genes sampled out of the pool of
118 genes characterized by evidence against colocalization in the
Coloc analysis (PPH3 > 0.75).

Statistical Analysis
Data wrangling and analysis were performed using R, version
3.4.3 (R Foundation for Statistical Computing). Coloc analy-
ses were performed using the Coloc package in R. Transcrip-
tome-wide association study analyses were conducted using
the TWAS software,26 and WGCNA results were obtained using
the R package.23 Cell-type specificity was calculated using in-
house R scripts detailed in the Methods. The WPPINA analy-
sis was performed using R, with the results visualized using
Cytoscape 3.5.0 software (Cytoscape Consortium) and func-
tional enrichment using g:Profiler.27 The code for analyses per-
formed in this study is available online.28

Results
Genes Associated With PD Risk Through
Changes in Expression
First, to evaluate the scope of the analysis, we assessed the
number of genes expressed to a detectable level in both the
Braineac and GTEx data sets. We found that of 515 genes within
1 Mb of a significant PD risk variant, 470 were expressed to a
detectable level and passed quality control in both data sets.
Second, we applied Coloc and TWAS to test whether the regu-
lation of the expression of these overlapping genes was asso-
ciated with PD risk. When applying the Coloc method to these
470 genes, 9 in Braineac and 27 in GTEx showed strong evi-
dence for colocalization (PPH4 ≥ 0.75) in at least 1 brain re-
gion. In the TWAS analysis, 61 genes were found to be signifi-
cantly associated with PD risk at an FDR level of 0.05. Five
genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB
[OMIM 604368], RAB29 [OMIM 603949], and TMEM163
[OMIM 618978]; Table 1) replicated across the Coloc and TWAS
results (eFigure 1A in Supplement 1). Example regional asso-
ciation plots for the genes with the highest PPH4 in Braineac
(RAB29) and GTEx (CD38 in putamen) are found in eFig-
ure 2A and B in Supplement 1. Full details for all genes that
showed strong evidence for colocalization in either Braineac
or GTEx and were significant in the TWAS analysis are found
in eTable 2 in Supplement 3 and eTable 3 in Supplement 4.

Genes Associated With PD Risk Through Changes in Splicing
To assess splicing changes, we used the Braineac data set, which
had exon-level eQTL data. A total of 25 genes in Braineac had

strong evidence for colocalization for at least 1 exon in at least
1 brain region. For 15 genes there was evidence suggesting that
the association is owing to an exon-level splicing event (exon
PPH4 ≥ 0.75) rather than a gene-level expression effect (gene
PPH3>PPH4). In the TWAS analysis, 129 genes had evidence
for splicing in at least 1 isoform at FDR 0.05 level. Of these, 40
were within 1 Mb of a PD-significant SNV. Six genes with a pu-
tative splicing effect in the Coloc analysis showed a signifi-
cant splicing effect in the TWAS analysis (ZRANB3 [OMIM
615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2
[NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810])
(eFigure 1B in Supplement 1). We then assessed the eQTL P val-
ues of the top SNV suggested by Coloc for the associated exon
and the gene as a whole, showing that, for these associations,
the gene-level P value is not significant, while the exon-level
P value is significant. These genes are summarized in Table 2.
Full details for all splicing events that showed strong evi-
dence for colocalization in Braineac, and of all genes signifi-
cant at FDR 0.05 level in the TWAS analysis are found in
eTable 4 in Supplement 5 and eTable 5 in Supplement 6.

Genes Associated With PD Risk Through Changes
in Methylation
We investigated whether the genes associated with PD risk via
expression or splicing changes could be acting through regu-
lation of methylation. A total of 134 CpG sites passed FDR
correction and conditional analysis in the substantia nigra
(mapping to 107 unique genes), and 116 CpG sites survived FDR
correction and conditional analysis in substantia nigra (map-
ping to 93 unique genes) (eTable 6 in Supplement 7). Of the
MWAS significant genes, 3 (GPNMB, TMEM163, and CTSB)
overlapped with the Coloc expression or splicing results
(Table 3).

Cell-Type Specificity and WGCNA
The results for the cell-type specificity analysis are shown in
Figure 1. Although no single cell type dominated, Coloc-
prioritized gene expression was overall more prevalent in glial
cell types compared with neurons. This finding was consis-
tent across analyses performed with mouse immunopanning
data generated from the cortex and with human immunopan-
ning data generated using cortical tissue and using inferred cell-
specific gene expression generated using coexpression net-
works across all brain regions, including the substantia nigra. The
WGCNA results are summarized in Figure 1B; NUPL2, TMEM163,
and ZRANB3 were the most relevant genes (module member-
ship >0.76) within 3 modules in different brain regions. NUPL2
was a key gene within the dark turquoise module in the nucleus

Table 1. Gene-Based Results

Gene Locus Direction Top PD SNV position
WDR6 NCKIPSD or CDC71 Negative chr3:48748989

CD38 FAM200B or CD38 Negative chr4:15737101

GPNMB KLHL7, NUPL2, or GPNMB Positive chr7:23293746

RAB29 NUCKS1 or SLC41A1 Positive chr1:205723572

TMEM163 TMEM163 or CCNT2 Positive chr2:135539967

Abbreviations: PD, Parkinson disease; SNV, single-nucleotide variation.
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accumbens, the blue module in the caudate, and the sky blue
module in the putamen. These modules’ most relevant func-
tions indicated catabolic processes associated with protein
ubiquitination (protein ubiquitination [gene ontology (GO):
0016567]; ubiquitin-dependent protein catabolic process [GO:
0006511]). TMEM163 and ZRANB3 were both important in the
turquoise module in the frontal cortex and caudate, respec-
tively. This module indicated chemical transmission at the syn-
apse as a major associated function (regulation of signaling
[GO: 0023051]; cell communication [GO: 0007154]).

Literature-Derived PPI Network
The protein products of the 11 candidate genes were intercon-
nected (principally through a second-degree level of connec-
tion) with several proteins that are also relevant for mende-
lian forms of PD and parkinsonism (Figure 2A). The number
of connections to known PD and parkinsonism genes (n = 9)
was significantly higher than expected by chance (P < 1 × 10−3)
based on a random simulation of 1000 control networks
(Figure 2B). This result suggests a disease-specific and con-
sistent interaction between protein products of our candi-
date genes and mendelian PD and parkinsonism genes.

Because proteins that interact together are likely to share
similar functions, we investigated whether there were shared
pathways and biological processes associated with the core
composed of our candidate genes and mendelian genes (in-
put list for enrichment in eTable 7 in Supplement 8). These re-
sults suggest that there is an enrichment of proteins involved
in or regulating the ERBB receptor tyrosine protein kinase sig-
naling pathways (Figure 2C; eTable 8 in Supplement 9).

Discussion
With the increasing number of GWASs, our ability to map dis-
ease-associated variants exceeds our ability to interpret their

biological function. Here, we have performed a comprehen-
sive analysis by colocalization of eQTL and GWAS signals in PD,
using a recent PD GWAS. We have integrated these data with
publicly available brain eQTL data sets (Braineac and GTEx).
This multilayered approach has identified 11 genes that we pos-
tulate underlie PD risk. Of these, 5 are associated with gene
expression regulation, and 6 are associated with alternative
splicing. We found evidence of methylation regulation for 3
of these candidate genes.

Of the candidate genes presented here, CD38 is associated
with insulin regulation, emphasizing a possible role of glucose
metabolism in PD.29 This finding is supported by recent work in-
dicating an association between body mass index and PD, and
a randomized clinical trial of exenatide, a glucagon-like pep-
tide 1 receptor agonist, as a disease-modifying agent for PD.30,31

Furthermore, a role for CD38 in regulating neuroinflammation,
especially in glial cells, has been proposed, which is consistent
with the enrichment of CD38 in astrocytes in the cell-type speci-
ficity analysis.32 The data from this study also reinforce RAB29
as a key candidate for the chromosome 1q32 locus association.
Recent studies providing further functional evidence linking
RAB29 (also known as RAB7L1) to LRRK2, and implicating RAB29
as a substrate for LRRK2 kinase activity, also support this
designation.33-35 Furthermore, the candidate genes CTSB and
GALC, whose dysfunction is linked to lysosomal storage disor-
ders such as Krabbe disease, are consistent with the findings
on the role of lysosomal pathways in PD.36-38 In the GPNMB/
NUPL2 locus, the PD GWAS results suggest only 1 independent
signal, while the results presented in this article nominate both
GPNMB (gene level) and NUPL2 (splicing) with strong PPI evi-
dence connecting both to mendelian or sporadic risk genes. This
couldbeexplainedbythetruecausalgenebeing1ofthe2,asingle
mechanism mediated through the associations with both genes,
or potentially yet undetected independent PD GWAS signals at
the locus associated with independent risk genes.

The WGCNA and WPPINA approaches allow prioritiza-
tion of genes as a global functional unit. The WGCNA analysis
suggested that 3 of the Coloc-prioritized genes (NUPL2,
TMEM163, and ZRANB3) may be relevant for supporting func-
tions associated with the ubiquitin proteasome system, neu-
ronal development, and the chemical transmission at the
synapse. The WPPINA analysis indicated that the proteins en-
coded by the Coloc-prioritized genes interact with mendelian
PD and parkinsonism proteins, suggesting the existence of a
common functional unit of genes and proteins—associated with

Table 3. MWAS Results Overlapping With Coloc Hits

Gene CpG site Direction
GPNMB cg17274742 Negative

GPNMB cg08455073 Negative

TMEM163 cg00897703 Positive

CTSB cg07593977 Negative

Abbreviation: MWAS, methylation-wide association study.

Table 2. Splicing Results

Gene PPH3 PPH4 Top Coloc SNV

P value

PPH3 PPH4Exon Gene
ZRANB3 0.06 0.93 rs6741007 1.37 × 10−6 .27 0.20 0.07

PCGF3 0.05 0.87 rs34311866 3.32 × 10−5 .20 0.26 0.07

NEK1 0.11 0.78 rs6828248 7.13 × 10−5 .11 0.28 0.08

NUPL2 0.24 0.76 rs12539467 8.62 × 10−9 .06 0.26 0.17

GALC 0.12 0.81 rs2008686 7.7 × 10−5 .03 0.27 0.19

CTSB 0.10 0.78 rs1692821 3.14 × 10−5 .47 0.27 0.05

CTSB 0.09 0.77 rs1293298 3.66 × 10−5 .08 0.27 0.07

Abbreviations: PPH, posterior probabilities; SNV, single-nucleotide variation.
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the ERBB signaling pathways—that increases the risk for de-
veloping sporadic as well as familial PD.

Limitations and Strengths
This study has some limitations. It considered only cis-QTLs, ow-
ing to the current challenges in robustly quantifying trans-
QTLs. Furthermore, this study considered only QTLs in the brain
and no other tissues. The Coloc analysis applied here assumes
that the true causal variant underlying the disease has been cap-
tured in both the GWAS and eQTL data sets. The PD GWAS data
used here have been imputed to the latest Haplotype Refer-
ence Consortium panel (version 1.1), and the genotypes in the
GTEx data are generated with whole-genome sequencing, maxi-
mizing the chances of this assumption being met. However, the
Braineac data used here have been imputed to 1000 Genomes
phase 1, potentially reducing our power to replicate candidate
genes in this data set. Another limitation in the colocalization
tools used here is that they assume 1 independent signal for each
gene at each locus for both the GWAS and QTL results. Finally,

the methods used here cannot exclude pleiotropy, whereby a dis-
ease-causing SNV is associated with the regulation of an unre-
lated gene via a separate pathway.

Although the high degree of overlap between the GTEx and
Braineac-derived results is encouraging, there were some in-
consistencies in the implicated brain regions across the 2 data
sets. This may be due to potential methodological differ-
ences in tissue collection, RNA extraction, platforms, and analy-
sis pipelines. In addition, these differences might reflect di-
vergent cell-type specificity of the expression and splicing
effects.

This study also has some strengths. A key strength is that
this is a large and comprehensive exploration of PD GWAS and
eQTL data sets from the human brain. We replicated our Co-
loc results across 2 platforms, Braineac and GTEx, generated
through microarray and RNA-seq, respectively, and per-
formed additional validation using TWAS in the Common-
Mind Consortium dorsolateral prefrontal cortex data set. This
has resulted in prioritizing 11 candidate causal genes for PD

Figure 1. Cell-Type–Specific Expression of Coloc-Prioritized Genes in Human and Mouse, and Using Genotype-Tissue Expression (GTEx) Consortium
and United Kingdom Brain Expression Consortium (UKBEC) Data
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These results illustrate the overrepresentation of glial cell types compared with neuronal cell types among the candidate genes. NA indicates not applicable.
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based on GWAS results to be further investigated biologically
in different animal or cell models for PD. Furthermore, we are
highlighting biological reasons for their likely functional as-
sociation with PD pathogenesis. We acknowledge that fur-
ther functional work will be required to mechanistically link
these genes to PD, but the genetic and analytical approaches
applied here suggest that these are the putative gene and ge-
nomic events underlying these risk loci.

Conclusions

This study pairs GWAS with QTL data to discover candidate
genes whose change in expression, splicing, or methylation are
associated with the risk of PD. Furthermore, interaction net-
work analyses highlight the functional pathways and cell types
in which these candidate genes have an important role.

Figure 2. Literature-Derived Protein-Protein Interaction (PPI) Network
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A, Weighted protein-protein interaction network analysis (WPPINA) network visualization of the PPIs specific for the proteins (seeds) coded by the Coloc genes
(green nodes). Minor protein interaction partners are shown in blue, while mendelian Parkinson and parkinsonism proteins interacting with parts of the seeds’
interactome are reported in pink. Major interaction partners (ie, they bridge interaction between at least a Coloc protein and a mendelian protein) are labeled in
gray. B, The negative control protein network has been randomly sampled to generate 1000 random networks with similar features to the actual Coloc network.
These therefore included same or similar number of seeds (9 seeds) to the Coloc protein network and were matched to the mendelian protein network to quantify
the number of mendelian proteins able to interact with the random seeds’ interactome. C, Nodes highlighted in yellow (Coloc proteins connected to mendelian
Parkinson disease (PD) proteins and internodes) were used to run functional enrichment. The most specific terms of enrichment are reported in the table with their
adjusted P value, gene ontology (GO) term identifier, and name. The proteins associated with the enrichment of the terms reported in tables are circled in red.
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