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Identification of candidate 
repurposable drugs to combat 
COVID‑19 using a signature‑based 
approach
Sinead M. O’Donovan1,10, Ali Imami1,10, Hunter Eby1, Nicholas D. Henkel1, 
Justin Fortune Creeden1, Sophie Asah1, Xiaolu Zhang1, Xiaojun Wu1, Rawan Alnafisah1, 
R. Travis Taylor2, James Reigle3,4, Alexander Thorman6, Behrouz Shamsaei4, 
Jarek Meller4,5,6,7,8 & Robert E. McCullumsmith1,9*

The COVID‑19 pandemic caused by the novel SARS‑CoV‑2 is more contagious than other 
coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics 
is a crucial tool to treat those infected with SARS‑CoV‑2 and limit the spread of this novel disease 
globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of 
COVID‑19. Using an “omics” repository, the Library of Integrated Network‑Based Cellular Signatures 
(LINCS), we simultaneously probed transcriptomic signatures of putative COVID‑19 drugs and publicly 
available SARS‑CoV‑2 infected cell lines to identify novel therapeutics. We identified a shortlist 
of 20 candidate drugs: 8 are already under trial for the treatment of COVID‑19, the remaining 12 
have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All 
candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are 
discordant with (i.e., reverse) SARS‑CoV‑2 transcriptome signatures generated in vitro, and a subset 
are also identified in transcriptome signatures generated from COVID‑19 patient samples, like the 
MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already 
being explored as therapeutic agents for the treatment of COVID‑19 and identify promising novel 
targets that are worthy of further investigation.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the �rst global pandemic in a 
decade, coronavirus disease 2019 (COVID-19)1. Initial reports of a novel SARS-like acute respiratory syndrome 
emerged in late 2019 from Wuhan,  China2. Since then, COVID-19 has spread to over 150 countries and all con-
tinents except  Antarctica3,4. At the time of writing, over 35 million people have been infected, over 7.5 million 
of these in the US, and more than one million deaths have been attributed to this outbreak  globally4. Millions of 
additional infections are projected to occur globally in upcoming  months3,4.

COVID-19 is less infectious than SARS-CoV-1 but more lethal than the common  �u1 with an estimated 
mortality rate of 3.4%2. �e incubation period, on average, is 5.2 days; in severe cases, the median time course 
from disease onset to death is 14  days5. While fever, cough, fatigue, and  myalgias6–10 are common, mild presen-
tations of COVID-19, the disease can fatally evolve into a severe pneumonia, complicated by acute respiratory 
distress syndrome, hypoxemic respiratory failure, and cytokine storm secondary to prolonged  infection8. In 
addition to the signi�cant medical burden imposed by this outbreak, it is estimated that the global economic 
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cost of COVID-19 will be over $1 trillion in  202011. �e emotional toll on individuals will be incalculable, with 
prolonged quarantine policies restricting personal freedom and social contacts.

Current treatment is supportive and is focused on managing disease complications and secondary 
 symptoms12–14. Drugs indicated for other infectious diseases, such as antiviral and antiparasitic therapies, have 
been used for COVID-19 patients, but there is a paucity of evidence supporting their  e�cacy15.

To address the need for new therapies for COVID-19, research has focused on drug repositioning, particu-
larly the use of bioinformatic tools to identify novel drug candidates that can be safely and rapidly repurposed 
to treat this disease. Integrating the results of SARS-CoV-2 transcriptomic analyses generated in infected cell 
lines, human tissues and even  organoids16 with computational approaches has proven especially fruitful. Such 
studies identi�ed FDA-approved  antivirals17 and a broad range of kinase inhibitors as potential candidate treat-
ments for COVID-1918–20. Importantly, transcriptional analyses have provided additional support for the use 
of drugs like  dexamethasone17 and  chlorpromazine19 that are already undergoing clinical trial. Analyzing the 
transcriptional changes induced by SARS-CoV-2 infection has also o�ered signi�cant insight into the genes and 
biological  pathways17,18,21–23 that are altered in disease, implicating cellular in�ammatory responses, particularly 
interferon pathways, in COVID-1919,24,25.

In the present study we apply a signature-based connectivity  analysis26–28 utilizing the extensive chemi-
cal perturbagen “omics” datasets deposited in the Library of Integrated Network-based Signatures (LINCS) 
 database26,29,30. LINCS is a repository for systematically generated gene signatures based on the L1000  assay31. 
�ese gene signatures re�ect cellular perturbations in response to pharmacological treatments; LINCS contains 
datasets for over 22,000 small molecules (drugs) in various cell lines. Di�erent small molecules that produce 
signatures composed of highly similar patterns of gene expression changes, or “concordant” signatures, re�ect 
shared connections between small molecules.

Here, we apply a two-pronged approach to identify novel compounds for the treatment of COVID-19. First, 
we identify pharmacologic therapies that are e�ective in the treatment of pathogens in the coronavirus family, 
like SARS and Middle East Respiratory Syndrome (MERS), as well as other viral  illnesses32–36. We then identify 
candidate drugs in the LINCS database that are highly concordant with current therapies. Simultaneously, we 
generate gene signatures from a SARS-CoV-2 infected human cell line transcriptomic dataset. We directly match 
disease signatures with discordant small molecule signatures, thereby identifying drugs that “reverse” the disease 
signature. Finally, we compile a list of drugs from these two approaches to identify high-yield candidate drugs 
that may have therapeutic utility in the treatment of COVID-19 and verify that the candidates can also be gen-
erated using COVID-19 patient sample (in vivo) transcriptome  data24,25. Our �ndings include many approved 
drugs already under trial for COVID-19 as well as novel candidates that have yet to be explored clinically but 
show promising antiviral e�cacy in vitro, suggesting that this approach is of utility in identifying candidate 
repurposable drugs for the treatment of COVID-19.

Results
Applying the work�ow outlined in Fig. 1, we identi�ed nine drugs, with known e�cacy in treating coronavirus 
family pathogens, for which there are gene signatures in iLINCS. �ese drugs were clustered into �ve groupings 
according to their mechanism of action and Anatomical �erapeutic Chemical (ATC) classi�cation (Table 1 
and Table S1). Consensus gene signatures composed of genes changed LFC ≥ 0.85 and ≤ − 0.85 (Table S2) and 
combining data from 6 unique cell lines (Table S3) were generated for each drug cluster.

Simultaneously, we extracted di�erential gene expression data on the 978 genes that comprise the iLINCS 
L1000 from a publicly available SARS-CoV-2 infected cell line (A549_ACE2) transcriptomic dataset (GSE147507 
CL). Consensus gene signatures composed of genes changed LFC ≥ 0.5 and ≤ -0.5 were generated for the SARS-
CoV-2 signature (Table S4). In iLINCS, we conducted connectivity analysis to identify chemical perturbagens 
that are highly concordant to the drug target groupings (≥ 0.321) or highly discordant to the disease signature 
(≤ − 0.321), using established minimum iLINCS concordance score  cuto�s31,37. �is resulted in identi�cation of 
83 chemical perturbagens (Fig. 2). Fi�y-seven chemical perturbagens were identi�ed with a minimum mean 
concordance score 0.47 and SD 0.08 across all cell lines (Fig. 2).

Twenty chemical perturbagens were considered top “candidate” drugs for the treatment of COVID-19 (Table 2 
and Table S5). �e candidate drugs are FDA approved or are currently undergoing trial and are considered safe 
for human use and have reported antiviral properties in vitro. A subset of drugs has demonstrated antiviral prop-
erties against coronaviruses SARS-CoV, MERS or SARS-CoV-2. Seven of the 20 identi�ed drugs are registered 
for clinical trial for the treatment of COVID-19 (clinicaltrial.gov).

Although transcriptomic data is now available from COVID-19 infected patient  tissues24,25, our approach 
generated the list of candidate drugs using gene signatures generated from SARS-CoV-2 infected A549_ACE2 
cell lines from dataset  GSE14750724. Chemical perturbagen gene signatures in iLINCS are also generated using 
cancer cell lines, including the A549 line. �ere was little correlation between iLINCS gene signatures gener-
ated from COVID-19 patient samples (GSE147507 PS and GSE145926) making it di�cult to establish a base-
line transcriptomic pro�le (Fig. S1). �e clinical heterogeneity of the COVID-19 patient sample-derived tran-
scriptomic signatures made the signature “noisier.” �is may re�ect the di�erent tissue types analyzed in each 
study (postmortem lung tissue vs bronchoalveolar lavage �uid), the heterogeneity of SARS-CoV-2 infection/
COVID-19 in individual patients, the small sample size and di�erences in RNAseq analysis methods. However, 
we con�rmed that a subset of the candidate drugs identi�ed from the SARS-CoV-2 infected cell line signature 
are also identi�ed from the COVID-19 patient samples. Using the same gene signature approaches and cuto�s, 
we found that 4/23 candidate drugs we identi�ed from the GSE147507 COVID-19 patient dataset and 40/200 
candidate drugs we identi�ed from the GSE145926 COVID-19 patient dataset were common with our list of 83 
candidate drugs (Fig. 3).
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Figure 1.  Overview of the work�ow to identify candidate repurposable drugs to combat COVID-19. (A) 
Drugs that are currently in use to treat coronavirus and putative COVID-19 treatments were clustered based 
on mechanism of action and ATC class. (B) Gene expression data of the 978 genes that comprise the Library 
of Integrated Network-Based Cellular Signature (iLINCS) L1000 genes were extracted from severe acute 
respiratory syndrome coronavirus 2020 (SARS-CoV-2) (GSE147507) transcriptomic datasets. (C) Consensus 
iLINCS gene signatures were generated for drug groupings and disease. (D) Connectivity analysis was 
conducted and a list of chemical perturbagens that are concordant (≥ 0.321 concordance) to the drug target 
grouping signatures or discordant (≤ − 0.321 discordance) to the disease signatures was generated. Chemical 
perturbagens are �ltered and curated to identify top candidate repurposable drugs.

Table 1.  Drug target groupings. Drug targets with iLINCS signatures that are in use or under investigation 
for the treatment of COVID-19 were grouped together if they met a least two of the three following criteria: 
Canonical Mechanism of Action, referenced from the database DrugBank (https ://www.drugb ank.ca/); 
Anatomic �erapeutic Chemical classi�cation, referenced from https ://www.whocc .no/atc_ddd_index /.

Drug Cluster Drug Canonical Mechanism of Action
Anatomical �erapeutic Chemical
First Level

1 Chloroquine, Hydroxychloroquine Toll-like receptor antagonists
Antiparasitic Products, Insecticides and 
Repellants

2 Lopinavir, Ritonavir Protease inhibitors Anti-Infective for Systemic Use

3 Fedratinib, Ruxolinitib, Bariticinib JAK inhibitors
Antineoplastic and Immunomodulating 
Agents

4 Azithromycin Macrolide antibiotic Anti-Infective for Systemic Use

5 Losartan Angiotensin receptor blocker antagonist Cardiovascular System

https://www.drugbank.ca/
https://www.whocc.no/atc_ddd_index/
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Two drugs, selumetinib and radicicol, were common to both patient sample datasets and the SARS-CoV-2 
(GSE147507 CL) dataset. Of particular interest is selumetinib, an FDA approved treatment for neuro�bromatosis. 
As with many other drugs identi�ed by this pipeline, selumetinib is a kinase inhibitor, acting as a non-ATP-
competitive MEK1 and MEK2  inhibitor65. MEK inhibitors have known antiviral e�cacy against coronaviruses, 
inhibiting the Raf/MEK/ERK signaling pathway and impairing viral production but not viral entry into the cell 
in a murine coronavirus hepatitis virus  model66. It was recently shown that selumetinib, like trametinib, a MEK 
inhibitor also identi�ed in this study, can stimulate natural killer cells, reduce ACE2 expression in human cells, 
and reduce cytokine expression in COVID-19 patient plasma, suggesting that this class of drugs may both sup-
press infection by SARS-CoV-2 and support the body’s immune response to  infection39. Overall, our approach 
acts a useful screen for identifying common candidate drugs to reverse gene signatures for SARS-CoV-2 infected 
tissues despite the di�erences in disease transcriptome pro�les from di�erent data sources.

�e drug clusters outlined in Table 1 are composed of drugs which showed initial promise for treating 
COVID-19 and/or are commonly found in computational or experimental studies searching for inhibitors of 
COVID-1967, but whose e�cacy has not necessarily been con�rmed  clinically68,69. Due to concerns that utiliz-
ing these drug clusters may skew identi�cation of candidate drugs, we also generated a candidate drug list using 
disease signatures only. We applied the work�ow (using the same LFC thresholds) to generate candidate drugs 
from the SARS-CoV-2 cell line dataset only but did not apply the drug cluster �lter. We con�rmed that the can-
didate drugs identi�ed from the SARS-CoV-2 infected cell line signature are a superset of the drugs identi�ed 
a�er applying the drug cluster �lter, suggesting the two pronged approach results in complementary results and 
does not skew the identi�ed candidate drug list from SARS-CoV-2 relevant �ndings. We applied a relatively 
stringent drug cluster �lter (candidate drugs must also be present in at least out of 2 of 5 drug cluster analyses) 
to our analysis. However this feature of the work�ow can be modi�ed by users as necessary, by reducing or 

Figure 2.  Scatter plot of average reported concordance scores and standard deviation (SD) of reported 
concordance scores for candidate drugs. A total of 83 FDA approved drugs were identi�ed in the SARS-CoV-2 
A549_ACE2 dataset (GSE147507 CL). 57 drugs were identi�ed with a minimum mean concordance score 
0.47and SD ≤ 0.08 (squares). Drugs above this threshold are considered “candidate” drugs. Top candidate drugs, 
those approved for use in humans and with demonstrated antiviral activity in vitro (�lled triangles), those 
with SARS-CoV-2 antiviral e�cacy speci�cally (inverted triangles) and those already in trial for COVID-19 
(diamond) are also identi�ed.
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Table 2.  Top candidate drug �ndings for repurposing. Top candidate drug �ndings for repurposing. 
Candidate drugs are FDA-approved or currently undergoing trial; have reported antiviral properties and/
or anticoronavirus properties (bold). Several of the candidate drugs identi�ed for repurposing are already 
undergoing clinical trial for COVID-19. HCV hepatitis C virus; CHIKV Chikungunya virus; SFV Semliki 
Forest virus; RVFV Ri� Valley fever virus. ** Also identi�ed in 2 di�erent COVID-19 patient datasets.

Drug Drug class Antiviral properties

Trametinib Kinase inhibitor MERS-CoV38, SARS-CoV-239

Withaferin A Steroidal lactone SARS-CoV-240–43

Parthenolide Sesquiterpene lactone SARS44

Lapatinib Kinase inhibitor SARS-CoV-245

Sorafenib Kinase inhibitor SARS-CoV-246

Aurano�n Gold salt SARS-CoV-247

Selumetinib** Kinase inhibitor SARS-CoV-239

Erlotinib Antineoplastic, tyrosine kinase inhibitor HCV, RNA viruses, dengue,  Ebola48–50

Alvocidib CDK Inhibitor HSV, HIV,  Flu51–56

Quinacrine Antimalarial EMCV,  poliovirus57

Vandetanib Kinase inhibitor Andes  virus57

Dasatinib SRC tyrosine kinase inhibitor HIV58,59

�ioridazine Phenothiazine Ebola60,61,  HCV62; CHIKV,  SFV63;  RVFV64

Candidate repurposable drugs currently in trial for COVID-19

Gallocatechin Gallate Antioxidant

Decitabine Antineoplastic, cytosine analogue

Fenretinide
Antineoplastic and chemopreventive synthetic 
retinoid

Curcumin Anti-in�ammatory, antimicrobial, antioxidant

Simvastatin Antilipemic

Sirolimus Macrolide lactams

Cyclosporine Immunosuppressant

Figure 3.  UpSet plot summarizing the overlap between the candidate drugs identi�ed for three di�erent 
COVID-19 disease signatures. Our primary dataset, GSE147507 CL: SARS-CoV-2 A549_ACE2 infected cell line 
samples described in Blanco-Melo et al24; GSE147507 PS: COVID-19 patient samples described in Blanco-Melo 
et al.24 and GSE145926: COVID-19 patient samples described in Liao et al25. �e bar chart shows the number 
of unique and common candidate drugs across disease datasets, as indicated by matrix dots (# candidate drugs 
unique to a single dataset) or dots connected by lines (# candidate drugs common to at least 2 datasets). Figure 
generated using R package  UpSetR107.
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increasing the stringency or entirely removing drug clusters as a �lter. Removing this �lter will increase the 
number of candidate drugs identi�ed but may also result in an increased number of false positive discoveries. 
�is �lter can be modi�ed in the work�ow code deposited in GitHub. Other �lters applied during analysis, such 
as mean concordance and standard deviation scores, can also be adjusted using the interactive document that 
accompanies this study (https ://banse ljaj.shiny apps.io/covid 19_drugs _list/).

�us, we distilled a list of drugs derived from pharmacological and disease perturbation signatures that 
may have therapeutic utility in the treatment of COVID-19. Top candidate drugs include trametinib, lapatinib, 
withaferin A, parthenolide, sorafenib and aurano�n, which have demonstrated antiviral properties in vitro in the 
treatment of coronaviruses including SARS-CoV-2 but have not yet been explored clinically for the treatment 
of COVD-19. Candidate drugs gallocatechin gallate, decitabine, curcumin, fenretidine, cyclosporine, simvas-
tatin and sirolimus are currently registered for clinical trial in the treatment of COVID-19. �e remaining top 
candidate drugs identi�ed by our analysis include kinase inhibitors erlotinib, alvocidib, dasatinib, antimalarial 
quinacrine, and the phenothiazine thioridazine which is more commonly used as an antipsychotic. �ese drugs 
also have antiviral properties and are yet to be explored for the treatment of COVID-19.

Finally, we conducted biological pathway analysis using Reactome, searching the same genes (LFC 0.5) 
that compose the gene signatures used in our work�ow (Fig. S2). �ree biological pathways were common to 
the SARS-CoV-2 infected cell line and both patient sample sets: Signaling by Interleukins, Interleukin-4 and 
Interleukin-13 signaling and Signaling by Receptor Tyrosine Kinases (Fig. S2D). As expected, immune related 
pathways like interleukin signaling have also been reported by others following analysis of SARS-CoV-2 infec-
tion  datasets18,19. Our work�ow (modi�ed) has also provided in silico con�rmation of the anti-in�ammatory 
and pro-immune e�ects of  oxytocin70 and the antidepressant  �uoxetine71, which is also currently in trial for the 
treatment of COVID-19 (NCT04377308, and others). Interestingly, pathways related to Cell Cycle, and CDK 
and TP53 transcriptional regulation of cell cycle genes were predominately identi�ed following analysis of the 
patient sample datasets and likely indicate changes in cell cycle regulation following SARS-CoV-2  infection72. In 
addition to immune dysregulation, biological pathway analysis also supports targeting viral replication processes 
in SARS-CoV-2 infection. Indeed, biological pathway analysis of genes that are signi�cantly altered (LFC 1) by 
candidate drug selumetinib (identi�ed as common to all disease datasets in this study), identi�ed pathways that 
were also common to both patient sample datasets (Fig. S2F). �ese pathways are involved in cell cycle regula-
tion: Transcriptional regulation by TP53, Mitotic Gi phase and G1/S transition, cell cycle, G1/S transition and 
Cell Cycle Mitotic (Fig. S2E). No common pathways to all 3 disease datasets (SARS-CoV-2 cell line and patient 
sample datasets) and selumetinib were found. Selumetinib is a MEK kinase inhibitor and as discussed above, can 
regulate the canonical Raf/MEK/ERK signal transduction pathway, potentially inhibiting viral replication. �is 
pathway is utilized (hijacked) at di�erent stages of the viral life cycles by many DNA and RNA viruses including 
coronavirus SARS-CoV-273. �is study provides additional support for the exploration of MEK inhibitors at 
treatments for COVID-19.

Discussion
Vaccination programs for COVID-19 are progressing rapidly. However, the scale and cost of this global health cri-
sis is such that e�ective drug therapies have an important and complementary role to play in treating this disease. 
In recent months, in silico studies have identi�ed putative repurposable drugs for treating COVID-1920,50,74–77. 
Many of these studies exploit the �nding that SARS-CoV-2 may enter the cell by binding to angiotensin convert-
ing enzyme 2 (ACE2)78 and utilize a combination of structural and biomedical data to identify drug  candidates20. 
To advance therapeutic discovery and identify the most promising candidate drugs for COVID-19, we employ 
an alternative, signature-based bioinformatic approach.

In this study, we data mine the extensive LINCS database, which acts as a repository of “L1000” gene signa-
tures generated by treating various cell lines with over 20,000 small molecules. �e L1000 genes are a reduced 
representation of the transcriptome, a method by which a select group of genes account for ~ 82% of the infor-
mation content of the  transcriptome79. �e approach involved feature selection/reduction techniques applied 
to 12,063 gene expression samples pro�led on microarrays from  GEO80. Benchmarking of the L1000 assay 
versus RNAseq yielded a cross-platform correlation of 0.8479, suggesting the L1000 assay represents an e�cient 
alternative to RNAseq.

Utilizing this resource, our two-pronged connectivity analysis approach identi�ed candidate drugs that are (1) 
highly concordant to current drugs employed to treat coronavirus family pathogens and (2) highly discordant to 
SARS-CoV-2 transcriptomic signature. Seven of the identi�ed candidate drugs are already registered for clinical 
trial (clinicaltrials.gov) as therapies for COVID-19. �is includes the immunosuppressants sirolimus. Sirolimus 
was identi�ed in our study and another in silico drug  screen74 as a candidate repurposable drug for treating 
COVID-19. Immunosuppressants may address the symptoms resulting from overactivation of the immune 
system (“cytokine storm”) in response to COVID-19  infection81. Our screen also identi�ed the immunosup-
pressant thalidomide, although at a less stringent cuto� (SD 0.081; outside cuto� threshold). �alidomide is a 
potent anti-in�ammatory, approved by the FDA for treatment for multiple myeloma and erythema nodosum 
leprosum, an immune-mediated complication of  leprosy82. Although concerns regarding the wide-spread adop-
tion of thalidomide as a treatment of COVID-19 have been raised, due in part to the potential side-e�ects82, 
clinical trials to assess e�cacy and safety as a treatment for COVID-19 commenced following publication of a 
case report of the protective e�ect of thalidomide on immune dysfunction and lung injury in a single  patient83. 
�ese �ndings support the utility of using this transcriptomic signature based approach to identify repurposable 
drugs for treating COVID-19, and lend further support to explore these promising candidate drugs. Indeed, 
seven of the top candidate drugs we identi�ed have shown antiviral e�cacy for coronaviruses or SARS-CoV-2, 
speci�cally, in vitro.

https://banseljaj.shinyapps.io/covid19_drugs_list/
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Lapatinib blocked SARS-CoV-2 cytopathic e�ect and viral infection as assessed by viral RNA accumulation, 
and prevented accumulation of N protein in MRC5 (human pulmonary �broblast cell line) cells expressing ACE2 
that were infected with SARS-CoV-245. �e concentration of lapatinib required to inhibit SARS-COV-2 in this 
study can be achieved in human tissue at currently prescribed  doses84. Lapatinib is a dual inhibitor of epidermal 
growth factor receptor and human epidermal growth factor receptor (HER2) tyrosine  kinases85. However, its 
antiviral e�cacy was thought to result from an alternative mechanism, via inhibition of the SARS-CoV-2 pro-
tease 3CLpro, as determined by molecular docking  approaches86. Di�erent experimental reports suggest that 
lapatinib may inhibit 3CLpro  activity87 or has no e�ect on this  protein86. �e MEK inhibitor trametibinib dis-
played strong inhibitory activity against MERS-CoV infection in Huh7 human hepatocytes when administered 
prior to and post-infection, suggesting that ERK/MAPK pathway signaling may be important for viral entry 
and viral replication stages of the MERS-CoV life  cycle38. As with the candidate drug selumetinib which was 
one of the only drugs common to both of the patient COVID-19 sample analyses and the SARS-CoV-2 analysis, 
trametinib also shows e�cacy against SARS-CoV-2 in vitro39, highlighting growing interest in the antiviral 
potential of this class of drug. Withaferin A has anti-in�ammatory and anti-tumor  properties43,88,89 and may 
be useful in targeting the pathological immune component associated with COVID-19 infection. Molecular 
docking approaches predicted that withaferin A binds and blocks cell surface receptors like transmembrane 
protease serine 2 (TMPRSS-2), which are required for virus entry into host  cells41,42. Withaferin A may act in 
a similar manner as the serine protease inhibitor camostat  mesylate41, binding and blocking the catalytic site 
of transmembrane protease serine 2 (TMPRSS-2) which is required for priming of the SARS-CoV-2 S protein, 
thus preventing SARS-CoV-2 infection of lung  cells90. Aurano�n is an FDA-approved gold-containing triethyl 
phosphine used to treat rheumatoid  arthritis91. Aurano�n treatment of SARS-CoV-2 infected cells resulted in a 
signi�cant reduction in viral RNA at 24hrs and 48hrs and SARS-CoV-2 infectivity titers at 48hrs post  infection47. 
Although its mechanism of action in SARS-CoV-2 infection is not known, aurano�n is an inhibitor of redox 
enzymes which leads to oxidative stress and cell  apoptosis92 and also acts as an anti-in�ammatory by inhibiting 
JAK1 and STAT3 phosphorylation and IL-6  signaling93. Interestingly, cytokine (IL-6, IL1β, TNFα) expression 
was also signi�cantly reduced in aurano�n treated SARS-CoV-2 infected cells following aurano�n treatment at 
both 24 h and 48 h time points. Sorafenib is a multikinase inhibitor that was also identi�ed in a large scale in vitro 
drug screen of candidate repurposable drugs for COVID-1946. Although identi�ed as an active compound against 
SARS-CoV-2, the low selectivity index (SI = 1) poses signi�cant concerns about whether a su�cient concentra-
tion can be safely  administered46. Pharmacokinetic and safety data is available for this FDA-approved renal cell 
carcinoma treatment but this study highlights the importance of screening and assessing novel candidate drug 
treatments, particularly antineoplastics, for safety as well as e�cacy. In a study reported in bioRxix, the CDK 
kinase inhibitor alvocidib, an investigational antineoplastic explored as a treatment for small-cell lung cancer, 
prevented cytopathic e�ects in SARS-CoV-2 infected VeroE6 cells, but also had unfavorable cytotoxicity at the 
e�ective  concentration94, suggesting that the potential toxicity of some antineoplastic drugs may diminish their 
utility as therapies for COVID-19.

Additional candidate drugs identi�ed have demonstrated antiviral, but not necessarily anti-coronavirus prop-
erties. �e main class of drugs identi�ed from our analyses are kinase inhibitors. Kinase inhibitors are high-yield 
targets, with new small molecule kinase inhibitors being developed every year and over two dozen small molecule 
kinase inhibitors already approved for human  use95. �eir potential as antiviral treatments has also been explored 
in recent  years50,96–98. Viruses depend on host cell protein kinases for every step of their life cycle, including viral 
entry into the cell, cell cycle processes and cellular stress  response99. �us, targeting these protein kinases using 
kinase inhibitors will disrupt the virus’s ability to hijack cellular processes. As many host protein kinases are 
broadly required by di�erent viruses, kinase inhibitors are excellent candidates for broad-spectrum antiviral 
 therapies97. Kinase inhibitors represent an expanding, if underexplored, avenue of research for the treatment of 
viral illnesses, including coronaviruses. Repurposing kinase inhibitors, many of which are already approved for 
use in humans as cancer treatments, is a time-and cost-e�ective method to identify new therapeutics in a rapidly 
evolving situation such as the one posed by the current outbreak of COVID-19.

Limitations
�e antimicrobial drugs that comprise our drug target groupings are limited to those that have gene signatures 
in iLINCS. As with other in silico screening approaches, the candidate drugs identi�ed here are not necessarily 
ready for human use. �ese candidate drugs were initially identi�ed from LINCS gene signatures generated 
in cancer cell lines which may not re�ect the microenvironment of human tissues infected with SARS-CoV-2. 
However, we later con�rmed a subset of the identi�ed drugs were also found following analysis of two di�erent 
transcriptome datasets generated from COVID-19 patient samples. Several of the candidate drugs are used in the 
treatment of viral infections but not SARS-COV-2 or COVID-19 speci�cally, and require further investigation 
for dosage, e�cacy etc. before they can be used in humans.

In summary, our approach has identi�ed candidate repurposable drugs, from the > 20,000 small molecules 
in the LINCS repository, that may be utilized to combat COVID-19. Several of the identi�ed drugs are already 
registered for clinical trial for the treatment of this illness. �e candidate drugs are also (1) safe for use in 
humans, ((2) have demonstrated antiviral e�cacy in vitro, including against coronavirus pathogens and (3) are 
discordant for SARS-CoV-2 disease signature. �us, our results provide additional support for candidate drugs 
that are currently undergoing trial or are of interest to researchers. Our �ndings also contribute to the relatively 
novel literature addressing the purported broad-spectrum antiviral e�cacy of kinase inhibitors and may o�er a 
novel avenue for investigation in the search for COVID-19 therapies. While there is evolving evidence for kinase 
inhibitors as antivirals, other antimicrobials could be repurposed as well.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4495  | https://doi.org/10.1038/s41598-021-84044-9

www.nature.com/scientificreports/

Methods
Selecting and grouping antimicrobials with known efficacy in treating coronavirus family path-
ogens. �e work�ow for this study is outlined in Fig. 1. Analysis was conducted using  R100. We conducted 
a PubMed search using search terms “coronavirus” or “COVID-19” and “antiviral” or “drug” or “therapy” and 
generated a list of compounds utilized to treat coronavirus family pathogens or identi�ed as putative COVID-
19 therapeutics. We identi�ed seventeen drugs for potential analysis (Table S1). L1000 gene signature datasets 
were available for nine of the seventeen drugs (Table 1) using the integrative web platform iLINCS (http://ilinc 
s.org). �e iLINCS L1000 hub gene assay assesses genome-wide transcriptional changes following perturbation 
by one of more than 20,000 small  molecules79. Eight drugs without signatures were excluded from further analy-
sis. Gene signatures were generated for all 9 remaining drugs. To standardize our analysis, we combined gene 
signature data from 6 di�erent cell lines for each drug. Where possible, signatures for a 24-h time point and 10 
µM concentration conditions were used. �e cell lines and conditions are listed in Table S3. Data from cell lines 
were used if gene signatures for at least 6 of the 9 drugs were available for that cell line.

Next, we grouped the nine drug targets based on canonical mechanism of action and the Anatomical �era-
peutic Chemical (ATC) classi�cation. �e database DrugBank (https ://www.drugb ank.ca/) was used to group 
the drugs by their canonical mechanisms of actions. Drug identi�cation was only referenced from Drug Bank 
I.D. If no Drug Bank I.D. was available, this is indicated in Table 1 and Table S1. If there was no listed MOA 
from Drug Bank, then the MOA was appropriately cited, referenced from iLINCS, or was referenced from Gene 
Ontology (GO) Molecular Function 2018 accessed via Enrichr (http://amp.pharm .mssm.edu/Enric hr/enric h). 
Next, drugs were classi�ed based on the ATC classi�cation system (https ://www.whocc .no/atc_ddd_index /). If 
a particular drug did not have an ATC classi�cation, it was marked as “unclassi�ed.” From DrugBank, we also 
collected the clinical indications, gene targets, and trade names. In addition, we probed the ATC Index (https 
://www.whocc .no/atc_ddd_index /) to identify the �rst- and second-level of drug classi�cations. �e �rst-level 
classi�cation was used to con�rm drug grouping. With a �nal list of drug clusters, the individual drug signatures 
within each grouping were collected and averaged across the L1000.

Generating iLINCS gene signatures. To generate all consensus gene signatures (drug cluster and disease 
signatures), L1000 genes with a minimum log fold change (LFC) in expression were selected. �e use of LFC 
is an established and reproducible method for selecting biologically relevant gene changes in transcriptomic 
 datasets101–104. �e optimal LFC threshold for each dataset was determined a�er examining the number of chem-
ical perturbagens identi�ed at 5 di�erent thresholds: all L1000 genes, LFC 0.26, LFC 0.5, LFC 0.85 and LFC1. 
Optimal LFC thresholds were selected to reduce excess noise (non-speci�c gene data) from the analysis without 
applying overly stringent cuto�s, factors that may curtail identi�cation of candidate drugs. Di�erent thresholds 
were applied to generate consensus gene signatures for drug cluster and disease signatures. Experimentally, drug 
cluster signatures are generated by applying chemical perturbagens to cancer cell lines and assaying the L1000 
(978 genes). Disease signatures are generated by extracting the L1000 gene data from RNAseq analysis of SARS-
CoV-2 infected cells or tissues. �us, the same LFC thresholds may not be optimal for all datasets, particularly 
those generated under such di�erent conditions.

Generating iLINCS gene signatures for drug clusters. Using the iLINCS portal, we acquired the 
LINCS chemical perturbagen signatures (978 genes that comprise the L1000) for each drug candidate. Genes 
with a LFC value of ≥ 0.85 or ≤ − 0.85, indicating di�erential gene expression induced by the drug target com-
pared to a corresponding control cell line, were identi�ed. �is threshold was selected a�er examining the num-
ber of chemical perturbagens identi�ed at 5 di�erent thresholds: all L1000 genes, LFC 0.26, LFC 0.5, LFC 0.85 
and LFC 1.0 (see Table S2). We also tested the symmetric distribution of genes identi�ed at ≤ -0.85 and ≥ 0.85 
LFC for each drug cluster in each cell line to con�rm that similar numbers of downregulated and upregulated 
genes were included in consensus gene signatures. Our L1000 consensus gene signatures follow an approxi-
mately symmetric normal distribution in every case. �us, a uniform cuto� of LFC ≤ − 0.85 and ≥ 0.85 gives us 
approximately the same number of genes across the distribution.

Gene lists were pooled and averaged such that a master list of di�erentially expressed genes was generated for 
each drug candidate family. For example, genes with a LFC ≥ 0.85 or ≤ − 0.85 that appeared in both the hydroxy-
chloroquine gene signature and the chloroquine gene signature were averaged to calculate mean values for each 
di�erentially expressed gene in drug target grouping 1. �e upregulated genes (LFC ≥ 0.85) were clustered and 
the downregulated genes (LFC ≤ − 0.85) were clustered. �ese clusters were uploaded as user generated signatures 
into iLINCS. Next, we identi�ed connected chemical perturbagens, utilizing a concordance threshold score 
of ≥ 0.321, an established minimum concordance score  cuto�31,37, to identify chemical perturbagen signatures 
that are considered highly correlated with our drug target grouping signatures.

Generating iLINCS gene signatures coronavirus‑family induced disease datasets. We utilized 
SARS-COV-2 transcriptomic data from three di�erent datasets in this study. Our primary analysis were con-
ducted using SARS-CoV-2 (GSE147507 CL) RNAseq data generated in A549_ACE2 expressing cells (n = 3), 
an adenocarcinomic human alveolar basal epithelial cell line that overexpress receptor ACE2 required for viral 
entry into the cell and mock-treated A549_ACE2 expressing cells (n = 3), one of several SARS-CoV-2 transcrip-
tomic datasets generated by Blanco-Melo et al. in their  study24. For con�rmation analysis we used SARS-CoV-2 
RNAseq data from COVID-19 patient postmortem lung samples (n = 2) and healthy lung biopsies (n = 2) gen-
erated in the same study (GSE147507 PS)24, and a dataset generated from single cell RNAseq analysis of bron-
choalveolar lavage �uid immune cells from moderate, severe and critically ill patients with COVID-19 (n = 9) 
and healthy controls (n = 3) (GSE145926)25.

http://ilincs.org
http://ilincs.org
https://www.drugbank.ca/
http://amp.pharm.mssm.edu/Enrichr/enrich
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
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We conducted di�erential gene expression analysis of the GSE147507 cell-line dataset comparing SARS-
CoV-2 infected samples to corresponding mock-treated control samples. RNASeq raw count data was analyzed 
in R So�ware (v 4.0.1) (R So�ware Foundation) using the edgeR R Package (v3.30.3). For quality control, we 
used the built-in function �lterByExpr that only keeps the genes with a high enough count across all samples as 
calculated by the strategy of Chen et al.105. Normalization was performed using the calcNormFactors() method 
with the Trimmed mean of M-Values method.

Following analysis of the SARS-CoV-2 transcriptomic dataset, the subset of genes that comprise the LINCS 
L1000 were extracted. �e extracted L1000 genes were uploaded into iLINCS. Genes with LFC in expression 
within four thresholds, 0.26 LFC, 0.5 LFC, 0.85 LFC, LFC 1 and all L1000 genes, were identi�ed with a custom R 
script for further processing. �e optimal LFC cuto� was determined as a LFC ≥ 0.5 or ≤ − 0.5 following examina-
tion of the number of chemical perturbagens identi�ed with consensus gene signature at this threshold (Table S4).

As described above, upregulated and downregulated disease gene signatures were generated for each disease 
dataset (within each threshold) and uploaded into iLINCS to identify connected perturbagens. For disease gene 
signatures, chemical perturbagen signatures that are highly discordant (discordance score ≤ − 0.321), indicating 
these perturbagens may “reverse” the disease signature, were identi�ed. Genes at LFC ≥ 0.5 and ≤ − 0.5 threshold 
were then carried forward for further analysis. Utilizing this gene threshold generated optimal SARS-COV-2 
disease signatures to identify a large number of discordant chemical perturbagens.

Identification of candidate chemical perturbagens (drugs) to treat COVID‑19. Candidate drugs 
were identi�ed from the chemical perturbagen connectivity analysis using a custom script in  R100 and �gures 
were produced using the package  ggplot2106 (Fig. 2) and package  UpSetR107 (Fig. 3). �e script downloaded 
the data from the iLINCS API and used the following criteria: Chemical perturbagens had a concordance 
score ≥ 0.321 compared to drug target grouping signatures or a discordance score ≤ -0.321 compared to disease 
signature. If the same chemical perturbagen is identi�ed multiple times, from di�erent experimental conditions, 
replicate �ndings are removed so that only the highest concordance score (or lowest discordance score) for each 
chemical perturbagen remains. 168 chemical perturbagens were identi�ed in the SARS-CoV-2 (GSE147507 
CL) disease signature analysis AND at least 2/5 drug target grouping signature analyses. Following a crude �lter 
step to identify FDA approved drugs, this resulted in 83 candidate chemical perturbagens identi�ed. We took 
the mean and standard deviation of the concordance values of each candidate chemical perturbagen across all 
cell line combinations. �e resulting data presented in Fig. 2 and accessible for exploration in an interactive 
document (https ://banse ljaj.shiny apps.io/covid 19_drugs _list/), allowed us to identify the drugs with the highest 
concordances (high mean) and minimum level of disagreement between cell lines (low SD). We chose the cuto� 
of ≥ 0.47 for mean and ≤ 0.08 for standard deviation, resulting in a shortlist of 57 candidate drugs. A �nal list of 
20 candidate drugs which are FDA approved (or under trial) and have antiviral properties are considered top 
hits.

We con�rmed that the candidate drugs identi�ed using our work�ow were also discordant with SARS-
CoV-2 disease signatures generated from COVID-19 patient samples. We accessed transcriptomic data generated 
from COVID-19 patient samples (GSE147507 PS; GSE145926), extracted the L1000 and generated a consensus 
gene signature using the same approach described above (threshold LFC ≥ 0.5 or ≤ -0.5). We identi�ed 23 FDA-
approved candidate drugs that were discordant with the Mt. Sinai GSE147507 PS COVID-19 patient disease 
signature and 200 candidate drugs that were discordant with the GSE145926 disease signature. We looked at the 
intersection of the gene signatures for all 83 identi�ed candidate drugs from our initial analysis (GSE147507 CL) 
and the COVID-19 GSE147507 PS and GSE145926 disease signatures. We found that 4/23 and 40/200 of these 
drugs were common to our primary analysis (Fig. 3). Two drugs were common to both patient datasets only.

Biological pathway analysis. Using the Reactome pathway  database108, we searched the genes with sig-
ni�cantly altered expression (LFC > 0.5), the same gene sets used to generate the SARS-CoV-2 cell line and 
patient sample disease signatures (GSE147507 CL, GSE147507 PS and GSE145926), to identify the top 15 bio-
logical pathways altered following SARS-CoV-2 infection. We also identi�ed the top 15 biological pathways 
for candidate drug selumetinib, using genes with signi�cantly altered expression (LFC + /− 1) obtained from 
an A549 treated cell line (24 h, 10uM concentration) from the iLINCS database. Venn diagrams showing the 
intersection of the biological pathways altered by disease and drugs were drawn using the webtool available at 
bioinformatics.psb.ugent.be/webtools/Venn/.

GitHub repository access. �e complete work�ow of this analysis has been deposited in github and can 
be accessed at https ://githu b.com/AliSa jid/Covid 19/tree/v1.10. �is analysis was conducted using v1.10 of the 
repository that has been deposited (https ://doi.org/10.5281/zenod o.44394 41).

Data availability
�e datasets analyzed during the current study are available in the Gene Expression Omnibus (GEO: https ://
www.ncbi.nlm.nih.gov/geo/) (GSE56192; GSE47963; GSE147507) and the Library of Integrated Network-Based 
Cellular Signatures (LINCS) via iLINCS (http://ilinc s.org).

Code availability
R scripts can be accessed via: https ://githu b.com/AliSa jid/Covid 19/tree/v1.10.
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