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Atrial fibrillation (AF) is a multifactorial disease with a strong genetic background. It is

assumed that common and rare genetic variants contribute to the progression and

recurrence of AF. The pathophysiological impact of those variants, especially when

they are synonymous or non-coding, is often elusive and translation into functional

experiments is difficult. In this study, we propose a method to go straight from genetic

variants to defined gene targets. We focused on 55 genes from calcium signaling and

26 genes from extra cellular matrix ECM–receptor interaction that we found to be

associated with the progression and recurrence of AF. These genes were mapped on

protein–protein interaction data from three different databases. Based on the concept

that central regulators are highly connected with their neighbors, we identified central

hub proteins according to random walk analysis derived scores representing interaction

grade. Our approach resulted in the identification of EGFR, RYR2, and PRKCA (calcium

signaling) and FN1 and LAMA1 (ECM–receptor interaction) which represent promising

targets for further functional characterization or pharmaceutical intervention.

Keywords: protein–protein interactions, genetic variants, atrial fibrillation, atrial fibrillation recurrence, atrial

fibrillation progression, calcium signaling, ECM–receptor interaction

INTRODUCTION

Common genetic variants contribute to the progression and recurrence of atrial fibrillation (AF;
Olesen et al., 2014). We recently used genome-wide association study data from 660 AF patients to
detect common variants that associate with left atrial diameter, AF type (paroxysmal vs. persistent
AF), and AF recurrence (Husser et al., 2016a,b). Based on the hypothesis that all genetic variants
irrespective of their significance level contribute to genetic background, we included all variants
with p < 0.05 in our analysis irrespective if they were coding, non-coding, synonymous, or
non-synonymous. Using a stepwise filtering procedure, we shifted the conventional SNP-based
analysis toward a gene-based analysis (Li et al., 2011; Chanda et al., 2013) and finally tested
the genes for non-random enrichment in physiological pathways. This approach revealed an
association of calcium signaling (55 genes) and ECM–receptor interaction (26 genes) with left
atrial diameter and AF type, respectively, and also with AF recurrence (Husser et al., 2016a;
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see Supplementary Table S1). Abnormal intracellular Ca(2+)
load, distribution, and handling are involved in AF initiation,
maintenance, and progression (Nattel and Dobrev, 2012) as well
as heterogeneous conduction slowing and reentry (Yue et al.,
2011). Ca(2+) influx into atrial fibroblasts triggers differentiation
into ECM-remodeling myofibroblasts which in turn trigger
atrial fibrosis, the basis of electroanatomical remodeling, and
AF maintenance and progression (Yue et al., 2011). Cardiac
fibrosis is furthermore characterized by altered ECM–receptor
interactions of cell–cell contacts and cell–matrix adhesions
involving integrins, fibronectin, collagen, and laminin (Giancotti
and Ruoslahti, 1999; Schroer and Merryman, 2015).

Central pathway regulators represent promising targets for
replication and explorative studies. In silico protein-network
analysis can be used for the identification of these regulators.
Protein–protein interaction (PPI) data from functional and
bioinformatics experiments are available in PPI databases
(Calderone et al., 2013; Alonso-Lopez et al., 2016; Fabregat
et al., 2016) whereas their composition, complexity, and reliability
differ. The mapping of candidate genes to PPI networks can
be done using the freely accessible software tool Cytoscape
(Shannon et al., 2003) and the application iPINBA (Wang et al.,
2015).

Summarizing, we applied an approach putting together PPI
data and the recently identified candidate genes from GWAS
analysis to identify central regulators of calcium signaling and
ECM–receptor interaction associated with AF progression and
recurrence.

MATERIALS AND METHODS

This study was based on recently published findings (Husser
et al., 2016a). Patient characteristics, clinical parameters,
genome-wide association analysis, gene-based association testing,
pathway analysis, and gene lists can be found in Supplementary
Methods and Supplementary Table S1. The study protocol was
approved by the local Ethics Committee. All patients signed
written informed consent for study participation.

PPI Network Analysis
Cytoscape v3.4.0 (Shannon et al., 2003) was used for PPI network
construction. UniProt identifiers for all candidate genes were
retrieved from UniProt ID mapping service1 (Supplementary
Table S1). PPI data were imported via PSICQUIC client (Aranda
et al., 2011) or manually from original repositories. The selection
of a specific database introduces a bias as the PPI evidence criteria
applied by the database curators differ. Therefore, we included
three manually curated databases in our analysis to minimize
bias.

We used data from Agile Protein Interactomes Data Server
(APID; Alonso-Lopez et al., 2016), mentha PPI database (mentha;
Calderone et al., 2013), and Reactome knowledgebase (Fabregat
et al., 2016). Furthermore, APID, Reactome and mentha access
data from other important PPI databases, namely, Molecular

1http://www.uniprot.org/uploadlists/

INTeraction database (MINT; Licata et al., 2012), IntAct
Molecular Interaction Database (IntAct; Orchard et al., 2014),
Database of Interacting Proteins (DIP; Salwinski et al., 2004),
extracellular matrix interaction database (MatrixDB; Launay
et al., 2015), BioPlex (Huttlin et al., 2015), and BioGRID (Chatr-
Aryamontri et al., 2017). At the time of analysis (February
2017), mentha interactome comprised 259,599 interactions of
18,245 proteins, APID database comprised 349,144 interactions
for 29,701 proteins, and Reactome included 221,866 interactions
of 8631 proteins.

Cytoscape app iPINBPA (Wang et al., 2015) was used
for further analysis. Candidate genes from calcium signaling
and ECM–receptor interaction (Supplementary Table S1) were
mapped on the three PPI networks to build sub-networks.

Random Walk Analysis
To identify the central regulators in the sub-network, we applied
random walk analysis. Random walk technique explores a
network by simulating a walker who chooses randomly among
available edges starting from one or many seed genes. Over
time the walker will pass by all members in the network
with different probabilities whereas highly connected nodes
are more probably passed by several times (Can et al., 2005).
All genes in sub-networks with more than two edges were
assigned seed genes for random walk analysis. Random walk
node weights (RWNW) calculated by iPINBPA were used to
rank the candidate genes in descending order. Cytoscape network
analyzer tool was used to determine the number of direct edges
of every candidate gene. Sub-networks were visualized using
Cytoscape.

We applied a two-step approach. First, we identified all
candidate genes with more than two edges that were present
among the top 10 RWNW rankings in every interactome
(APID, mentha, and Reactome). This analysis was based on
PPI data summarizing all reported interactions without evidence
weighting including solely predicted interactions. Second, genes
that passed step one were reanalyzed using more stringent PPI
evidence filters according to APID level 2 PPI data (115,480
interactions of 16,016 proteins) summarizing only PPI validated
in at least two independent experiments, e.g., co-expression, co-
purification, co-crystallization, or yeast2hybrid (Alonso-Lopez
et al., 2016).

RESULTS

Genes from the pathways calcium signaling and ECM–receptor
interaction, which we found associated with left atrial diameter
increase, a switch from paroxysmal to persistent AF, and AF
recurrence in a former study, were mapped on PPI data from
three official databases, namely, APID, mentha, and Reactome.
Sub-networks including all genes with at least two neighbors were
created using iPINBPA. Nineteen (APID), 44 (Reactome), and
13 (mentha) genes from calcium signaling and eight (APID),
25 (Reactome), and six (mentha) genes from ECM–receptor
interaction fulfilled these criteria. We next applied RWNW
ranking to the sub-networks (Table 1). Finally, we identified
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those genes that ranked among the top 10 in all three sub-
networks (flowchart depicted in Figure 1).

Epidermal growth factor receptor (EGFR), ryanodine receptor
2 (RYR2), phospholipase C, beta 1 (PLCB1), ryanodine receptor
1 (RYR1), and protein kinase C alpha (PRKCA) from calcium
signaling and fibronectin (FN1) and Laminin subunit alpha-1
(LAMA1) from ECM–receptor interaction were identified to be
hub proteins.

We additionally repeated the analysis using more stringent
APID level 2 assigned data, comprising only PPIs that were
confirmed at least twice in independent experiments excluding
predicted interactions. We confirmed all candidates except
PLCB1 and RYR1 (Figure 2). The remaining candidates EGFR,
RYR2, PRKCA, FN1, and LAMA1 thus had at least two
experimentally validated protein–protein physical interactions in
the analyzed network.

DISCUSSION

Conventional GWAS identified genetic variants associated to
AF by applying genome-wide significance level of 5 × 10−8.
By analyzing their genomic loci, new candidate genes were
identified, e.g., PITX2, TBX5, ZFHX3, and KCNN3 (Fatkin et al.,
2017). We applied a completely different approach using gene-
based association testing and pathway enrichment and thus
identified ECM–receptor interaction (26 genes) and calcium

signaling (55 genes) to be most significantly associated with
AF type, LAD increase, and AF recurrence (Husser et al.,
2016a).

In this study, we aimed to develop a weighting method to
identify promising candidate genes out of the unweighted gene
lists. Our approach was based on the hypothesis that densely
connected proteins in PPI networks, so-called hub proteins, are
expected to be biologically essential proteins with the potential
consequence that loss of these proteins is hardly tolerated by the
organism what is referred to as “centrality-lethality rule” (Gursoy
et al., 2008).

Our analysis was based on APID, Reactome, and mentha
database as these reported at least 200 PPIs between the
candidates of either pathway enabling a reasonable analysis.
These PPI data comprise a heterogeneous collection of
observations of different quality. We addressed this by utilizing
and comparing three interactomes as we assumed that this
approach decreases bias and increases reliability of results.
For example, Reactome reported GNA14 and CALML3 to be
among the mostly connected proteins in the analyzed network
but this finding was not validated by APID and mentha data
(see Table 1). We used random walk analysis to establish
ranking scores indicating connectivity. Random walk analysis is
a widely accepted method to explore networks and to identify
highly connected nodes (Can et al., 2005; Huan et al., 2014).
Additionally, we determined the number of direct edges. Ranking
according to the number of edges would result in slightly different

TABLE 1 | Ranking of candidate proteins from (A) calcium signaling pathway and (B) ECM–receptor interaction pathway by random walk node weights (RWNW) using

PPI data from three databases.

APID Reactome Mentha

Gene RWNW Edges Gene RWNW Edges Gene RWNW Edges

(A) Calcium signaling pathway

PRKCA 0.062 10 GNA14 0.046 14 EGFR 0.079 13

EGFR 0.054 8 CALML3 0.030 12 RYR2 0.061 6

RYR2 0.049 4 PRKCA 0.029 10 PRKCA 0.057 5

GNAQ 0.045 3 RYR2 0.028 12 PLCB1 0.056 5

RYR1 0.045 3 RYR3 0.027 11 GRIN1 0.053 4

GRIN1 0.044 5 RYR1 0.027 11 RYR1 0.052 4

ITPR1 0.041 3 PRKCB 0.027 14 PTGER3 0.050 3

PLCB1 0.039 3 GNAQ 0.024 8 SYK 0.047 3

SYK 0.038 5 EGFR 0.024 8 ERBB4 0.044 2

PRKCB 0.035 4 PLCB1 0.023 11 ATP2B4 0.044 2

(B) ECM–receptor interaction pathway

FN1 0.137 8 FN1 0.0486 21 FN1 0.1227 5

DAG1 0.088 3 LAMA1 0.0470 19 DAG1 0.1077 4

LAMA1 0.081 3 ITGB3 0.0446 18 LAMA1 0.0885 3

CD36 0.069 3 ITGA1 0.0445 20 SDC2 0.0810 2

SDC2 0.069 2 LAMC3 0.0444 19 ITGB3 0.0810 2

HSPG2 0.060 2 LAMA3 0.0440 18 HSPG2 0.0781 3

ITGB3 0.059 2 LAMA5 0.0428 17 LAMA3 0.0660 1

COL4A2 0.059 2 COL4A2 0.0414 17 CD36 0.0660 1

LAMA3 0.057 1 ITGA4 0.0412 18 ITGA1 0.0627 1

AGRN 0.055 1 ITGA9 0.0412 18 AGRN 0.0619 1

Candidate genes in bold were identified in every interactome.
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FIGURE 1 | Flowchart of the stepwise approach that was used to identify central hub proteins out of 55 genes annotated to calcium signaling (light gray boxes) and

26 genes annotated to ECM–receptor interaction (dark gray boxes).

FIGURE 2 | Protein interaction network of AF associated genes assigned to calcium signaling (A,B) and ECM–receptor interaction pathway (C,D) based on APID

level 1 evidence level (A,C) and APID level 2 evidence level data which were validated at least twice (B,D). Hub proteins are marked yellow.
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ranking of the genes, as in networks, central proteins are more
likely passed by in random walk and are thus ranked higher
than equally connected proteins at the rim (Figure 2). RWNW
ranking therefore enables ranking of genes with equal numbers of
direct edges. Our approach identified EGFR, PRKCA, and RYR2
as central regulators of calcium signaling and FN1 and LAMA1 in
ECM–receptor interaction. Involvement of the aforementioned
genes in pathomechanism of arrhythmia was already partly
examined.

EGF–receptor transactivation and dysregulation is involved in
myocardial hypertrophy and contraction (Eguchi et al., 2013; Xu
et al., 2014). In an animal model, EGF–receptor phosphorylation
led to tyrosine phosphorylation of cardiac Na(+) and L-type
Ca(2+) channels and thus modulated electrical excitability of
the heart and ischemia/reperfusion associated cardiac arrhythmia
(Feng et al., 2012).

PRKCA gene and protein expression was found upregulated in
cardiac hypertrophy (Dorn and Force, 2005). Genetic variation
in PRKCA was found to be associated with QRS duration
(Sotoodehnia et al., 2010; Arking et al., 2014).

The main regulators of calcium release from the sarcoplasmic
reticulum are ryanodine receptors whereas RYR2 is the main
cardiac isoform. Imbalances in RYR2 expression as well as
genetic variants are associated with altered calcium handling and
arrhythmia (Zhabyeyev et al., 2013; Di Pino et al., 2014; Li et al.,
2014).

Fibronectin is a component of extra cellular matrix and FN1
expression by fibroblasts was found to be increased in myocardial
fibrotic remodeling and failing myocardium (Schaper et al., 2002;
Fan et al., 2012). Levels of circulating fibronectin were found to
be associated with atrial remodeling in AF (Canpolat et al., 2015).

Laminin is a major component of ECM, especially the
basement membrane, and was found to be expressed significantly
higher in the left atrium compared to left ventricle (Burstein
et al., 2008). Laminin is involved in cardiac development and
pathological remodeling (Schaper et al., 2002; Burstein et al.,
2008).

Limitations
The initial GWAS study design, resulting in the identification of
AF associated calcium signaling and ECM–receptor interaction,
was based on small sample size and a cross-sectional study design.
We addressed this by analyzing well-defined phenotypes and
applying a two-step approach (i.e., identification of pathways in
two AF phenotypes and validation in a third phenotype).

We utilized and compared three interactomes. Far more PPI
databases exist that are applicable for such an analysis and all
PPI databases undergo constant editing suggesting that there
is interesting developmental potential for the kind of analysis
introduced by us.

Causative relationships of the identified regulators and AF
progression and recurrence were not assessed and cannot be
estimated from the underlying study design.

We are well aware that many more genes and pathways
contribute to AF than we analyzed in our study (Fatkin et al.,
2017).We started from pre-defined genes and pathways’ resulting
from an innovative multi-step filter approach that was recently
published by our group. Important candidates identified by other
studies which are not part of calcium signaling and ECM–
receptor interaction were beyond the focus of our study. PITX2,
ZFHX3, and KCNN3 were analyzed in a single gene approach as
recently published by our group (Husser et al., 2017).

Finally, we want to point out that our gene-based analysis of
GWAS data completely differs from conventional analysis with
application of genome-wide significance cut off of at least 5E-8
for single SNPs. Gene-based analysis is a supplement but not a
substitute for conventional analysis approaches.

CONCLUSION

We identified EGFR, PRKCA, RYR2 and FN1, LAMA1 as
central regulators of calcium signaling and ECM–receptor
interaction associated with AF progression and recurrence.
Further studies, especially functional analyses, should focus on
the aforementioned central pathway regulators to elucidate the
pathophysiological background of AF and their possible role as
pharmacological targets.
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Can, T., Çamoǧlu, O., and Singh, A. K. (2005). “Analysis of protein-protein

interaction networks using random walks,” in Proceedings of the 5th

International Workshop on Bioinformatics, New York, NY, 61–68. doi: 10.1145/

1134030.1134042

Canpolat, U., Oto, A., Yorgun, H., Sunman, H., Sahiner, L., Kaya, E. B., et al. (2015).

"Tek basina" paroksismal atriyum fibrilasyonunda plazma fibronektin duzeyi

ile sol atriyumun elektriksel ve yapisal yeniden sekillenmesi arasindaki iliski:

kesitsel bir calisma. Turk Kardiyol. Dernegi Arsivi 43, 259–268. doi: 10.5543/

tkda.2015.83893

Chanda, P., Huang, H., Arking, D. E., and Bader, J. S. (2013). Fast association tests

for genes with FAST. PLoS One 8:e68585. doi: 10.1371/journal.pone.0068585

Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N. K.,

et al. (2017). The BioGRID interaction database: 2017 update.Nucleic Acids Res.

45, D369–D379. doi: 10.1093/nar/gkw1102

Di Pino, A., Caruso, E., Costanzo, L., and Guccione, P. (2014). A novel RyR2

mutation in a 2-year-old baby presenting with atrial fibrillation, atrial flutter,

and atrial ectopic tachycardia. Heart Rhythm 11, 1480–1483. doi: 10.1016/j.

hrthm.2014.04.037

Dorn, G. W. II, and Force, T. (2005). Protein kinase cascades in the regulation of

cardiac hypertrophy. J. Clin. Invest. 115, 527–537. doi: 10.1172/JCI24178

Eguchi, A., Eguchi, S., and Tilley, D. G. (2013). Unexpected cardiac hypertrophy by

epidermal growth factor receptor silencing. Hypertension 61:e46. doi: 10.1161/

HYPERTENSIONAHA.113.01184

Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R.,

et al. (2016). The reactome pathway knowledgebase. Nucleic Acids Res. 44,

D481–D487. doi: 10.1093/nar/gkv1351

Fan, D., Takawale, A., Lee, J., and Kassiri, Z. (2012). Cardiac fibroblasts, fibrosis

and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair

5:15. doi: 10.1186/1755-1536-5-15

Fatkin, D., Santiago, C. F., Huttner, I. G., Lubitz, S. A., and Ellinor, P. T. (2017).

Genetics of atrial fibrillation: state of the art in 2017. Heart Lung Circ. 26,

894–901. doi: 10.1016/j.hlc.2017.04.008

Feng, M., Xiang, J.-Z., Ming, Z.-Y., Fu, Q., Ma, R., Zhang, Q.-F., et al.

(2012). Activation of epidermal growth factor receptor mediates reperfusion

arrhythmias in anaesthetized rats. Cardiovasc. Res. 93, 60–68. doi: 10.1093/cvr/

cvr281

Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285,

1028–1032. doi: 10.1126/science.285.5430.1028

Gursoy, A., Keskin, O., and Nussinov, R. (2008). Topological properties of protein

interaction networks from a structural perspective. Biochem. Soc. Trans. 36,

1398–1403. doi: 10.1042/BST0361398

Huan, T., Wu, X., Bai, Z., and Chen, J. Y. (2014). Seed-weighted random walk

ranking for cancer biomarker prioritisation: a case study in leukaemia. Int. J.

Data Mining Bioinform. 9, 135–148.

Husser, D., Büttner, P., Ueberham, L., Dinov, B., Sommer, P., Arya, A., et al.

(2016a). Genomic contributors to rhythm outcome of atrial fibrillation catheter

ablation - pathway enrichment analysis of GWAS data. PLoS One 11:e0167008.

doi: 10.1371/journal.pone.0167008

Husser, D., Büttner, P., Ueberham, L., Dinov, B., Sommer, P., Arya, A., et al.

(2017). Association of atrial fibrillation susceptibility genes, atrial fibrillation

phenotypes and response to catheter ablation: a gene-based analysis of GWAS

data. J. Transl. Med. 15:71. doi: 10.1186/s12967-017-1170-3

Husser, D., Ueberham, L., Dinov, B., Kosiuk, J., Kornej, J., Hindricks, G., et al.

(2016b). Genomic contributors to atrial electroanatomical remodeling and

atrial fibrillation progression: pathway enrichment analysis of GWAS data. Sci.

Rep. 6:36630. doi: 10.1038/srep36630

Huttlin, E. L., Ting, L., Bruckner, R. J., Gebreab, F., Gygi, M. P., Szpyt, J.,

et al. (2015). The BioPlex network: a systematic exploration of the human

interactome. Cell 162, 425–440. doi: 10.1016/j.cell.2015.06.043

Launay, G., Salza, R., Multedo, D., Thierry-Mieg, N., and Ricard-Blum, S. (2015).

MatrixDB, the extracellular matrix interaction database: updated content, a

new navigator and expanded functionalities.Nucleic Acids Res. 43, D321–D327.

doi: 10.1093/nar/gku1091

Li, M.-X., Gui, H.-S., Kwan, J. S. H., and Sham, P. C. (2011). GATES: a rapid and

powerful gene-based association test using extended Simes procedure. Am. J.

Hum. Genet. 88, 283–293. doi: 10.1016/j.ajhg.2011.01.019

Li, N., Chiang, D. Y., Wang, S., Wang, Q., Sun, L., Voigt, N., et al. (2014).

Ryanodine receptor-mediated calcium leak drives progressive development of

an atrial fibrillation substrate in a transgenic mouse model. Circulation 129,

1276–1285. doi: 10.1161/CIRCULATIONAHA.113.006611

Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., et al.

(2012). MINT, the molecular interaction database: 2012 update. Nucleic Acids

Res. 40, D857–D861. doi: 10.1093/nar/gkr930

Nattel, S., and Dobrev, D. (2012). The multidimensional role of calcium

in atrial fibrillation pathophysiology: mechanistic insights and therapeutic

opportunities. Eur. Heart J. 33, 1870–1877. doi: 10.1093/eurheartj/ehs079

Olesen, M. S., Nielsen, M. W., Haunsø, S., and Svendsen, J. H. (2014). Atrial

fibrillation: the role of common and rare genetic variants. Eur. J. Hum. Genet.

22, 297–306. doi: 10.1038/ejhg.2013.139

Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F.,

et al. (2014). The MIntAct project–IntAct as a common curation platform

for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363.

doi: 10.1093/nar/gkt1115

Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., and Eisenberg, D.

(2004). The database of interacting proteins: 2004 update.Nucleic Acids Res. 32,

D449–D451. doi: 10.1093/nar/gkh086

Schaper, J., Kostin, S., Hein, S., Elsasser, A., Arnon, E., and Zimmermann, R. (2002).

Structural remodelling in heart failure. Exp. Clin. Cardiol. 7, 64–68.

Schroer, A. K., and Merryman, W. D. (2015). Mechanobiology of myofibroblast

adhesion in fibrotic cardiac disease. J. Cell Sci. 128, 1865–1875. doi: 10.1242/jcs.

162891

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,

et al. (2003). Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/

gr.1239303

Sotoodehnia, N., Isaacs, A., de Bakker, P. I., Dorr, M., Newton-Cheh, C., Nolte,

I. M., et al. (2010). Common variants in 22 loci are associated withQRS duration

and cardiac ventricular conduction. Nat. Genet. 42, 1068–1076. doi: 10.1038/

ng.716

Wang, L., Mousavi, P., and Baranzini, S. E. (2015). “iPINBPA: an integrative

network-based functional module discovery tool for genome-wide association

studies,” in Proceedings of the Pacific Symposium on Biocomputing, Kohala, HI,

255–266.

Xu, X.-Y., Nie, Y., Wang, F.-F., Bai, Y., Lv, Z.-Z., Zhang, Y.-Y., et al. (2014). Growth

differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial

hypertrophy via a novel pathway involving inhibition of epidermal growth

factor receptor transactivation. J. Biol. Chem. 289, 10084–10094. doi: 10.1074/

jbc.M113.516278

Yue, L., Xie, J., and Nattel, S. (2011). Molecular determinants of cardiac

fibroblast electrical function and therapeutic implications for atrial fibrillation.

Cardiovasc. Res. 89, 744–753. doi: 10.1093/cvr/cvq329

Zhabyeyev, P., Hiess, F., Wang, R., Liu, Y., Wayne Chen, S. R., and Oudit, G. Y.

(2013). S4153R is a gain-of-function mutation in the cardiac Ca2+ release

channel ryanodine receptor associated with catecholaminergic polymorphic

ventricular tachycardia and paroxysmal atrial fibrillation. Can. J. Cardiol. 29,

993–996. doi: 10.1016/j.cjca.2012.12.019

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Büttner, Ueberham, Shoemaker, Roden, Dinov, Hindricks,

Bollmann and Husser. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner are credited and that the original publication in this journal is cited,

in accordance with accepted academic practice. No use, distribution or reproduction

is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 6 May 2018 | Volume 9 | Article 162

https://doi.org/10.1038/ng.3014
https://doi.org/10.1161/CIRCULATIONAHA.107.748053
https://doi.org/10.1145/1134030.1134042
https://doi.org/10.1145/1134030.1134042
https://doi.org/10.5543/tkda.2015.83893
https://doi.org/10.5543/tkda.2015.83893
https://doi.org/10.1371/journal.pone.0068585
https://doi.org/10.1093/nar/gkw1102
https://doi.org/10.1016/j.hrthm.2014.04.037
https://doi.org/10.1016/j.hrthm.2014.04.037
https://doi.org/10.1172/JCI24178
https://doi.org/10.1161/HYPERTENSIONAHA.113.01184
https://doi.org/10.1161/HYPERTENSIONAHA.113.01184
https://doi.org/10.1093/nar/gkv1351
https://doi.org/10.1186/1755-1536-5-15
https://doi.org/10.1016/j.hlc.2017.04.008
https://doi.org/10.1093/cvr/cvr281
https://doi.org/10.1093/cvr/cvr281
https://doi.org/10.1126/science.285.5430.1028
https://doi.org/10.1042/BST0361398
https://doi.org/10.1371/journal.pone.0167008
https://doi.org/10.1186/s12967-017-1170-3
https://doi.org/10.1038/srep36630
https://doi.org/10.1016/j.cell.2015.06.043
https://doi.org/10.1093/nar/gku1091
https://doi.org/10.1016/j.ajhg.2011.01.019
https://doi.org/10.1161/CIRCULATIONAHA.113.006611
https://doi.org/10.1093/nar/gkr930
https://doi.org/10.1093/eurheartj/ehs079
https://doi.org/10.1038/ejhg.2013.139
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1093/nar/gkh086
https://doi.org/10.1242/jcs.162891
https://doi.org/10.1242/jcs.162891
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/ng.716
https://doi.org/10.1038/ng.716
https://doi.org/10.1074/jbc.M113.516278
https://doi.org/10.1074/jbc.M113.516278
https://doi.org/10.1093/cvr/cvq329
https://doi.org/10.1016/j.cjca.2012.12.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Identification of Central Regulators of Calcium Signaling and ECM–Receptor Interaction Genetically Associated With the Progression and Recurrence of Atrial Fibrillation
	Introduction
	Materials and Methods
	PPI Network Analysis
	Random Walk Analysis

	Results
	Discussion
	Limitations

	Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References


