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Abstract

Background: Pandemic and seasonal respiratory viruses are a major global health concern. Given the genetic diversity of
respiratory viruses and the emergence of drug resistant strains, the targeted disruption of human host-virus interactions is a
potential therapeutic strategy for treating multi-viral infections. The availability of large-scale genomic datasets focused on
host-pathogen interactions can be used to discover novel drug targets as well as potential opportunities for drug
repositioning.

Methods/Results: In this study, we performed a large-scale analysis of microarray datasets involving host response to
infections by influenza A virus, respiratory syncytial virus, rhinovirus, SARS-coronavirus, metapneumonia virus,
coxsackievirus and cytomegalovirus. Common genes and pathways were found through a rigorous, iterative analysis
pipeline where relevant host mRNA expression datasets were identified, analyzed for quality and gene differential
expression, then mapped to pathways for enrichment analysis. Possible repurposed drugs targets were found through
database and literature searches. A total of 67 common biological pathways were identified among the seven different
respiratory viruses analyzed, representing fifteen laboratories, nine different cell types, and seven different array platforms. A
large overlap in the general immune response was observed among the top twenty of these 67 pathways, adding validation
to our analysis strategy. Of the top five pathways, we found 53 differentially expressed genes affected by at least five of the
seven viruses. We suggest five new therapeutic indications for existing small molecules or biological agents targeting
proteins encoded by the genes F3, IL1B, TNF, CASP1 and MMP9. Pathway enrichment analysis also identified a potential
novel host response, the Parkin-Ubiquitin Proteasomal System (Parkin-UPS) pathway, which is known to be involved in the
progression of neurodegenerative Parkinson’s disease.

Conclusions: Our study suggests that multiple and diverse respiratory viruses invoke several common host response
pathways. Further analysis of these pathways suggests potential opportunities for therapeutic intervention.
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Introduction

Respiratory viruses account for seasonal colds, bronchiolitis,

acute otitis, sinusitis, croup, community-acquired pneumonia, and

exacerbation of both chronic obstructive pulmonary disease and

asthma [1]. The prevalence of pandemic Orthomyxoviridae Influenza

A Virus (FLU) from April 2009 to 2010 was estimated to be

approximately 60 million cases, 270,000 hospitalizations, and

12,000 deaths [2]. Paramyxoviridae Respiratory Syncytial Virus

(RSV) infection results in nearly two million children requiring

medical care with about 57,000 children younger than five years

hospitalized annually [3]. In one survey, RSV was the most

prevalent pathogen in children under five years with an acute

respiratory infection, followed by Adenoviridae adenovirus

(ADENO), and Picornaviridae human rhinovirus (HRV) [4].

While initially effective, pathogen gene targeted treatments

exert evolutionary selection on the infectious species often leading

to the emergence of drug resistant strains. As a result, there are

increasing clinical reports of resistance against many drugs that

directly act on viral proteins or their DNA [5,6]. In particular,

resistance to different classes of antiviral drugs is becoming more

clinically prevalent in respiratory virus infections as seen with RSV

and FLU treated with the antiviral drugs palivizumab [7], and

oseltamivir [8], respectively.

Pathogens elucidate two broad types of biochemical responses in

the host. First is the activation of the host immune system. While

the immune response is critical in combating pathogen infections,

its over-activation often exacerbates tissue damage initiated by

viral invasion [9,10]. The second response is the up-regulation of

host genes, such as protein biosynthetic pathways, that are crucial
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for sustaining pathogen invasion, replication and evasion [11].

Interestingly, genetically distinct respiratory viruses often modulate

common host proteins and biological pathways during infection

[1]. For example, many respiratory viruses trigger similar general

airway inflammatory responses such as the expression of cytokines

interleukin-6 (HUGO gene name IL6), interleukin-8 (IL8) and

interleukin-11 (IL11), and granulocyte macrophage-colony stimu-

lating factor (CSF2). These inflammatory responses in turn initiate

IgA production, B cell differentiation and T cell stimulation [12–

16]. As a consequence, diagnosis for specific viral infections is

difficult since diverse respiratory viruses cause similar, often

indistinguishable patient symptoms [1]. However, because distinct

respiratory viruses converge on similar immune responses,

opportunities also exist for targeting host proteins and pathways

which will potentially affect multiple viral pathogens [17].

Moreover, human targets might be less susceptible to the evolution

of drug resistance due to constraints on the virus to find alternative

host pathways for its proliferation.

Individuals may experience a co-infection or sequential

infections of multiple viruses or bacteria which can complicate

both disease diagnosis and drug prescription decisions. Further-

more, patients infected by multiple pathogens may have further

complications due to drug-drug interactions, cumulative drug

toxicities and immune system suppression, as observed during

HIV and Mycobacterium tuberculosis co-infections [18,19]. Indeed, a

study in children under five years showed pervasive clinical

occurrences of co-infections involving combinations of RSV,

HRV, Paramyxoviridae Parainfluenza Virus, FLU, Coronaviridae

SARS-Coronavirus (CORON), Paramyxoviridae Metapneumonia

virus (MPNEU), Parvoviridae Human Bocavirus and ADENO [4].

Therefore, in addition to minimizing drug resistance, there is a

need for new therapeutic approaches to safely and effectively treat

co-infections by multiple viral and/or bacterial pathogens,

particularly where strain-specific diagnostics or treatments are

unavailable.

The development of new antiviral therapeutics requires a

greater understanding of the global host response when challenged

by different types of viruses. Such knowledge may lead to the

identification of novel human genome targets that are shared

across multiple viral infections as well as opportunities for re-

positioning existing drugs for the treatment of infectious diseases

[20]. Several recent studies have generated multiple mRNA

microarray gene expression datasets derived from experiments

involving the infection of human cell-lines or animal models with

one or more of the major respiratory viruses [21–23]. Through a

systematic analysis of these respiratory virus-human host gene

expression datasets, we determined common sets of genes and

pathways involved in host responses to viral infections. Among the

most significant pathways, we identified several potential new

opportunities for repurposing existing drugs for the treatment of

respiratory viral infections.

Results

Selection of mRNA Microarray Datasets
We performed a large-scale analysis of published mRNA

microarray datasets from studies involving a wide range of

respiratory viruses in human host infection models. We focused

on human mRNA array datasets in order to avoid complications

inherent in cross-species comparisons. In order to ensure

consistency in experimental conditions and reduce biases due to

noisy or poor quality datasets, we instituted an iterative process of

database querying, data filtering, and common pathway analysis

across all published human mRNA datasets for twelve relevant

respiratory viruses. These viruses initially included the double

stranded DNA viruses Herpesviridae Human cytomegalovirus

(CMV) and ADENO; the positive sense single stranded RNA

viruses CORON, Picornaviridae Coxsackievirus (COX), HRV,

Picornaviridae Echovirus (ECHO), and Picornaviridae Enterovirus

(ENTERO); and the negative sense single stranded RNA viruses

FLU, MPENU, RSV, Bunyaviridae Hantavirus (HANT) and Sin

nombre virus (SNV). This list was later narrowed to include only

the subset listed in Table 1 based on filtering processes outlined in

the Materials and Methods and shown in Figure 1.

A total of seven different respiratory viruses were analyzed,

represented by fifteen unique Gene Expression Omnibus (GEO)

datasets (indicated by GEO Series or GSE accession numbers),

nine different human cell types, and seven different array

platforms for a total of 28 unique comparisons. Note that one

dataset (GSE17156) contained two different viruses (FLU and

RSV) that were analyzed.

Candidate Dataset Filtering and Quality Control
After querying the GEO database and prescreening for obvious

non-candidate datasets such as those not associated with human

array platforms, there were at least 23 datasets associated with at

least one of the twelve respiratory viruses. However, after

considering all conditions for GEO dataset candidacy, at least

four of these datasets were excluded. In one case, an ADENO

dataset (GSE1291 [PMID unpublished]) had less than three

samples per treatment group, as did a COX (GSE712 [PMID

unpublished]) and a CMV (GSE19345 [24]) dataset. As another

example, a CMV dataset (GSE675 [25]) lacked a healthy/control

treatment group. Additionally, at least four datasets had some

comparison groups that did not fit the filters for inclusion. For

instance, an HRV (GSE13396) dataset’s original study design was

to observe differences in HRV infectivity between asthmatic and

non-asthmatic patients. The asthmatic comparison group data

were eliminated from the analysis because of potential difficulties

in distinguishing between host inflammatory responses due to viral

infections from those associated with chronic asthma. Similarly, a

combined FLU, HRV and RSV dataset (GSE17156) contained

two main patient groups. One group was classified as developing

symptoms after exposure to a single virus under study, while the

other group did not develop any symptoms after exposure. Only

the group that developed symptoms for each of the three viruses

was considered for further analysis and the asymptomatic group

was omitted. In total, 19 GEO datasets, representing 42 unique

comparisons (different time points and/or virus strains) were

analyzed for quality because they met the four requirements for

dataset candidacy.

No single dataset exhibited overall poor Quality Control (QC),

and therefore, all 19 datasets representing 42 comparison groups

were analyzed for differential expression. However, QC analysis

across all candidate datasets revealed two outliers in GSE17156

(samples GSM429252 and GSM429279), two in GSE11348

(samples GSM286647 and GSM286733), and one outlier each

in dataset GSE24132 [26] (sample GSM594166), GSE1739

(sample GSM30367), and GSE19580 (sample GSM487986) for

a total of seven samples removed from five different datasets.

An illustration of the kernel density and Principle Component

Analysis (PCA) plots generated during the QC analysis is shown in

Figure 2 for GSE17156’s RSV treatment (median of 141 hours

post infection) and RSV control (baseline) groups. Additional QC

analysis results including Median of Absolute Deviation (MAD)

score plots and pair-wise correlation maps are shown in Figure S1.

Initially, all samples except GSM429279 showed acceptable kernel

density (Figure 2a), PCA (Figure 2c), MAD score (Figure S1a) and
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pair-wise correlation (Figure S1c) plots. The sample GSM429279

was removed because: a) it did not conform to the kernel density of

the other samples; b) it fell outside of the Hotelling T2 alpha

threshold of 0.05 (represented by the superimposed elliptical on

the PCA plot), and; c) it was an outlier in both the MAD score and

pair-wise correlation plots. A second QC round was performed,

which resulted in a further non-conforming sample, GSM429252,

being discarded. Subsequent QC analysis generated acceptable

results in kernel density (Figure 2b), PCA (Figure 2d), MAD score

(Figure S1b), and pair-wise correlation (Figure S1d), thus this

dataset passed our criteria for inclusion in the analysis.

Differential Expression Analysis
All datasets exhibiting acceptable quality were analyzed for

probe differential expression. An example volcano plot is shown in

Figure S2 for RSV treatment group at peak symptoms versus

control group (data originating from GSE17156). Cutoff levels of

1.5-fold increase or decrease in probe expression levels, respec-

tively, and p-values ,0.05 were used throughout (represented by

red lines in Figure S2). All comparison groups had at least some

differentially expressed probes, although the number varied

greatly indicating potential falsely discovered probes (for example,

a comparison group within GSE18816 had 111 differentially

expressed probes while a comparison group within GSE11408 had

2533 differentially expressed probes). However, the conservative

pathway enrichment approach we employed tends to attenuate

falsely discovered genes.

There were three comparison groups that did not meet the

Least Square Mean (LSM) threshold requirement and were

excluded from the differentially expressed probe list: two of the

Figure 1. Outline of iterative filtering process. Analysis pipeline to select and quality control GEO datasets linked to respiratory virus mRNA
expression. Specific inclusion criteria are described in the Materials and Methods.
doi:10.1371/journal.pone.0033174.g001

Table 1. Profiles of GEO datasets passing all criteria filters.

Virus Type GSE Accession Reference Array Platform1 Cell type2 Time (hours)2 Sample Size3

CMV 24238 [104] HG U95 v 2.0 Monocytes 24 3/3

14816 [105] HG U133 A moDC 48 3/3

11408 [106] HG U95 v 2.0 Monocytes 4 6/6

14490 N/A Agilent G4112F moDC 6 8/6

48 6/6

CORON 1739 [107] HG Focus PBMC N.S.*** 10/4

17400 [108] HG U133 Plus 2 BEC (2B4) 12 3/3

24 3/3

48 3/3

COX 697 N/A HG U95 v 2.0 HeLa 0.5 6/3

3 5/3

9 6/3

FLU 19580 [109] Illumina Human Ref 8, version 3 BEC 244 3/3

245 3/3

64 3/3

65 3/3

17156 [110] HG U133 A 2.0 Whole blood 80 8/8

18816 [111] HG 1.0 ST Diff. macrophage 6 3/3

HRV 11348 [112] HG U133 Plus 2 Nasal 48 31/31

13396 [113] HG U133 Plus 2 BEC 16 6/6

MPNEU 8961 [114] HG U133 Plus 2 ABEC(A549) 6 3/3

12 3/3

24 3/3

48 3/3

72 3/3

RSV 17156 [110] HG U133 A 2.0 Whole blood 141 9/9

6802 [115] HG U133 A 2.0 BEC (BEAS-2B) 4 3/3

3397 [116] HG U133 Plus 2 BEC (BEAS-2B) 4 4/4

1Microarray manufacturer is Affymetrix unless otherwise noted.
2N.S. = Not specified; moDC = Monocyte-derived dendritic cells;PBMC = Peripheral blood mononuclear cells; BEC = bronchial epithelial cells; ABEC = Alveolar BEC.
3Before individual sample removal during quality control filtering. Sample Size refers to the number of GSM samples per treatment group versus control group.
4Influenza A H3N2.
5Influenza A H11N9.
doi:10.1371/journal.pone.0033174.t001
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only ENTERO comparison groups were from the GSE15323

[unpublished] dataset, and the third comparison group was an

RSV treatment from GSE3397. After LSM filtering, 18 datasets,

or a total of 39 comparison groups remained.

Pathway Enrichment Analysis
For each comparison group, the differentially expressed probes

were mapped to their corresponding genes, and then a p-value was

assigned for each pathway map using the software GeneGo

(accessed June 2011). Next, the comparison group’s significant

pathway lists were combined to find the union of all significant

pathways (that is, the combined pathway list where all treatment

groups have at least one significant pathway). A total of 459 out of

the approximately 650 pathway maps available in MetaBase were

determined to be significant. Comparison groups having ,5%

significant pathways of the total significant pathways (that is,

comparison groups containing less than 23 significant pathways)

lead to the exclusion of eleven comparison groups from the union

list. Excluded groups were: HRV at 8 hours (eliminating one

comparison group from GSE11348), HRV at 72 hours (eliminat-

ing one comparison group from GSE17156), both strains of FLU

at 1 hour and 3 hours each and another strain at 6 hours

(eliminating three comparison groups from GSE18816), RSV at

24 hours (eliminating all comparison groups from GSE24132),

CMV at 24 and 72 hours (eliminating all comparison groups from

GSE24434 [27]), and FLU at 8 hours (eliminating all comparison

groups from GSE24533 [28]). At the end of the final step in our

filtering process, a total of 15 datasets, or 28 comparison groups

remained (Tables 1, S1 and S2).

Common Pathways to Respiratory Viral Infection
There were 67 enriched pathways in which all seven respiratory

viruses were represented by at least one comparison group (Table

S3). The list is ranked first by the viral frequency, followed by the

sum of the normalized viral expression (NVE) for each pathway.

Also shown are the differentially expressed as well as the total

number of network objects across all 28 comparisons. The top 20

enriched pathways are listed in Table 2 along with the percentage

and names of the differentially expressed genes with a viral

frequency of at least five in each pathway. Of these, the top

five pathways were chosen for further analysis and mapping.

These pathways are epidermal growth factor receptor (EGFR)

signaling, CD40 signaling, interferon-gamma (IFNG) signaling,

histamine receptor H1 (HRH1) signaling, and interleukin-17

(IL17) signaling (Figures S5. S6, S7, S8, S9; Table S4).

Additionally, the Parkin-Ubiquitin Proteasomal System (Parkin-

UPS) pathway was chosen for further analysis because it has not

been previously associated with the innate immunity and might be

an interesting new mechanism of host response to respiratory viral

infection (Figure 3).

The NVEs for differentially expressed genes with frequencies of

at least six viruses are shown in Table 3 along with their associated

pathways. The list is ranked by the greatest viral frequency, and

then by number of pathways in which the gene is differentially

expressed. The NVE values for all genes, along with associated

pathways, ranked by the greatest viral frequency, followed by the

number of pathways in which the gene is differentially expressed

are in Table S5. We ensured that the NVE was not bias toward

any particular comparison group, and indeed no single dataset

contributed to the overall NVE for any single virus (Table S2).

Hierarchical clustering on the quantile normalized fold change

values for all genes having expression values in at least 26 out of 28

comparisons (at least 90% comparisons) and significant in at least

seven comparisons (Figure S3) as well as for genes with NVE of at

least six viruses (Figure S4) did not reveal any dominant clustering

by GSE or virus type. The most consistently up-regulated genes

Figure 2. Example of quality analysis for subset of GSE17156: RSV treatment and control groups. Kernel density plot a) before and b)
after removal of samples GSM429279 and GSM429252: blue lines indicate baseline samples, green lines indicate RSV peak symptom samples
(,141 hours); PCA plot c) before and d) after removal of samples GSM429279 and GSM429252 :blue circles indicate control (baseline) samples, green
circles indicate RSV peak symptom samples (,141 hours). Ellipse represents Hotelling T2 alpha threshold of 0.05. Eigenvalues for panel c components
1 and 2 are, respectively, 119335.7 and 50356.11. Eigenvalues for panel d components 1 and 2 are, respectively, 86014.46 and 50705.63.
doi:10.1371/journal.pone.0033174.g002
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(up-regulated in at least six viruses and down-regulated no more

than one virus) are: nuclear factor of kappa light polypeptide gene

enhancer in B-cells inhibitor alpha (NFKBIA), tumor necrosis

factor alpha-induced protein 3 (TNFAIP3), chemokine C-C motif

ligand 2 (CCL2), interferon regulatory factor 1 (IRF1), prosta-

glandin-endoperoxide synthase 2 (PTGS2), chemokine C-C motif

ligand 20 (CCL20), dual specificity phosphatase 1 (DUSP1),

eukaryotic translation initiation factor 2-alpha kinase 2 (EI-

F2AK2), TNF receptor superfamily member 6 (FAS), suppressor

of cytokine signaling 1 (SOCS1), TNF receptor-associated factor 1

(TRAF1), and ubiquitin-conjugating enzyme E2L 6 (UBE2L6).

There were no consistently down-regulated mRNAs (down-

regulated in at least six viruses and up-regulated in no more than

one virus).

We sought drug repurposing candidate targets from the top five

enriched pathways and the Parkin-UPS pathway by searching the

DrugBank database, version 3.0 (http://www.drugbank.ca/

accessed August 2011) [29–31], for drugs targeting any of the 67

differentially expressed genes with a viral frequency of at least five

(Table S6). Of these, thirteen genes, or almost 20% of the original

67 genes, were associated with at least one approved small

molecule or protein therapy. There genes were: prostaglandin-

endoperoxide synthase 2 (PTGS2), TNF, matrix metallopeptidase

9 (MMP9), jun proto-oncogene (JUN), interleukin 1 beta (IL1B),

CCL2, CD86, coagulation factor III (F3), phosphoinositide-3-

kinase regulatory subunit 1 (PIK3R1), intercellular adhesion

molecule 1 (ICAM1), nuclear factor of kappa light polypeptide

gene enhancer in B-cells 2 (NFKB2), Caspase 1 (CASP1), and

tubulin beta 3 (TUBB3). A selection of these genes, along with

other characteristics to evaluate their potential as drug targets such

as involvement in immune response [29–31], Jackson Laboratory

knock-in/knock-out mouse (JAX) phenotype [32], approved or

marketed small molecule drug or protein therapy, and current

indications for that drug, are listed in Table 4. Note that the

current indication may not be for the gene target listed. Mimosine

(gene target: CCL2) and Glucosamine (gene targets: NFKB2 and

MMP9) did not have a current indication, while the interactions of

Natalizumab (gene target: ICAM1) and Gallium nitrate (gene

target: ILB1) with their gene targets were unclear. Additionally,

therapies associated with PTGS2 are cyclooxygenase (COX-2)

inhibitors which have known side-effect issues thus were not

explored further. Therefore, NFKB2, ICAM1 and PTGS2 were

excluded from Table 4, leaving ten genes for potential drug

repurposing. The potential cases for drug repurposing are

discussed more in-depth for four targets; F3, IL1B, TNF and

CASP1.

Figure 3. Parkin-Ubiquitin Proteasomal System pathway with viral frequency. Viral frequencies superimposed for each of most frequently
differentially expressed proteins, where red circles are differential expression of genes by 7 viruses, orange circles are differential expression of genes
by at least 6 viruses, and blue circles are differential expression of genes by 5 viruses. See MetaCore website at http://www.genego.com/pdf/MC_
legend.pdf for figure legend and Table S4 for pathway map gene products’ corresponding HUGO gene names.
doi:10.1371/journal.pone.0033174.g003
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Discussion

Analysis of mRNA Microarray Datasets
Our study used a systematic process to minimize potential

technical noise that could have arisen from our comparative

analysis of fifteen unique datasets from nine different cell types,

and seven different array platforms. These measures included

candidate dataset filtering followed by QC, differential gene

expression and pathway enrichment analyses. A total of 14 out of

42, about one third of the total comparisons, were removed as a

result of this filtering process, which is indicative of our

conservative analysis approach. We had previously used large-

scale and merged-SAM analyses in integrating large-scale micro-

array datasets involving cancer tissues from multiple laboratories

[33,34]. However, the small sample size datasets used in the

present study required a more rigorous methodology to identify

data outliers.

To our knowledge the QC analysis performed with each GEO

dataset is unique to this study. Although no dataset was completely

disregarded after QC analysis, some samples were clear outliers,

thus potentially skewing the data. Kauffmann and Huber have

demonstrated improvements in signal-to-noise ratios after per-

forming post normalization QC analysis to remove array outliers

within an experiment [35]. Those authors used MA-plot and box-

plots of the log-ratios to determine outliers instead of MAD scores,

PCA and pair-wise correlations employed in this study. Funda-

mentally, the concept of data improvement after outlier removal

applies regardless of the QC analysis approach.

Table 2. Top twenty pathways with highly expressed gene percentages and names.

Pathway % genes with VF1 $5 Names of genes with VF $5

EGFR signaling 26 JUN, MYC, NFKBIA, STAT1, FOS, JAK2, HBEGF, DUSP1, DUSP4, PTK2, GSK3B,
MMP9, NFKB2, PIK3R1, PRKCA, SOS2, TGFA

CD40 signaling 31 IL8, JUN, NFKBIA, TNFAIP3, CCL2, FAS, IL6, IRF1, JAK2, PTGS2, TRAF1,
CCND2, CD86, ICAM1, LYN, MAP2K3, MAP3K14, MAPK14, NFKB2, PIK3R1,
TP53, TRAF5

IFNG signaling 24 MYC, STAT1, CDKN1A, EIF2AK2, IRF1, JAK2, SOCS1, STAT2, CAMK2G, CEBPB,
ICAM1, MAPK14, PIK3R1, PRKCA, PTPN11

HRH1 signaling 25 IL8, JUN, NFKBIA, FOS, IL6, TNF, CSF2, F3, GNAQ, GNB4, GNG12, ICAM1,
MAPK14, MMP9, PLA2G4C, PLCB1, PPP3CA, PRKCA

IL17 signaling 31 CEBPD, IL8, JUN, NFKBIA, CCL2, CCL20, CXCL1, FOS, IL6, JAK2, PTGS2,
CEBPB, CSF2, GSK3B, ICAM1, IL1B, MAP2K3, MAP3K14, MAPK14, MMP9,
NFKB2, PIK3R1

CSF2 signaling 25 EGR1, MYC, NFKBIA, CCL2, FOS, JAK2, MCL1, CSF2, LYN, NFKB2, PIK3R1,
PIM1, PTPN11, SOS2

IL1 signaling 36 IL8, JUN, NFKBIA, STAT1, FOS, IL6, IRF1, PTGS2, TNF, EDN1, F3, FOSB, FOSL1,
FOSL2, IL1B, IL1RAP, JUNB, MAP2K3, MAPK14, SERPINE1

CCR5 signaling 19 JUN, STAT1, FOS, JAK2, CCL4, CCL5, GNAQ, GNB4, GNG12, MAP2K3,
MAPK14, PLCB1, PPP3CA, PRKCA, TIAM1

Chemokines-adhesion 16 CCR1, CXCL1, IL8, JUN, MYC, THBS1, CCL2, PLAUR, ARPC1B, CD47, FLNA,
GNB4, GNG12, GSK3B, ITGA6, NFKB2, PIK3R1, PLAT, PLAU, PTK2, RAP1GAP,
SERPINE1, SOS2, WASL

Cytoskeleton via TGF, WNT 10 JUN, MYC, CDKN1A, FOXO3, PLAUR, SERPING1, ARPC1B, CDKN2B, GSK3B,
MAP2K3, MAPK14, PIK3R1, PLAT, PLAU, PTK2, SERPINE1, SOS2, TGFBR2,
WASL

IL15 signaling 19 IL15, IL8, MYC, NFKBIA, FOS, IL6, MCL1, IL15RA, MAPK14, PIK3R1, PLCB1,
PTK2, SOS2

IL22 signaling 17 JUN, MYC, STAT1, FOS, JAK2, MCL1, CD86, HLA-DOB, MAPK14, SOCS3,
STAT4

Histamine-dendritic signaling 16 IL6, IL8, CCL2, CCL5, CD86, CREM, GNAQ, GNB4, GNG12, IL1B, IRF8, PRKACB,
TNF

GnRH signaling 12 ATF3, DUSP1, EGR1, FOS, JUN, DUSP4, FOSL1, FOSL2, GNAQ, MAPK14,
PRKACB

Prolactin receptor signaling 24 JUN, MYC, STAT1, IRF1, JAK2, NMI, NR3C1, OAS1, SOCS1, CEBPB, IRS1,
PIK3R1, PTPN11, SOCS3, SOS2

JUN mediated metabolism 22 JUN, CDKN1A, FAS, FOS, PLAUR, TNFAIP6, FOSB, FOSL1, FOSL2, JUNB

Parkin-UPS 18 CASP1, CASP8, CCNE1, CUL1, HSPA1A, HSPA1B, HSPA1L, HSPA4, HSPA6,
HSPA8, PSMD10, TUBB3, UBE2L6

Cytoskeleton remodeling 9 MYC, CDKN1A, JUN, PLAUR, ITGA6, MAPK14, MYH10, PIK3R1, PLAT, PLAU,
PTK2, SERPING1, TGFBR2, WASL

IL2 signaling 15 MYC, EGR1, FOS, JUN, NFKBIA, FOSL1, FOSL2, NFKB2, PIK3R1, SOCS3

Gastrin signaling 19 CXCL1, CXCL2, FOS, HBEGF, IL8, IRS1, JUN, NFKBIA, GNAQ, MAPK14, MEF2A,
PIK3R1, PTGS2, PTK2

1VF = Viral Frequency.
doi:10.1371/journal.pone.0033174.t002
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Pathways Modulated by Virus Infection
Despite the diverse nature of the microarray data analyzed here,

we found a large overlap between comparison groups in significant

pathways, especially the immune system. Of the top twenty

enriched pathways, eighteen are associated with immune response

(Table 2). For example, EGFR signaling is known to be activated

during infection by respiratory viruses FLU [36] and ENTERO

[37,38]. CD40 signaling is associated with CORON [39], RSV

[40], and the general immune response [41]. Interferon gamma

(IFNG) signaling is initiated by FLU [42] and RSV [43], while

interleukin 1 signaling is stimulated by FLU [42]. As components

of the general immune response, interferon and interleukin

pathways are activated by infectious agents such as hepatitis C

virus (HCV), HIV and tuberculosis as well as chronic diseases like

Crohn’s disease, diabetes, and metastatic melanoma [44,45]. The

overall relationships between the transitory host immunity

response launched by pathogenic infections versus that seen in

chronic autoimmune and neurodegenerative diseases are complex

and an intense area of investigation [46]. In addition, there are

considerations about subtle shifts in gene function roles in different

cell tissue types amongst the various diseases. Thus, we are

cautious about any linkages between pathways involved in

infections and those of chronic diseases as implied by our analysis

without further validation studies.

Potential Role of Parkin-UPS Pathway in Viral Infection
Parkin (PARK2) is an E3-ubiqutin ligase associated with the

progression of the neurodegenerative disorder Parkinson’s disease.

[47]. As a central hub protein in the Parkin-UPS pathway,

PARK2 ubiquinates proteins encoded by septin 5 (SEPT5) [48],

tubulin alpha and beta [49], and the glycosylated form of

synuclein, alpha (SNCA) [50] for degradation by the 26S

proteasome. PARK2 also ubiquinates synuclein, alpha interacting

protein (SNCAIP) for regulation of SNCA [51], interacts with

STIP1 homology and U-box containing protein 1 E3 ubiquitin

protein ligase (STUB1) to enhance ubiquitination of G protein-

coupled receptor 37 (GPR37), [52] (which associates with F-box

and WD repeat domain containing 7 (FBXW7)), and cullin 1

(CUL1) to ubiquitinate cyclin E [53]. PARK2 is deactivated by

protolytic cleavage by CASP1 and Caspase 8 (CASP 8) [54] and

can be activated by either heat shock protein 70kD (HSPA4) or

STUB1 [52].

The Parkin-UPS pathway is not commonly associated with

general immune response to viral infection. However, other

Table 3. Normalized viral expression and pathway inclusion grid for genes with viral frequency $6.

Gene Name1 CMV CORON COX FLU HRV MPENU RSV Included in pathway

Down Up Down Up Down Up Down Up Down Up Down Up Down Up EGFR HRH1 IFNG IL17 CD40 Parkin

JUN 22/5 3/4 1/3 22/6 21/2 5/5 1/3 X X X X

NFKBIA 1/5 3/4 1/3 1/6 2/2 4/5 1/3 X X X X

IL8 22/5 1/5 2/4 1/3 21/6 1/6 1/2 5/5 1/3 X X X

MYC 22/5 21/4 2/3 1/6 1/2 3/5 1/3 X X

STAT1 5/5 21/4 1/4 21/3 4/6 21/2 1/2 5/5 21/3 1/3 X X

CEBPD 21/5 1/4 1/3 1/6 1/2 21/5 2/5 1/3 X

TNFAIP3 3/5 2/4 1/3 1/6 2/2 5/5 1/3 X

CASP1 4/5 21/4 1/4 21/3 2/6 21/2 1/2 4/5 1/3 X

JAK2 21/5 2/5 1/4 2/6 1/2 4/5 21/3 1/3 X X X X

FOS 23/5 3/4 2/3 21/6 21/5 3/5 1/3 X X X

IL6 21/5 4/5 1/4 21/6 2/6 2/2 5/5 1/3 X X X

CCL2 3/5 1/3 1/6 1/2 21/5 4/5 1/3 X X

IRF1 5/5 1/4 2/6 1/2 21/5 4/5 1/3 X X

PTGS2 3/5 1/4 1/3 21/6 1/6 1/2 5/5 X X

CCL20 1/5 2/4 21/6 2/6 2/2 3/5 1/3 X

CDKN1A 2/5 1/3 21/6 2/6 1/2 21/5 1/3 X

CXCL1 21/5 1/5 2/4 1/3 22/6 2/2 3/5 X

DUSP1 1/5 3/4 2/3 22/6 1/6 3/5 1/3 X

DUSP4 1/5 21/4 1/3 1/6 21/5 3/5 1/3 X

EIF2AK2 3/5 1/3 4/6 1/2 4/5 1/3 X

FAS 5/5 1/3 1/6 21/2 1/2 5/5 1/3 X

HBEGF 3/5 2/3 24/6 2/2 5/5 1/3 X

SOCS1 3/5 1/4 3/6 2/2 4/5 1/3 X

STAT2 4/5 21/4 1/4 21/6 2/6 1/2 4/5 1/3 X

TNF 21/5 4/5 1/4 1/3 2/6 2/2 21/5 2/5 X

TRAF1 3/5 21/4 1/4 1/3 1/6 1/2 3/5 X

UBE2L6 5/5 1/4 4/6 1/2 5/5 1/3 X

1The first 8 genes are differentially expressed in seven viruses, and the remaining 19 genes are differentially expressed in six viruses.
doi:10.1371/journal.pone.0033174.t003
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ubiquitylation proteins, such as ISG15, are known to play roles in

host defense [55,56]. Associations between influenza infection and

neuroinflammation in early onset autosomal recessive Parkinson’s

disease have been recently suggested [57–59]. At least one factor

in the progression of Parkinson’s disease is the formation of

neuotoxic Lewy bodies due to increases in SNCA. Increases in

SNCA are believed to be the result of loss-of-function mutations in

PARK2 which cause disruptions in the protein’s localization and

solubility [60–62]. Polymorphisms in the gene PARK2 have also

been associated with susceptibility to infectious diseases such as

leprosy, typhoid fever and paratyphoid fever, although the exact

mechanism is still unclear [63,64]. Jang et al. observed activation of

SNCA in mouse nervous tissue long after pathogenic H5N1 FLU

infection where the increased levels of SNCA mirror those found

in Parkinson’s disease [57]. Similarly, recent findings from Rohn

and Catlin indicate FLU as a potential causative factor for

Parkinson’s disease [58]. Indeed, links between FLU and other

neurodegenerative diseases have been suggested, and these include

seizures, transverse myelitis, expressive aphasia, syncope, enceph-

alitis, neuromyelitis optica, and central nervous system disease in

general [65–67].

PARK2 itself has a low signal at the mRNA level which might

be due to its significant regulation by post-translation processes

[52,54]. Further studies are needed to determine the mechanism

Table 4. Putative targets with associated drugs.

Gene1 Involvement in immunity [29–31] JAX phenotype3 Drug Name Current Indication3 [29–31,103]

CCL2 activator2 not available Danazol endometriosis, benign breast disorders,
angioedema

F3 activator none Coagulation factor VIIa hemorrhagic complications in
hemophilia A and B

PIK3R1 activator; used by viruses abnormal humoral immune
response & B cell physiology

Isoproterenol mild/transient heart block; asthma and
chronic bronchitis

CD86 activator2 abnormal humoral immune
response; dec. T cell
proliferation

Abatacept RA; polyarticular JIA

Antithymocyte globulin renal transplant rejection

IL1B activator inc. susceptibility to bacterial
infection

Minocycline bacterial infections

Canakinumab CAPS

TNF activator2 abnormal immune system
physiology, inc. susceptibility to
viral infection, inc./dec.
susceptibility to bacterial
infection

Infliximab Crohn’s disease; ulcerative colitis; RA,
JIA & psoriatic arthritis; ankylosing
spondylitis

Pranlukast reduces bronchospasm caused by
allergic reaction

Amrinone congestive heart failure

Etanercept, Adalimumab RA; JIA (Etanercept); psoriatic arthritis
(Adalimumab); ankylosing spondylitis;
severe plaque psoriasis (Etanercept);
Crohn’s disease (Adalimumab)

Thalidomide multiple myeloma and erythema
nodosum leprosum

Chloroquine malaria; RA

Amrinone congestive heart failure

Clenbuterol bronchodilator for asthma attacks

MMP9 used by viruses abnormal histamine physiologyMarimastat cancer

Minocycline bacterial infections

Captopril renovascular hypertension; congestive
heart failure; left ventricular
dysfunction; nephropathy

JUN activator2 none Irbesartan hypertension; nephropathy in type 2
diabetic patients

Arsenic trioxide acute promyelocytic leukemia

CASP1 activator2 dec. inflammatory response,
inc./dec. susceptibility to
bacterial infection

Minocycline bacterial infections

TUBB3 used by viruses not available Ixabepilone breast cancer

1CASP1 and TUBB3 are members of Parkin-UPS pathway.
2Strongly associated with innate immune response activation.
3RA = rheumatoid arthritis; JIA = juvenile idiopathic arthritis; CAPS = cryopyrin-associated periodic syndromes; inc. = increased; dec. = decreased.
doi:10.1371/journal.pone.0033174.t004
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by which viruses modulate the Parkin-UPS pathway during

infection.

Drug Repurposing Against Respiratory Viruses
Our analysis suggests several potential repurposing opportuni-

ties for launched drugs against host-viral targets (Table 4). This

assumption is based on the occurrence of genes that are

differentially expressed in infection models for at least five of the

seven respiratory viruses, have involvement in a number of

relevant pathways related to host immune response, and encode

for known drug targets. The drugs associated with this gene list do

not have current indications as anti-viral therapies, although

Pranlukast and Clenbuterol are prescribed for relief of lung

disorders such as bronchospasm after allergic reactions and

asthma bronchoconstriction during asthma attacks, respectively.

Also, Minocycline, sometimes called Minocin, is a broad-spectrum

tetracycline antibiotic as well as a caspase 1 (CASP1) inhibitor

while Chloroquine is a well-known anti- malaria drug [29–31]. In

fact, eight of the ten drug repurposing gene targets are involved in

activation of the innate immune response, while the remaining two

have some evidence of virus modulation. Potential drug repurpos-

ing opportunities for F3, IL1B, TNF, and MMP9, as well as the

Parkin-UPS pathway gene product CASP1, are discussed below.

Coagulation Factor III (F3). F3 normally binds to the native

cofactor VII or VIIa to induce the blood coagulation cascade.

Treatment with recombinant coagulation factor VIIa promotes

blood coagulation in hemophiliacs [29–31]. Esmon et al. [68]

suggest that coagulation could be used therapeutically to modulate

inflammation responses and vice versa, but also caution about the

danger of increased incidence of thrombosis. The consistent up-

regulation of F3 across five viruses suggests that the immune-

coagulation axis is already initiated and supplemental F3

activation may cause thrombosis complications. Further study is

needed to develop therapeutics that could balance between innate

immune response triggered by coagulation factor VIIa therapy

and stabilization of the antithrombotic state.

Interleukin 1 beta (IL1B). IL1B is a cytokine involved in

inflammatory response, cell proliferation, differentiation, and

apoptosis. IL1B is specifically cleaved into its active form by the

protease CASP1 after which it activates the NLRP3

inflammasome [29–31,69]. Indeed, IL1B is consistently up

regulated across CMV, FLU, HRV, MPENU and RSV which

likely correlates with inflammasome activation. However, over-

expression of IL1B causes multiple inflammatory disorders [69].

Antagonists or neutralizers of IL1B, such as Canakinumab, could

potentially reduce inflammation damage associated with viral

infection.

Tumor Necrosis Factor (TNF). TNF has a wide range of

biological functions including modulation of immune response to

pathogen assault. Mouse TNF knock-out phenotypes include

abnormal immune system physiology, increased susceptibility to

viral infection, and both increased and decreased susceptibility to

bacterial infection [29–31]. In our study, TNF is mostly up

regulated in infections by CMV, CORON, COX, and FLU but

directionally ambiguous for MPNEU and not expressed under

RSV. While total disruption of TNF function would be deleterious

to the host, there are instances where partial TNF inhibition

provides a clinical benefit in patients with viral complications

[70,71].

Pranlukast is a cysteinyl leukotriene receptor-1 antagonist that

reduces bronchospasm caused by an allergic reaction, usually with

asthmatic individuals. This drug inhibits TNF-alpha by blocking

macrophage cysteinyl leukotriene 1 (cysLTC4, D4) receptors [72]

or suppression of NF-kappa B activation [73]. Pranlukast has been

recently shown to be beneficial not only in cases of respiratory

syncytial virus postbronchiolitis, but also in a wide variety of other

diseases with strong inflammatory complications such as cystic

fibrosis, cancer, atherosclerosis, eosinophils cystitis, otitis media,

capsular contracture, and eosinophilic gastrointestinal disorders

[71].

Amrinone is a type 3 pyridine phosphodiesterase inhibitor used

in the treatment of congestive heart failure and is an inhibitor of

TNF [74]. Phosphodiesterase inhibitors have been shown to alter

immune response [75–78] and, in one case, specifically through

TNF [79]. Amrinone is known to modulate pro- and anti-

inflammatory factors in endotoxin-stimulated cells [80]. Type 4

phosphodiesterase inhibitors have been used to treat RSV-induced

airway hyper-responsiveness and lung eosinophilia [81]. There-

fore, indirect evidence suggests that Armirone may be beneficial in

respiratory viral infection situations by inhibiting TNF via type 4

phosphodiesterase, although this has yet to be seen in clinical

studies.

Matrix Metallopeptidase 9 (MMP9). MMP9 encodes a

matrix metallopeptidase that degrades type IV and V collagens,

and is implicated in arthritis and metastasis [29–31]. We can only

speculate on the role MMP9 plays in infection. Our analysis finds

the gene to be up-regulated for three viruses while down-regulated

for two different viruses. In other studies, MMP9 has been

observed to be up-regulated after exposure to double stranded

RNA and is important to airway injury [82], specifically by RSV

[83]. MMP9 expression is induced by IL1B [84] which, as

mentioned above, is an activator of the NLRP3 inflammasome

[85]. MMP9 inhibitors such as Marimastat, Minocycline or

Captopril, could be beneficial assuming that the protein is co-

opted by the infecting virus for tissue remodeling. Blocking MMP9

may also reduce inflammatory damage by down-regulating the

inflammasome.

Caspase 1 (CASP1). In the case of the Parkin-UPS pathway,

inhibiting tubulin-beta formation may reduce viral proliferation

given that FLU utilize acetylated tubulin for protein trafficking

[86] and increases in neuronal class III TUBB occur after COX

infection [87]. A CASP1 inhibitor such as Minocycline could be

used to increase PARK2 ubiquitinase activity, in turn decreasing

the TUBA or TUBB availability.

As mentioned above, CASP1 is a component of the NLRP3

inflammasome, activating the precursor to IL1B [69]. Therefore, a

CASP1 inhibitor would have an antagonist relationship with IL1B,

hence the inflammasome. Further, CASP1 inhibitors would be

agonists for PARK2, thereby reducing accumulation of SNCA. In

this regard, CASP1 inhibitors may not only prevent unnecessary

NLRP3 inflammasome activation via ILB1, but may also reduce

accumulation of neurotoxic Lewy bodies through activation of

PARK2.

However, caspases are not specific to the Parkin-UPS pathway

and inhibition in this regard may result in toxicity or other

complications [88]. Additionally, mouse JAX phenotypes for

CASP1 show both increased and decreased susceptibility to

bacterial infection, as well as decreased inflammatory response.

While CASP1 inhibition may prove beneficial in terms of

increasing inflammatory responses, it is ambiguous in terms of

benefit for bacterial infections. In our analysis, the expression of

CASP1 and TUBB3 is also somewhat variable across virus types.

Therefore, more study is needed specifically on the role of caspase

and tubulin in host response to respiratory virus infection.

Future Directions
Modulation of any human host pathway for the treatment of

viral infections has potential drawbacks with respect to toxicity and
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other side-effects. For example, although interferon is widely used

to help combat viral pathogens, the treatment is known to cause an

array of side-effects related to toxicity including confusion,

lethargy, impaired mental status, numbness, tingling, fevers, chills,

headaches, anorexia and sepsis [89,90]. Another caveat is that

some proteins are beneficial if up-regulated during initial viral

infection but have detrimental effects if over-activated for

prolonged periods. Thus determining the desired mechanism

and direction of therapeutic intervention requires careful study.

Although targeting host-pathogen interactions is a challenging

therapeutic approach, there are considerable upside benefits with

respect to overcoming pathogen-mediated drug resistance and the

capability of treating multiple, co-infecting pathogens. Our study

suggests several potential human-host proteins that could be

targets of future therapeutics as well as some possible drug

candidates for further investigations of repurposing against

respiratory virus infections.

Materials and Methods

Data Sources for Human mRNA Datasets
The National Center for Biotechnology Information’s GEO

database (http://www.ncbi.nlm.nih.gov/geo/ (accessed between

January and July 2011) was searched for human mRNA datasets

for twelve respiratory viruses. These viruses were the double

stranded DNA viruses Herpesviridae, human cytomegalovirus and

Adenoviridae Adenovirus; the positive sense single stranded RNA

viruses Coronaviridae SARS-Coronavirus, Picornaviridae Coxsackievi-

rus, Picornaviridae Human Rhinovirus, Picornaviridae Echovirus, and

Picornaviridae Enterovirus; and the negative sense single stranded

RNA viruses Orthomyxoviridae Influenza A virus, Paramyxoviridae

Metapenumonia virus, Paramyxoviridae Respiratory syncytial virus,

Bunyaviridae Hantavirus and Sin nombre virus. Subsequent filtering

steps (Figure 1) reduced the number of viruses with suitable

datasets to seven species (Table 1).

All analyzed GEO datasets contain at least one ‘‘treatment

group’’ and ‘‘control group’’. ‘‘Treatment’’ was the experimental

variable under study, usually a virus type, strain, or time point.

‘‘Group’’ was a collection of individual ‘‘samples’’, or replicates,

each of which originates from their own microarray chip.

‘‘Comparison group’’ was the treatment group compared to a

control group. A particular dataset may have more than one

comparison group. All criteria for dataset inclusion in the final

analysis were chosen prior to the analysis.

Dataset Selection and Quality Control Processes
Dataset candidacy filtering consisted of four criteria: 1) the

dataset must contain at least 3 samples per treatment or control

group because a sample size any less would mean a loss in

statistical power for subsequent analysis; 2) the microarray

platform must be supported by either Affymetrix, Agilent or

Illumina due to probe mapping abilities of the software used in

subsequent analysis; 3) each gene expression profile had to be

derived from human cells and probed using a human-based

genome microarray platform and not other species; and 4) the

dataset must contain at least one wild-type infection treatment

group (i.e., unmodified virus strain or infectivity mechanism) and

at least one healthy control group (i.e., no genetic or media

modifications such as gene knock outs or inhibitors, respectively).

Prior to quality control (QC) analysis, we pre-screened and pre-

processed each dataset. Normalized raw data and the study design

table were imported from the GEO databases (The data was

assumed to be normalized by robust multi-array average, but in

some cases the published study used an alternative normalization

method). Where appropriate, the intensity values were log2

transformation. Various experimental parameters such as time

point, virus strain and number of replicates were extracted from

the study design tables. Samples irrelevant to the main study

design were marked for segregation or exclusion from our

downstream analysis, but not excluded from quality assessment.

These were classified as ‘‘failing to meet treatment specification’’ at

the candidate filtering step. Studies that had a large number of

missing intensity values (over 10%) were annotated and flagged.

The QC analysis assessed each sample in the dataset for kernel

density, PCA, MAD, and pair-wise Pearson correlation such that:

1) the kernel density was normally distributed; 2) after PCA values

were within the Hotelling T2 alpha level threshold of 0.05 [91–

93]; 3) MAD score scores were in the range of +3 to 23 with no

outliers [94]; and 4) inner-treatment group pair wise correlations

for samples derived from a single cell were $0.97 or $0.90 if

taken from individual donors [94]. Figures were created using

Array Studio software, version 4.1. (Omicsoft Corporation,

Research Triangle Park, NC, USA [95]). During subsequent

analysis, each comparison group was treated separately, regardless

of dataset origination, in order to gain a wider, less bias view of

representative genes and pathways.

mRNA Array Expression and Pathway Analysis
Once a comparison group passed the QC analysis filters, LSM

values were calculated for each probe using Array Studio in order

to reduce the number of false positives due to low probe intensity

values. Probes within each of the filtered datasets were tested for

biological and statistical relevance using the Array Studio

implementation of fold change and statistical models, respectively.

Specifically, to determine a probe’s fold change expression when

compared to control, the geometric mean of each probe’s log2

transformed intensity value within a treatment was generated, and

then normalized to the corresponding control group’s geometric

mean. The treatment versus control data were fitted to a general

linear model, and associated p-values for each probe were

calculated using a modified t-test [96]. Thus, to be considered

differentially expressed, each probe within a comparison group

must have a p-value ,0.05 after general linear model test and a

fold change in either direction of 1.5.

To visualize a comparison group’s significance and fold change,

volcano plots were generated using Array Studio of a probe’s

2log(p-value) versus its transformed fold change (FC) value

according to the following piece-wise function:

E(FC)~
{(log2( FCj j)),FCƒ{1

z(log2(FC)),FC§z1

�

The differentially expressed probes were mapped to their

corresponding genes using MetaCore/MetaBase (GeneGo), a

software/database package that creates biological pathways and

networks from gene lists (database accessed June 2011) [97,98]. If

more than one probe mapped to a gene, the probe with the highest

magnitude fold change value was used for that gene. Thus, the

mapped differentially expressed probe list became the differentially

expressed gene list for each comparison group.

The differentially expressed gene lists from each comparison

group were analyzed for enriched pathways using GeneGo. A p-

value for each of the 658 pathway maps in the MetaBase were

generated for each comparison group using a hypergeometric test

[99]. In order for a pathway to be considered enriched, each

comparison group must contain pathways that have a p-value
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,0.01 and occur in .5% of the total studies. The enriched

pathway list was ranked by its viral frequency, which is defined by

the number of viruses represented by at least one comparison

group, and then by the sum of Normalized Viral Expression or

NVE for each enriched pathway. The NVE for each pathway was

calculated using the number of comparisons containing significant

pathways within a virus type relative to the number of

comparisons within that virus type. For example, if one out of

four FLU comparisons for pathway A were significant, the NVE

for FLU would be 1/4. Ranking the pathways in this fashion

resulted in a clearer determination of pathways shared across

multiple viruses, irrespective of time, strain type, or number of

comparison groups.

After examining the ranked pathway list described above, the

top five significant pathways and an additional pathway

representing a unique mechanism were further analyzed. With

each map, the proteins were labeled according to the number of

viruses in which the transcript was differentially expressed thus

yielding the viral frequency for that protein. In cases where a

protein complex was made up of subunits, the greatest magnitude

fold change value for any subunit was chosen to represent the

entire complex. GeneGo was used for the visualization of this

pathway map.

Similar to the pathway NVE, the NVE for each gene within

these six chosen pathways was calculated using the number of

comparisons containing either up or down regulated genes for

each protein within a virus type relative to the number of

comparisons within that virus type. For example, if two out of

three RSV comparisons for gene X were up-regulated, gene X’s

NVE for RSV would be 2/3.

We performed complete linkage and correlation distance

hierarchical clustering using ArrayStudio on quantile normalized

fold change values to determine the separation qualities of the

analyzed data [100]. Clustering was performed on genes that had

expression values for at least 90% of the total number of

comparisons. We used the Matlab function ‘knnimpute’ to impute

missing fold change values using k-Nearest Neighbors estimation

(MATLAB version 7.11 (R2010b), Mathworks, Cambridge MA,

2010) [101,102].

Drug Repurposing
Approved or marketed small molecule and protein therapeutics

for each of the differentially expressed proteins modulated by 5 or

more respiratory viruses were obtained from the DrugBank

database, version 3.0 (http://www.drugbank.ca/ accessed August

2011) [29–31]. We only considered those drugs that were

launched products with experimental and clinical evidence of

direct interaction with gene product in question. The therapy’s

interaction with the target and approved indication were identified

using a combination of DrugBank, the drug manufacturer’s

information page, and the National Center for Biotechnology

Information’s PubChem (http://pubchem.ncbi.nlm.nih.gov/ ac-

cessed September 2011) [103] and Gene (http://www.ncbi.nlm.

nih.gov/gene/ accessed September 2011) databases. Supplemen-

tal evidence of mechanism of action was obtained from immune or

infection-related Jackson Laboratory knock-in/knock-out mouse

(JAX) phenotype (http://www.jax.org/ accessed September 2011)

[32].

Supporting Information

Figure S1 Sample of quality analysis for subset of
GSE17156: RSV treatment and control groups using
MAD score and correlations. MAD score plot as a function of

time point a) before and b) after removal of samples GSM429279

and GSM429252; Baseline group correlation heat map c) before

and d) after removal of samples GSM429279 and GSM429252

(not shown): white blocks indicate pair-wise Pearson correlation

below 0.97, dark blue indicate perfect (1.00) pair-wise Pearson

correlation.

(TIF)

Figure S2 Volcano plot of a probe differential expres-
sion analysis for the RSV symptomatic treatment from
GSE17156. Each point on the figure represents an individual

mRNA array chip probe. Horizontal axis is estimate and vertical

axis is 2log(p-value). Red lines dictate threshold cutoffs of p-value

0.05 (2log (p-value)<1.3) and fold change +/21.5 (estimate<+/

20.58).

(TIF)

Figure S3 Hierarchical clustering of the fold change
values on genes differentially expressed in at least 7
comparisons. The horizontal axis contains each of the 28

different comparisons labeled by virus, GSE and time point. The

vertical axis shows clustering of 1,274 genes that are differentially

expressed in at least 7 of the 28 comparisons and have an

expression value in at least 26 comparisons. Yellow indicates a fold

change value of 3.0 or greater; blue indicates a fold change value

of 23.0 or less; white indicates a fold change value of 0.0.

(TIF)

Figure S4 Hierarchical clustering of the fold change
values on genes from top pathways with an NVE of at
least 6 viruses (Table 3). The horizontal axis contains each of

the 28 different comparisons labeled by virus, GSE and time point.

The vertical axis shows the clustering of 27 genes from the top five

and Parkin-UPS pathways that have an NVE of at least 6 and

have an expression value in at least 26 comparisons. For genes

present in more than one of the five pathways, the number of

participating pathways is indicated by the count of ‘‘*’’ before the

gene name. Color scheme is as described for Figure S3.

(TIF)

Figure S5 Epidermal Growth Factor Receptor signaling
pathway with viral frequency. Viral frequencies superim-

posed for each of most frequently differentially expressed proteins,

where red circles are differential expression of genes by 7 viruses,

orange circles are differential expression of genes by at least 6

viruses, and blue circles are differential expression of genes by 5

viruses. See MetaCore website at http://www.genego.com/pdf/

MC_legend.pdf for figure legend and Table S4 for pathway map

gene products’ corresponding HUGO gene names.

(TIF)

Figure S6 CD40 signaling pathway with viral frequency.
Viral frequencies superimposed for each of most frequently

differentially expressed proteins, where red circles are differential

expression of genes by 7 viruses, orange circles are differential

expression of genes by at least 6 viruses, and blue circles are

differential expression of genes by 5 viruses. See MetaCore website

at http://www.genego.com/pdf/MC_legend.pdf for figure legend

and Table S4 for pathway map gene products’ corresponding

HUGO gene names.

(TIF)

Figure S7 Interferon-gamma signaling pathway with
viral frequency. Viral frequencies superimposed for each of

most frequently differentially expressed proteins, where red circles

are differential expression of genes by 7 viruses, orange circles are

differential expression of genes by at least 6 viruses, and blue
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circles are differential expression of genes by 5 viruses. See

MetaCore website at http://www.genego.com/pdf/MC_legend.

pdf for figure legend and Table S4 for pathway map gene

products’ corresponding HUGO gene names.

(TIF)

Figure S8 Histamine Receptor H1 signaling pathway
with viral frequency. Viral frequencies superimposed for each

of most frequently differentially expressed proteins, where red

circles are differential expression of genes by 7 viruses, orange

circles are differential expression of genes by at least 6 viruses, and

blue circles are differential expression of genes by 5 viruses. See

MetaCore website at http://www.genego.com/pdf/MC_legend.

pdf for figure legend and Table S4 for pathway map gene

products’ corresponding HUGO gene names.

(TIF)

Figure S9 Interleukin-17 signaling pathway with viral
frequency. Viral frequencies superimposed for each of most

frequently differentially expressed proteins, where red circles are

differential expression of genes by 7 viruses, orange circles are

differential expression of genes by at least 6 viruses, and blue

circles are differential expression of genes by 5 viruses. See

MetaCore website at http://www.genego.com/pdf/MC_legend.

pdf for figure legend and Table S4 for pathway map gene

products’ corresponding HUGO gene names.

(TIF)

Table S1 GSM (GEO Sample) annotation for all studies
considered.
(XLSX)

Table S2 Gene list of fold change, p-value and passes
LSM threshold for the 28 analyzed comparisons.
(XLSX)

Table S3 Results of pathway enrichment analysis.
(XLSX)

Table S4 Gene symbol-network object name mapping.
(XLSX)

Table S5 Normalized viral expression and pathway
inclusion grid.
(XLSX)

Table S6 Number of experimental and marketed drugs
associated with the top genes from analyzed pathways.
(XLSX)
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