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Identification of circular RNAs in 
porcine sperm and evaluation of 
their relation to sperm motility
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Circular RNAs (circRNAs) are emerging as a novel class of noncoding RNAs which potential role as gene 
regulators is quickly gaining interest. circRNAs have been studied in different tissues and cell types 
across several animal species. However, a thorough characterization of the circRNAome in ejaculated 
sperm remains unexplored. In this study, we profiled the sperm circRNA catalogue using 40 porcine 
ejaculates. A complex population of 1,598 circRNAs was shared in at least 30 of the 40 samples. 
Generally speaking, the predicted circRNAs presented low abundances and were tissue-specific. Around 
80% of the circRNAs identified in the boar sperm were reported as novel. Results from abundance 
correlation between circRNAs and miRNAs together with the prediction of microRNA (miRNA) target 
sites in circRNAs suggested that circRNAs may act as miRNA sponges. Moreover, we found significant 
correlations between the abundance of 148 exonic circRNAs and sperm motility parameters. Two of 
these correlations, involving ssc_circ_1458 and ssc_circ_1321, were confirmed by RT-qPCR using 36 
additional samples with extreme and opposite sperm motility values. Our study provides a thorough 
characterization of circRNAs in sperm and suggests that circRNAs hold potential as noninvasive 
biomarkers for sperm quality and male fertility.

Swine, due to its similarity to humans in its genome sequence, anatomy and physiology, is quickly becoming an 
important model for biomedical research1. In humans, infertility is an increasing problem in contemporary soci-
ety, a�ecting one in twenty males2, and has become a subject of research in swine3,4. While in humans, men attend 
In Vitro Fertilization (IVF) clinics to address infertility issues, the boars at arti�cial insemination (AI) studs have 
been previously selected on the basis of their semen quality and consequently, infertility is rare. However, these 
studs contain subfertile boars and also present phenotypic variation on the semen quality of the animals. Men’s 
infertility and these phenotypes in the boar studs are expected to share a common molecular basis. Unlike in 
humans, where fertility data is based on few records per person, the swine industry is currently recording semen 
quality and fertility phenotypes each time a sire is used for AI. In pig intensive production systems, an AI boar 
typically inseminates around 1,500 sows during its productive life (S Balasch, pers. comm.). �us, large datasets 
of the reproductive ability of these boars is becoming available.

Sperm motility and kinetic parameters provide an objective and reproducible measurement of semen quality 
that is automatically assessed by the computer-assisted semen analysis (CASA) system. CASA measures among 
other parameters, the percentage of total motile spermatozoa, the average curvilinear velocity (VCL), the average 
straight line velocity (VSL) and average path velocity of the sperm cells (VAP) based on trajectories of motile 
sperm. �is approach has been commonly used to assess semen quality in animal breeding prior to AI in cat-
tle5, horse6 and swine7 where signi�cant correlations between sperm motility and fertility have been found. In 
humans, this technique is also applied to estimate the in vitro fertilizing potential of the ejaculates used in assisted 
reproductive treatments8.
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Multiple research e�orts have demonstrated that sperm quality parameters and fertility outcomes are related 
to the presence or absence of sperm RNAs. Di�erent studies have provided evidence that the absence or deregu-
lation of certain RNAs is associated to infertility and/or sperm motility in human, mice and cattle9. �ese studies 
have focused their research not only on messenger RNAs (mRNAs) but also on di�erent classes of non-coding 
RNAs, including microRNAs (miRNAs) and transfer RNAs (tRNAs)9,10.

Circular RNAs (circRNAs) are a novel class of non-coding RNAs with a closed loop structure, mainly formed 
through pre-mRNA back splicing event11. circRNAs are highly stable in vivo in comparison to their mRNA lin-
ear counterparts, because of their circular structure, which confers protection against exonuclease-mediated 
degradation12. circRNAs mostly have an exonic origin. However, intronic and intergenic circRNAs have also 
been described13. While the �rst ones are preferentially located in the cytoplasm, the other two are found in the 
nucleus. Expanding views on their function suggest that circRNAs can directly regulate the abundance of their 
cognate mRNA and can also act as miRNA sponges11,12,14, thus impeding the post-transcriptional inhibitory roles 
of these miRNAs on their target mRNAs. circRNAs have been identi�ed across tissues in several species including 
the fruit�y, human, mice and swine, following tissue-speci�c expression patterns12.

During the last few years, there has been a considerable interest in the potential of circRNAs as health bio-
markers. Several studies have identi�ed circRNAs which abundances were associated to cancer, aneurysms, 
hypertension, heart failure, diabetes or arthritis15. �ere are few reports characterizing circRNAs in reproduc-
tive organs and cell types including oocyte, embryo, placenta, granulosa cells, immature spermatogenic cells, 
seminal plasma, testis and more recently, spermatozoa16–18. Up to date, a small number of studies have assessed 
the circRNA predictive potential for reproduction outcomes. Chang and colleagues identi�ed circRNAs associ-
ated to embryo quality and suggested their role as potential predictors of live birth19. A novel study carried by 
Chioccarelli et al., has characterized the human sperm circRNAome using a circRNA microarray in three nor-
mozoospermic donors18. In this study, the authors compared, within each sample, two sperm sub-populations 
de�ned by their good and bad quality in terms of motility and morphology. �is comparison yielded 148 di�er-
entially abundant circRNAs between the two semen quality groups18.

Our group has recently carried a thorough description of the porcine sperm transcriptome20 and the data, 
in line with previous studies9, showed that the majority of the transcripts are highly fragmented and with low 
abundances. Considering their stability and abundance, circRNAs could hold an important potential as reliable 
biomarkers for sperm quality and fertility. To shed light into the potential relevance of circRNAs on semen qual-
ity, we have carried a de novo characterization of the circRNA repertoire in 40 porcine spermatozoa samples and 
assessed their potential role as miRNA sponges using total and small RNA-seq. Furthermore, we have investigated 
the correlation between their abundance and sperm motility traits.

Results
Phenotypic data. �e average percentage of motile spermatozoa was 75.5 with a standard deviation (SD) of 
17.4, VCL (mean: 43.7; SD: 10.8), VSL (mean: 26.4; SD: 5.8) and VAP (mean: 32.4; SD: 6.8).

RNA isolation, RNA-seq and bioinformatics analysis. RNA extraction from 40 mature sperm 
samples free from somatic cells yielded an average of 2.2 fg per spermatozoa (range between 0.8 and 3.7 fg) 
(Supplementary Table S1). We obtained an average of 40.7 M total RNA-seq sequencing reads per sample, 98.2% 
of which passed the quality control �lters. A�er read mapping, the unmapped reads were used for circRNA pre-
diction (Supplementary Table S1). For small RNA-seq, we obtained an average of 7.3 M reads per sample. �e vast 
majority of these reads (99.2%) passed quality controls and 81.5% mapped to the porcine genome (Supplementary 
Table S1). We identi�ed 95 miRNAs from the list of 306 that are annotated in swine.

Characterization of the sperm circular RNA repertoire. 1,598 potential circRNAs were identi�ed as 
shared in at least 30 of the 40 ejaculates (Supplementary Table S2). �e majority of the circRNA species were 
derived from exonic regions (CDS – Coding Sequence-, 3′ and 5′ UTR –Untranslated Region-) (82.1%), while 
only 13.5% and 4.4% originated from intergenic and intronic segments, respectively (Fig. 1a). Most circRNAs 
included less than 4 exons (81.0%), and only 14 circRNAs contained 10 or more exons (Fig. 1b). In addition, 
the majority of the exonic circRNAs (76.9%) were less than 400 bp long (Fig. 1c). RNA abundances across the 
di�erent circRNA types were low, with a range between 0.19 and 136.4 Counts Per Million (CPM) and mean and 
median values of 2.42 and 0.89 CPMs, respectively (Supplementary Table S2). �e top 15 most abundant exonic 
circRNAs encompassed genes related to sperm biology and male fertility including ATP6V0A2, PPA2, PAIP2 and 
PAXIP1 (Table 1).

Only a small fraction of genes produced more than one circRNA. �ese were considered circRNA hotspots. 
�e circRNAs from hotspot genes are o�en produced from di�erent back-splicing events of one exon with several 
others21. We detected 12 genes with 5 or more circRNA isoforms (Table 2). Again, four of these genes, namely 
TESK2, SPATA19, PTK2 and SLC5A10 have been directly related to sperm function and fertility.

Sperm circRNAs might be involved in epigenetic regulation and spermatogenesis. We ana-
lyzed the potential roles of the boar sperm circRNAs under the assumption that their function is related to their 
known mRNA counterpart. Gene Ontology (GO) analysis of the circRNA host genes revealed an enrichment for 
epigenetic functions including histone modi�cation (q-val: 5.52 ×10−6), histone H3-K36 methylation (q-val: 8.65 
×10−3) and chromatin organization (q-val: 2.16 ×10−8) (Supplementary Table S3). Other signi�cantly enriched 
ontologies included among others, spermatogenesis (q-val: 5.81 ×10−4), cilium assembly (q-val: 4.15 ×10−3) and 
developmental process (q-val: 1.33 ×10−2) (Supplementary Table S3).

The boar sperm has a highly specific circRNAome. We compared our circRNA catalogue with equiv-
alent available datasets from other studies in human (including di�erent brain sections and cell lines)22, mice 
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Figure 1. Genomic features of the circRNAs identi�ed in the boar sperm. (a) Distribution of the genomic 
location (CDS, intergenic, intronic, 3′ UTR or 5′UTR) of the 1,598 circRNAs identi�ed in the boar sperm. (b) 
Distribution of the number of exons that form the exonic circRNAs. (c) Distribution of the nucleotide length of 
the exonic circRNAs. CDS: Coding Sequence; UTR: Untranslated Region.

circRNA name circRNA genomic coordinates Mean SD Ensembl ID
Host gene 
symbol

ssc_circ_1097 4:590305..590427 75.8 51.9 ENSSSCG00000005916 WDR97

ssc_circ_1141 5:22008783..22009750 75.0 35.4 ENSSSCG00000000406 PTGES3

ssc_circ_1062 4:130322062..130339222 62.2 33.1 ENSSSCG00000006939 ZNHIT6

ssc_circ_0537 14:29281863..29290551 59.9 34.8 ENSSSCG00000009766 ATP6V0A2

ssc_circ_0777 18:14243637..14259662 47.3 23.9 ENSSSCG00000016529 AGBL3

ssc_circ_0860 2:3096936..3098647 45.1 35.6 ENSSSCG00000037451 PPFIA1

ssc_circ_0805 18:54260018..54270584 40.0 52.3 ENSSSCG00000035581 SUGCT

ssc_circ_0132 1:641933..653683 33.2 19.1 ENSSSCG00000004008 WDR27

ssc_circ_1575 AEMK02000682.1:1719140..1720285 28.4 24.6 ENSSSCG00000005753 CAMSAP1

ssc_circ_1413 8:116275909..116294261 26.9 15.5 ENSSSCG00000022788 PPA2

ssc_circ_0895 2:64840342..64840811 25.8 17.5 ENSSSCG00000013776 DDX39A

ssc_circ_1101 4:6367950..6392035 22.6 28.8 ENSSSCG00000005941 KHDRBS3

ssc_circ_0839 2:141254413..141254577 21.8 20.9 ENSSSCG00000026606 PAIP2

ssc_circ_0795 18:3101570..3102902 21.7 9.0 ENSSSCG00000025221 PAXIP1

ssc_circ_0021 1:106150520..106171073 20.26 11.02 ENSSSCG00000004538 WDR7

Table 1. List of the 15 most abundant exonic circRNAs in swine sperm. circRNA genomic coordinates are 
indicated as chromosome:start_position. .end_position. Mean and SD: standard deviation, are in CPM (Counts 
Per Million).

Gene symbol Ensembl ID
Number of 
circRNAs

DENND1B ENSSSCG00000010900 8

DENND1A ENSSSCG00000005585 7

TESK2 ENSSSCG00000003917 6

UIMC1 ENSSSCG00000022508 6

ARMC9 ENSSSCG00000023994 5

CAMSAP1 ENSSSCG00000005753 5

KDM5B ENSSSCG00000010928 5

PTK2 ENSSSCG00000038397 5

RPS6KC1 ENSSSCG00000015586 5

SPATA19 ENSSSCG00000025612 5

SLC5A10 ENSSSCG00000018049 5

WNK1 ENSSSCG00000000753 5

Table 2. circRNA hotspot genes in swine sperm. 12 genes harbored 5 or more exonic circRNAs.
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(several brain segments, cell types and embryonic stem cells)22 and swine (lung, skeletal muscle, fat, heart, liver, 
spleen, kidney, ovary, testis and 5 brain sections)21,23. Twenty-four % and 11.3% of the boar sperm circRNAs had 
potential orthologs in human and mouse, respectively (Table 3). On the other hand, 20.3% of the porcine sperm 
circRNAs were also present in other porcine tissues21,23 (Table 3). �e porcine tissues showing higher overlap 
with sperm were testes (11.6%) and brain cortex (11.3%) (Table 3). Comparing this in the opposite direction, 
4.9% (6,636 circRNAs) of the circRNAs already annotated in any pig tissue were also present in our pig sperm 
list. �is value was 12 times lower (0.4%) when evaluating the much bigger (90,067 circRNAs) human circRNA 
catalog (Table 3).

Sperm circRNAs do not follow an age-dependent pattern. We assessed whether sperm circR-
NAs depicted an age-accumulating pro�le as it has been previously observed in rat testes24, and rat and mouse 
brains24,25. All the boars from our dataset were sexually mature with ages ranging between 9 and 54 months of 
age. Sexual maturity in boars is a process that starts at the age of 8 months and �nalizes when animals reach 2 
years. �us, we divided the samples in those coming from boars approaching sexual maturity with ages below 2 
years old and those produced by mature pigs with ages above 2 years old. �ere was no signi�cant di�erence in 
the number of circRNAs identi�ed (P-value: 0.68, Wilcoxon rank sum test) nor in their RNA abundance (P-value: 
0.948) between the two groups. We repeated the analysis considering only extreme ages: young (N = 4; between 
8.6 and 9.2 month old) and mature (N = 4; 29.9 to 54.6 month old). Again, there was no di�erence in the number 
of circRNAs identi�ed (P-value: 0.89) or in their abundance (P-value: 0.2).

circRNA-miRNA interaction network. To evaluate the potential role of exonic circRNAs as miRNA 
sponges, we built a circRNA:miRNA co-expression network with the RNA abundances of the 1,261 exonic circR-
NAs (from total RNA-seq libraries) and the 95 miRNAs (from short RNA-seq libraries). �e analysis identi�ed 
1,882 signi�cant correlations that included 95 miRNAs and 458 exonic circRNAs. In parallel, we also performed 
an in silico prediction of miRNA target sites involving the miRNAs and exonic circRNAs identi�ed in our data. 
We assessed miRNA target sites in the exonic circRNA sequences based on sequence complementarity using the 
tool miRanda26. �e analysis yielded 4,987 potential targets involving all the 95 miRNAs and 1,103 circRNAs. To 
reduce the proportion of false-positives, only the 81 interactions (from 34 miRNAs and 65 circRNAs, each from 
a di�erent gene) that were identi�ed in both approaches were used for network visualization (Fig. 2). Fi�y-three 
of these 65 circRNAs were predicted to interact with only one miRNA (Fig. 2). Twelve circRNA were predicted 
to interact with two or more miRNAs. �e circRNAs displaying the largest number of predicted interactions 
with miRNAs were ssc_circ_0954 and ssc_circ_1454, which connected with four miRNAs each (Fig. 2). On the 
other hand, miR-28-5p and miR-26a were predicted to be regulated by 10 and 9 di�erent circRNAs, respectively. 
Similarly, miR140-3p and miR-423-5p were potentially targeted by �ve di�erent circRNAs each (Fig. 2).

Correlation of circRNAs with sperm motility and circRNA validation. A total of 148 exonic cir-
cRNAs from 142 genes showed significant correlations between their abundance and sperm motility traits 
(Supplementary Table S4). More in detail, 24, 83, 24 and 41 circRNAs correlated with the percentage of total 
motile spermatozoa, VCL, VAP and VSL, respectively (Supplementary Table S4).

Species/Tissues
Number of 
circRNAs Pig sperm

Other species/
tissues

Human 90,067 24.0% 0.4%

Mice 15,498 11.3% 1.2%

Swine 6,663 20.3% 4.9%

Basal ganglia 456 2.6% 9.2%

Brain stem 820 5.3% 10.2%

Cerebellum 1,061 5.6% 8.4%

Cortex 2,163 11.3% 8.4%

Hippocampus 549 3.2% 9.3%

Fat 494 2.4% 7.7%

Heart 539 2.2% 6.5%

Kidney 469 1.9% 6.4%

Liver 353 2.1% 9.3%

Lung 683 2.7% 6.3%

Muscle 532 2.6% 7.9%

Ovarium 652 3.8% 9.4%

Spleen 241 1.4% 9.1%

Testes 2,685 11.6% 6.9%

Table 3. Concordance between the circRNAs catalogue of the boar sperm and the circRNA list in other species 
and pig tissues. Number of circRNAs a�er Sscrofa11.1 li�over from human, mice and swine (detailed by tissue). 
Column ‘Pig sperm’ shows the proportion of swine sperm circRNAs that were identi�ed in the given species and 
tissues. Column ‘Other species/tissues’ of the total circRNAs lists the proportion of circRNAs from that tissue or 
species that found a homolog in the boar sperm.
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To confirm the existence of these circRNAs and their phenotypic correlations we undertook a Reverse 
Transcription quantitative PCR (RT-qPCR) and a Sanger Sequencing approach. First, we randomly selected two 
circRNAs with di�erent RNA abundance levels to test whether we could con�rm the bioinformatically predicted 
circRNAs. �e chosen circRNAs were: ssc_circ_1141 (from PTGES3) with 75.0 CPM, and ssc_circ_0670 (from 
BAZ2B) with 10.6 CPM, both also detected in human22 (hsa_circ_0008137 and hsa_circ_0002463, respectively) 
and in swine testes23. �e PCR ampli�cation of the two circRNAs resulted in a single electrophoretic band of 
the expected size (Supplementary Fig. S1a) and Sanger Sequencing con�rmed the back-splice junction (BSJ) 
(Supplementary Fig. S2a,b).

�en, we used the same approach to con�rm the existence of 8 circRNAs selected for their signi�cant corre-
lation with at least one motility trait (Supplementary Table S4). �ese circRNAs were further selected based on 
the fact that: (i) they were present at high abundances, or (ii) they showed signi�cant correlation with at least 
1 trait, or (iii) they had been previously identi�ed in pig23, human22 or mice22. PCR ampli�cation of 6 of the 8 
circRNAs resulted in a band of the expected size (Supplementary Fig. S1b) and the Sanger Sequencing validated 
the expected BSJ (Fig. 3a; Supplementary Fig. 2c-e). ssc_circ_0839 from PAIP2 did not amplify (data not shown) 
and ssc_circ_0118 from PDE10A (also identi�ed in pig testes and in human as hsa_circ_0078638) displayed 2 
ampli�cation bands (Supplementary Fig. S1b). �ese two circRNAs were discarded for further analysis. �us, we 
con�rmed the existence of these six circRNAs.

�e RT-qPCR levels of the 6 circRNAs were measured in 36 animals presenting extreme and opposite values 
of sperm motility (N = 18 for each phenotypic distribution tail) from a dataset of 300 boar ejaculates with phe-
notype records. None of the 36 samples was included in the RNA-seq study. �e two sample groups displayed 
signi�cant phenotypic di�erences for all the traits: percentage of total motile spermatozoa (P-value: 2.65 ×10−9, 
Wilcoxon rank sum test), VCL (P-value: 2.20 ×10−10), VSL (P-value: 3.22 ×10−7) and VAP (P-value: 3.22 ×10−7). 
�e RT-qPCR assays presented e�ciencies between 99.6% and 105.2%.

Two of the six circRNAs showed signi�cant di�erences between the 2 sperm motility groups (Fig. 3b). �ese 
2 circRNAs were ssc_circ_1458 from LRBA (P-value: 0.049) and ssc_circ_1321 from PAPOLA (P-value: 0.035). 
A third circRNA, ssc_circ_1132, from LIN7A, showed signi�cant di�erences between the two motility groups 
(P-value: 0.008) (Fig. 3b) but in the opposite direction than expected according to the RNA-seq data and was 
consequently considered as not validated due to inconclusive results. �e other 3 circRNAs, ssc_circ_1101 from 
KHDRBS3, ssc_circ_0437 from ULK4 and ssc_circ_1061 from ZNHIT6 did not present signi�cant di�erences 
between the 2 groups (Fig. 3b).

Discussion
�is study provides the �rst RNA-seq based circRNA repertoire of mature spermatozoa in a mammalian spe-
cies. We have also assessed the sperm circRNA role as miRNA sponges and evaluated their associations with 
sperm motility as a parameter of semen quality. Our results provide further evidence and expand the relevance 
of spermatozoa RNAs in sperm biology and quality, as recently described in other studies18. circRNAs have been 

Figure 2. CircRNA-miRNA interaction network. circRNA:miRNA relationships predicted by both RNA co-
abundance and identi�cation of miRNA target sites in the circRNAs sequences. Circular and square nodes 
represent circRNAs and miRNAs, respectively. �e node and letter sizes indicate the number of signi�cant 
correlations involving the node.
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reported as promising potential biomarkers for human health including cancer, diabetes, cardiovascular diseases 
or the pathogenesis of pre-eclampsia15. Here, we provide novel data supporting the involvement of circRNAs on 
the male’s reproductive function as re�ected by their association with several sperm motility parameters.

We have identi�ed nearly 1,600 boar sperm circRNAs that are robustly present in most samples (at least 
30). �e sperm circRNA repertoire showed similar circular genomic characteristics including the proportion 
of genomic overlap with protein coding and intergenic regions, the number of exons and the circRNA length 
(Fig. 1), when compared to data previously reported in other tissues from swine23, human17 or rat24. Nonetheless, 
the list of boar sperm circRNAs showed a modest overlap with these other datasets (Table 3). Not surprisingly, the 
largest overlap was with porcine testes (11.6%), probably, due to the fact that the male gonads are mainly com-
posed of cells from the spermatogenic lineage including spermatozoa. �e reduced concordance between swine 
sperm and other tissues and species (Supplementary Table S5) may be partly in�uenced by technical di�erences 
involving the processing of samples and the data analysis between the studies. Moreover, opposite scenarios were 
identi�ed in swine and human. In swine, there was high sperm-speci�city, with nearly 80% of the circRNAs 
being present only in sperm (Table 3). In contrast, human sperm gave a positive signal for the majority (72%) 
of the 13,617 circRNAs from circBase22 that were queried using microarray technology18. A biological explana-
tion for this di�erence between swine and human cannot be rule out but it is unlikely. �e mRNA and miRNA 
components and payload of the human and porcine sperm have been previously interrogated and are highly 
ressemblant20. For this reason, we hypothesize that the di�erences observed are merely technical and related to 
the processing of the samples and the data.

We investigated the functional relevance of sperm circRNAs under the hypothesis that their function is associ-
ated to the host gene. Four genes (ATP6V0A2, PPA2, PAIP2 and PAXIP1) harboring the 15 most abundant exonic 
circRNAs (Table 1) have been directly implicated to sperm related traits and male fertility. �e vacuolar ATPase 
ATP6V0A2 transcripts and proteins are down-regulated in the sperm of infertile men27. �e pyrophosphatase 

Figure 3. Validation of the circRNAs which RNA-seq based abundance correlated with sperm motility. (a) 
Sanger sequencing validation of the circRNA black splice junction for ssc_circ_1132 from LIN7A, ssc_circ_1458 
from LRBA and ssc_circ_1321 from PAPOLA. (b) Relative abundance of six circRNAs in samples with extreme 
and divergent motility values (18 samples displaying high motility and 18 samples with low motility) obtained 
by RT-qPCR. �e RNA-seq based association between ssc_circ_1458 and ssc_circ_1321 abundance and sperm 
motility was validated by RT-qPCR in the 36 samples.
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PPA2 is located in the mitochondrial membrane and might be involved in the production of ATP, control of 
molecular processes linked to the launching of sperm capacitation and sperm motility28. PAIP2 is an inhibitor of 
translation and is linked to sperm maturation and male fertility29. Finally, PAXIP1 is critical for genome stability 
and chromatin condensation and is associated with developmental arrest of spermatocytes, testicular atrophy 
and infertility in knockout mice30. We also identi�ed 12 hotspot genes producing �ve or more circRNAs each 
(Table 2). Some of these hotspot genes were related to sperm function and fertility. TESK2 is a protein kinase 
mostly expressed in round spermatids and is predicted to play a role in early stages of spermatogenesis31. PTK2, 
is essential for embryo development32. SPATA19 is critical for sperm mitochondrial function in relation to sperm 
motility and fertilization ability33.

�e ontology enrichment analysis of the genes harboring circRNAs pointed towards epigenetic related func-
tions, which are essential for chromatin condensation in sperm and for the reprogramming of gene expression 
upon egg fertilization and during embryo development (Supplementary Table S3). Gene enrichment analysis also 
signaled towards spermatogenesis and developmental processes, also involving the embryo development related 
genes, DHX36, IPMK, RICTOR, CDC73 and ANGPT1 (Supplementary Table S3). �ese functions are in line with 
previous works studying sperm mRNAs9,20, thereby providing further basis for the regulatory role that circRNAs 
might have on their cognate linear mRNAs.

A previous study in rat testes identi�ed a dynamic circRNA age-dependent pattern of expression and sug-
gested a relation between their abundance and function with the male’s sexual maturity and spermatogenesis24. 
For this reason, we sought to investigate whether, like in rat testes, circRNAs also accumulate through age in the 
porcine sperm. Our data suggested that there is no association between the mature sperm circRNAs and the 
boar’s age. �is could be explained by di�erent scenarios. First, while the study on rat testes compared animals 
with broad age di�erences (between 2 and 104 weeks)24, all our samples were from adult pigs with less dissim-
ilar ages (between 9 and 54 months) taking into account that swine has a longer life cycle. Second, the study in 
rats assessed the whole testis payload, which includes cells from the spermatogenic lineage and also, leukocytes, 
endothelial, Sertoli and Leydig cells. Our study in pigs exclusively queried mature-selected ejaculated spermato-
zoa. Cells with high proliferation rates34 such as spermatogonial stem cells (SSC) have been suggested to accumu-
late less circRNAs due to passive thinning out during their continuous self-renewal and proliferation until they 
become spermatozoa. Spermatozoa originates from SCC through a highly constant and orchestrated process and 
upon maturation, they enter a silent state with no apparent transcriptional activity. �is would imply that in sper-
matozoa, circRNAs do not accumulate through age. Interestingly, our results indicate that circRNAs in mature 
sperm are stable and thus, provide further support for the potential of circRNAs as noninvasive biomarkers for 
male reproductive conditions.

To shed light into the functional relevance of circRNAs as miRNA sponges we built an interaction network 
(Fig. 2). We combined RNA-seq benchwork data of circRNA and miRNA abundances and in silico prediction 
of miRNA target sites to increase the reliability of the circRNA-miRNA relationship predictions. �is network 
of 81 interactions contained some circRNA genes and miRNAs previously related to semen quality and male 
fertility. Remarkably, 2 circRNAs, ssc_circ_0954 and ssc_circ_1454 were linked to 4 di�erent miRNAs each. 
�e �rst, ssc_circ_0954 arises from DCDC2C, a gene identi�ed in the human sperm �agellum end-piece with 
a suggested role on microtubule dynamics by acting as a depolymerization/polymerization balancing system35. 
�is circRNA was predicted to interact, among others, with miR-361-3p which was found to be dysregulated in 
subfertile men36, miR-423-5p, which was altered in oligozoospermic men37 and miR-28-5p, a miRNA that was 
dysregulated in normozoospermic infertile individuals38. �e other cirRNA, ssc_circ_1454, is transcribed from 
MTHFD2L, a mitochondrial isozyme from the folate cycle metabolic pathway, a vitamin that has been also related 
to semen quality and fertility in men39. One of the miRNAs targeted by ssc_circ_1454 was miR-16, which was 
dysregulated in subfertile men36. �e network also showed 10 circRNAs that may be regulating miR-28, a miRNA 
(miR-28-5p) that was dysregulated in normozoospermic infertile individuals38. �e potential miR-28 regulators 
included ssc_circ_1370, arisen from FAM92A, whose protein may play a role in ciliogenesis40, and ssc_circ_0002 
from WDR7, which is associated to sperm quality in cattle41. Likewise, 9 circRNAs were predicted to regulate 
miR-26a, which has been in turn, linked to VCL, VSL and VAP motility parameters in a previous study in swine42. 
miR-26a was also targeted by ssc_circ_0361, a circRNA from ACTL6A, which is a gene with a crucial function for 
embryo development43 and ssc_circ_1352 from CAGE1, an acrosomal protein with proposed roles in fertility44. 
Additional interesting interactions included ssc_circ_0345 from the hotspot gene SLC5A10 (sodium-dependent 
mannose and fructose transporter) (Table 2), which regulated miR-423-5p, a miRNA that was upregulated in oli-
gozoospermic semen37 and let-7c, which was altered in patients with severe asthenozoozpermia45. Altogether, the 
network involved host genes and miRNAs that are connected to male fertility thereby suggesting that circRNAs 
may play a role in the male’s reproductive ability.

�e potential role of circRNAs in male reproduction is further substantiated by the associations detected 
between sperm motility and the abundance of some sperm circRNAs in our study and the work detailed by 
Chioccarelli and co-authors18. At least 20 of the circRNA host genes implicated in the phenotypic correlations 
have been previously linked to sperm biology or male fertility (Supplementary Table S4). For example, ssc_
circ_0823, which correlated with VCL (P-value = 0.009), is a circRNA hosted by CAMK4, a gene that has been 
implicated in sperm motility in humans46. ssc_circ_0780, correlated with the percentage of motile cells (P-value 
= 0.041), is hosted by LRGUK, a gene that is required for sperm assembly including the growth of the axonome, 
a key structure for the �agellar beating in sperm47. We successfully tested by RT-qPCR 6 of the 148 exonic circR-
NAs that correlated to sperm motility. We validated their correlation with motility traits for 2 of these 6 circR-
NAs, ssc_circ_1458 from LRBA and ssc_circ_1321 from PAPOLA. Both were signi�cantly down-regulated in the 
ejaculates with low sperm motility (Fig. 3b). LRBA is a gene involved in coupling signal transduction and vesicle 
tra�cking but no link with sperm function or fertility has been found thus far. ssc_circ_1321 from PAPOLA, has 
a human ortholog circRNA (hsa_circ_0033126) and the host gene is implicated in RNA and ATP binding. �us, 
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none of the two host genes have been previously related to sperm function or fertility. However, the association is 
con�rmed by RT-qPCR and we cannot exclude unidenti�ed relevant functions on sperm motility. Two other cir-
cRNAs were also of high interest and tested as they were within the top 15 most abundant (Table 1) and correlated 
with sperm motility (Supplementary Table S4). �ey were ssc_circ_0839 from PAIP2, with crucial roles in sper-
matogenesis29 and ssc_circ_1101 from KHDRBS3, a gene that is highly abundant in mice testes48. ssc_circ_0893 
did not amplify when subjected to RT-qPCR and ssc_circ_1101 did not present signi�cant di�erences in the 
RT-qPCR levels between the motility groups (Fig. 3b).

Interestingly, some circRNAs popped up as relevant in more than one of the analyses carried in this study. 
For example, ssc_circ_1532, from the SPATA19 hotspot gene (Table 2), which is related to sperm motility and 
fertility33, was suggested to regulate miR-99a according to the network analysis (Fig. 2). miR-99b was found to be 
dysregulated in the low motility sperm fraction in bull49 and in subfertile men36. Another circRNA, ssc_circ_1219 
from OSBPL9, a gene involved in male reproduction50, displayed abundance correlation with VCL (P-value: 0.04) 
(Supplementary Table S4) and was identi�ed as a potential target of miR-101 (Fig. 2), a miRNA (miR-101-3p) that 
was altered in asthenozoospermia men45.

Remarkably, 4 (DENND1B, PTK2, SLC5A10 and CAMSAP1) of the 12 hotspot genes hosted a circRNA with 
signi�cant abundance correlation with sperm motility. �us, one third of the hotspot genes included circRNAs 
correlated with sperm motility whilst only 15.0% (148) of the 984 genes hosting the 1,598 circRNAs were corre-
lated with motility (Supplementary Table S4). Noteworthy, the 12 circRNA hotspot genes were not hotspots in the 
other porcine tissues analyzed21,23 (data not shown). Altogether, this indicates that circRNA hotspot genes may 
have relevant tissue-speci�c functions.

In conclusion, our study is the �rst to characterize the circRNAs present in porcine spermatozoa. We have 
provided a comprehensive view of the boar sperm circRNAome, which is highly sperm-speci�c and involves 
genes related to sperm biology and development and identi�ed potential circRNAs acting as miRNA sponges. 
Moreover, we have detected and validated correlations between the abundance of some circRNAs and sperm 
motility parameters. �e results described in this study may be of interest for animal breeding and for human 
health. On the one side, our data identi�ed genomic regions of relevance for sperm quality that could harbor SNP 
markers for the early prediction of the piglets that will enter the AI studs. On the other hand, this study may spur 
novel research on the potential of circRNAs as noninvasive biomarkers for male fertility in human medicine.

Methods
Sperm collection and phenotyping. An integrated figure of the study design can be found in 
Supplementary Fig. S3. Forty ejaculates, each from a di�erent Pietrain boar, were obtained from GEPORK and 
from Semen Cardona (Catalonia) for this study. �e ejaculates had been collected using the hand glove method 
by trained professionals under the routine sperm sampling using their relevant procedures and guidelines. No 
animal experiment has been performed in the scope of this research. Fresh sperm motility traits were assessed 
with the CASA system (Integrated Sperm Analysis System V1.0; Proiser, Valencia, Spain). In this study we ana-
lyzed sperm motility parameters, including the total percentage of motile cells (VAP > 10 µm/s), VCL (µm/s), VSL 
(µm/s) and VAP (µm/s). Phenotypes were corrected for the �xed variables: farm (1, 2, 3), age (1, 2, 3) and season 
and year (Autumn 2014, 2015 and 2016; Winter 2015, 2016 and 2017; Spring 2015 and 2016; Summer 2015) using 
the R function “lm”51.

�e 40 ejaculates were used for RNA-seq and 34 of them for short RNA-seq. �e ages of these boars ranged 
between 9 and 54 months, with average and median of 15 and 11 months old, respectively. Twenty-four boars 
were less than 1 year old, 12 pigs were between 1 and 2 years old, 3 pigs between 2 and 3 years old (Supplementary 
Table S6).

RNA isolation and library preparation. Ejaculates were puri�ed to remove somatic cells and immature 
sperm cells and puri�ed sperm was stored at −96 °C with Trizol® as described by Gòdia et al.52. Brie�y, the ejacu-
lates were suspended over a 3 ml cushion of the commercial solutions of BoviPure and BoviDiluteTM (Nidacon; 
Mölndal, Sweden), which includes colloidal silica particles coated with silane in an isotonic salt solution in a 15 ml 
RNAse-free tube. �en, the samples were subjected to centrifugation at 300 × g for 20 min at 20 °C. A�er centrif-
ugation, all the upper phases were removed and the cell pellets were transferred to a new RNase-free 15 mL tube, 
washed with 10 mL of RNase-free PBS and centrifuged at 1,500 × g for 10 min at 20 °C. �e supernatants were 
then removed and the pellets optically inspected using a microscope to con�rm the removal of somatic cells. RNA 
was extracted from puri�ed sperm cells, treated with TURBO DNA-free™ Kit (Invitrogen) and quanti�ed using 
QubitTM RNA HS Assay kit (Invitrogen). We assessed RNA integrity with the 2100 Bioanalyzer and yield using the 
Agilent RNA 6000 Pico kit (Agilent Technologies). We then performed RT-qPCR assays for PRM1 and PTPRC 
mRNAs as well as for intergenic/genomic DNA to verify proper sperm puri�cation.

Forty sperm RNA samples were subjected to total RNA-seq. �irty-four of these samples were also used for 
small RNA-seq. For total RNA-seq libraries, ribosomal RNA (rRNA) was depleted with the Ribo-Zero Gold 
rRNA Removal Kit (Illumina) and libraries were constructed with the SMARTer Universal Low Input RNA 
library Prep kit v2 (Clontech). Resulting libraries were sequenced in a HiSeq2000/2500 system (Illumina) to 
generate 75 bp long paired-end reads. For small non coding RNA-seq libraries, extracted RNA without rRNA 
depletion was directly subjected to library preparation with the NEBNext Small RNA Library Prep Set kit (New 
England Biolabs) and sequenced on a HiSeq2000 (Illumina) to generate 50 bp single-end reads.

RNA-seq and bioinformatics analysis. For the total RNA fraction, raw reads were �ltered by removing 
adaptor sequences and low-quality reads with Trimmomatic v.0.3653. �e identi�cation of circRNAs was car-
ried on these reads with the �nd_circ pipeline14 with stricter �lter stringency. To reduce the false positive rate 
in the discovery of circRNAs, we selected circular splice transcripts with at least two unique supporting reads 
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in the anchor segment and with Phred quality scores of 35 or more. Moreover, only circRNAs predicted in at 
least 30 samples were kept. �e RNA abundance of the predicted circRNAs were normalized as the number of 
BSJ spanning reads per million raw reads (CPM)21. �e functional regions of circRNAs were identi�ed based 
on their co-location with genomic features (e.g. exon, 3′UTR, 5′UTR, etc) from the Ensembl database (release 
91) with BEDtools54. Our catalogue of boar sperm circRNAs was contrasted with other publically available por-
cine circRNA databases including heart, liver, spleen, lung, kidney, ovarium, testis, skeletal muscle, fat and fetal 
brains21,23. We also queried several human tissues (including several cell lines, brain sections placenta, muscle, fat, 
umbilical cord, atrium, decidua and plasma) and murine (cell lines and brain sections) available at the circBase 
database22. Genomic coordinates from the human and mouse circRNAs were li�over to Sscrofa11.1 using the 
UCSC li�over tool55.

For the small RNA-seq analysis, trimming of adaptors and low quality bases was performed with Cutadapt 
v1.056. �e mapping of sncRNAs was performed with the sRNAtoolbox v.6.1757 with default settings and pro-
viding miRBase58 release 21 as library dataset. Multi-adjusted read counts were then normalized by sequencing 
depth as CPM. We only considered the miRNAs that were detected >1 CPM in all the samples.

circRNA-miRNA network visualization. To identify circRNA:miRNA interactions, we carried a Partial 
Correlation with Information �eory (PCIT) analysis59 using the RNA abundance levels of the of exonic cir-
cRNAs and miRNAs a�er stabilization with log2 transformation. Only negative RNA abundance correlations 
between circRNAs and miRNAs were kept. We further assessed circRNAs-miRNAs interactions using miRanda 
v.3.3a26 to predict miRNA target sites in the circRNAs sequences. �e potential interactions identi�ed with both 
approaches were kept and visualized with Cytoscape v.3.7.060.

Gene Ontology analysis and correlation with sperm motility parameters. GO analysis was carried 
with PANTHER v.13.161 with the overrepresentation test and P-values corrected with FDR. Annotation Data Set 
was “GO biological process complete”. Pearson correlation was used to determine associations between circRNA 
abundance levels and sperm motility parameters. P-values < 0.05 were considered statistically signi�cant.

Validation of circRNAs and reverse transcription quantitative PCR (RT-qPCR). circRNAs were 
validated by Sanger Sequencing and quanti�ed by RT-qPCR using divergent primers. Primers were designed 
using the Primer Express so�ware (Applied Biosystems). Primer sequences are shown in Supplementary Table S7. 
For cDNA synthesis, 5 µl of RNA were reverse transcribed using the High Capacity cDNA Reverse Transcription 
kit in a �nal volume of 50 µL (Applied Biosystems) following the manufacturer’s protocol. circRNAs were ampli-
�ed and visualized in 3% high resolution agarose gel electrophoresis and con�rmed by Sanger Sequencing.

�e abundance level of 6 circRNAs, correlated to sperm motility parameters in the RNA-seq study, was 
analyzed by RT-qPCR in 36 samples, none of them included in the RNA-seq. �ese 36 samples belong to two 
groups with extreme and divergent values for sperm motility from a bank of 300 ejaculates with phenotypic 
records. Isolated RNA could not be treated with RNAse R due to extremely low RNA yield (see Supplementary 
Table S1), sample availability and treatment optimization. Nevertheless, one of the circRNAs was designed in the 
BSJ (Supplementary Table S7) and ampli�ed successfully; which is suggestive of the true circular structure of the 
RNA products identi�ed by RNA-seq and validated by RT-PCR. Moreover, some reports suggest RNase R can 
introduce technical noise by degrading some circRNAs while some linear transcripts are resistant to digestion in 
their 3′ ends62.

Quantitative PCR reactions were performed in triplicate following the manufacturer’s instructions. �e �nal 
reaction (15 µL) included 7.5 µL SYBR Select Master Mix (Life Technologies -�ermo Fisher Scienti�c), 300 nM 
of each primer and 3.75 µL of cDNA 1:4 diluted on a QuantStudio 12K Flex Real-Time PCR System (Applied 
Biosystems). To evaluate the e�ciency of the RT-qPCR assays, standard curves with 6 serial dilutions from a 
pool of sperm cDNA were generated. �ermal pro�le was set as follows: 50 °C for 2 min, 95 °C for 10 min and 
40 cycles at 95 °C for 15 sec and 60 °C for 60 sec. Moreover, a melting pro�le (95 °C for 15 sec, 60 °C for 15 sec 
and a gradual increment of temperature with a ramp rate of 1% up to 95 °C) was programmed at the end of the 
RT-qPCR to assess the speci�city of the reactions. �e genes ISYNA2 and GRP137 were selected as endogenous 
controls following the stability values a�er a GeNorm pilot experiment. �eir stability was determined consider-
ing a GeNorm M value <0.5. Relative expression values were calculated using the �ermoFisher Cloud so�ware 
(Applied Biosystems) applying the 2-∆∆Ct method. �e same so�ware was used to compare the biological groups. 
Signi�cance was set at a P-value < 0.05.

Data availability
�e datasets generated and/or analysed during the current study are available at NCBI’s BioProject PRJNA520978. 
Sample phenotypes can be provided upon reasonable request.
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