
Identification of condition-specific regulatory modules through

multi-level motif and mRNA expression analysis

Li Chen, Jianhua Xuan, and Yue Wang
Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Arlington, VA 22203, USA

Li Chen: lchen06@vt.edu; Jianhua Xuan: xuan@vt.edu; Yue Wang: yuewang@vt.edu

Eric P. Hoffman
Research Center for Genetic Medicine, Children’s National Medical Center, Washington, DC

20010, USA

Eric P. Hoffman: ehoffman@cnmcresearch.org

Rebecca B. Riggins and Robert Clarke
Department of Oncology and Physiology & Biophysics, Georgetown University, School of

Medicine, Washington, DC 20057, USA

Rebecca B. Riggins: rbr7@georgetown.edu; Robert Clarke: clarker@georgetown.edu

Abstract

Many computational methods for identification of transcription regulatory modules often result in

many false positives in practice due to noise sources of binding information and gene expression

profiling data. In this paper, we propose a multi-level strategy for condition-specific gene

regulatory module identification by integrating motif binding information and gene expression

data through support vector regression and significant analysis. We have demonstrated the

feasibility of the proposed method on a yeast cell cycle data set. The study on a breast cancer

microarray data set shows that it can successfully identify the significant and reliable regulatory

modules associated with breast cancer.
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1 Introduction

The identification of regulatory modules is one of the important yet challenging problems

towards understanding the underlying mechanisms of biological processes, especially for

pinning down the pathways causing cancers. In the transcriptional level, a regulatory module

is defined as a set of genes controlled by one or several Transcription Factors (TFs) in a

condition-specific manner (Segal et al., 2003). TFs can either activate or inhibit gene

expression through a short highly conserved DNA sequence in the gene promoter (or
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upstream) region, i.e., a Transcription Factor Binding Site (TFBS) or binding motif. In

higher eukaryotes, TFBSs are often organised in clusters called cis-Regulatory Modules

(CRMs). Many computational methods have been developed to facilitate the identification

of CRMs from either DNA sequence data or gene expression data. Expression-based

methods (Segal et al., 2003; Ihmels et al., 2004; Wang et al., 2005) take advantage of gene

expression data but lacking of sequence binding constraints. Sequence-based module

discovery algorithms, such as CisModule (Zhou and Wong, 2004), CREME (Sharan et al.,

2003) and ModuleSearch (Aerts et al., 2003), analyse the promoter regions of a set of co-

regulated genes to identify overrepresented motif combinations. A major limitation of the

sequence-based methods lies in that the methods do not consider the condition-specific

nature of regulatory modules, i.e., ignoring the relationship between binding strengths and

gene expression levels as described next.

As we know, a living cell is a dynamic system in which gene activities and interactions

exhibit temporal patterns and spatial compartmentalisation (Qi and Ge, 2006). Recently,

several studies have shown that binding of TFs depends not only on their affinity to the

binding sites, but also on their expression levels (Lee et al., 2002; Segal et al., 2008). This

means that a transcription factor may play different regulation roles to its downstream target

genes or even has different downstream targets under different conditions (Lee et al., 2002).

Motivated by this understanding, many computational algorithms were proposed to discover

condition-specific regulatory modules by integrating gene expression profiles and motif

information. For example, Ruan and Zhang (2006) proposed a bi-dimensional regression

tree approach to model gene expression regulation. Das et al. (2006) utilised linear splines to

correlate the binding strengths of motifs with the expression levels. Segal et al. (2008)

proposed a thermodynamic model to predict expression patterns from regulatory sequence in

Drosophila segmentation.

Although these methods have achieved some degree of success, high false-positive

prediction rate is still a major problem mainly due to the noises in motif information and

gene expression data. To reduce the false-positive rate, in this paper we propose a novel

method, namely multi-level regulatory module identification, to help find significant and

stable regulatory modules. The method is strengthened through several ways:

• Support Vector Regression (SVR) is utilised to formulate the relationship between

motif binding strengths and gene expression levels, aiming to improve the noise-

tolerance capability

• a significance analysis procedure is designed to help identify statistically

significant regulatory modules

• a multi-level analysis strategy is developed to further reduce the false-positive rate

for reliable regulatory module identification.

We have applied our proposed method on a yeast cell cycle microarray data set and a breast

cancer microarray data set to identify condition-specific regulatory modules. The

experimental results on the yeast cell cycle data set demonstrate the effectiveness of the

proposed approach in identifying cell cycle-related cooperative regulators and their target

genes. The experimental results on the breast cancer data set further show that the proposed

method can be used to identify condition-specific regulatory modules in breast cancer

development, which may have important implications to understanding the pathways

associated with breast cancer.
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2 Methodology

2.1 Sequence analysis for motif binding strength

ChIP-on-chip, also known as genome-wide location analysis, is a technique for isolation and

identification of the DNA sequences occupied by specific DNA binding proteins in cells.

However, it is not a trivial task to measure the binding strengths for all TFs from ChIP-on-

chip experiments due to the limited antibodies available, especially for human studies. An

alternative and practical way is to extract motif binding information from the promoter

regions of focused genes. Motif is usually represented by a Position Weight Matrix (PWM)

that contains log-odds weights for computing a match score between a binding site and an

input DNA sequence. Many algorithms have been developed to either de novo discover

motifs given multiple input sequences (Zhou and Wong, 2004; Bailey et al., 2006) or search

the known motifs in a given sequence based on their PWMs (Kel et al., 2003; Chekmenev et

al., 2005). Among them, MatchTM (Kel et al., 2003) takes DNA sequences as input, searches

for potential TF binding sites using a library of PWMs and outputs a list of found potential

sites in the sequence. The search algorithm uses two score values: the matrix similarity score

(mss) and the core similarity score (css). These two scores measure the quality of a match

between the sequence and the matrix, ranging from 0 to 1.0, where 0 denotes no match and

1.0 an exact match. The core of each matrix is defined as the first five most conserved

consecutive positions of a matrix.

We assume that the binding strength for a specific transcription factor to its target gene is

proportional to the similarity score of its binding site and the number of occurrences of the

binding site in the gene promoter region. All human promoter DNA sequences were

obtained from the UCSC Genome database (Karolchik et al., 2003) (upstream 5000 bp from

the Transcription Start Site (TSS)). With all vertebrate PWMs provided by the TRANSFAC

11.1 Professional Database (Matys et al., 2006), MatchTM algorithm is used to generate a

gene-motif binding strength matrix X = [xgm] with the cut offs that minimising the false-

positive rate. The rows in the matrix correspond to different genes and columns correspond

to different binding sites (or motifs). Each element xgm represents the binding strength of

motif m in the promoter region of a gene g, which is mathematically calculated as follows:

(1)

where N is the number of occurrences of motif m in the promoter region of gene g; mssgmi

and cssgmi are the MSS and CSS for motif m and gene g in the ith hit, respectively.

2.2 Support Vector Regression to integrate motif binding strengths and gene expression
data

Given a gene set G, its mRNA expression data is represented by a matrix Y = [ygt], g∈G,

where each element ygt is the log-ratio of the expression level of gene g in sample t to that of

the control sample. Assume M is the active motif set on the gene set G, the corresponding

gene-motif matrix is X = [xgm], g ∈ G, m ∈ M, where xgm is the binding strength of motif m
in the promoter region of gene g. The relationship between gene expression levels and motif

binding strengths can then be formulated as follows:

(2)

where amt and bt are the coefficients of the linear regression model. Biologically, the model

can be viewed or interpreted as that the log-ratio of gene expression level is the linear
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combination of log-ratios of Transcription Factor Activities (TFAs) (denoted as amt in

equation (2)) weighted by their binding strengths (i.e., xgm), plus a baseline expression ratio

bt in sample t.

Provided that X and Y are known, the model is then reduced to a regression problem. Since

mRNA expression data and motif binding strength data are noisy, we choose SVR (Smola

and Scholkopf, 1998) to solve the coefficients (i.e., amt and bt) by using ɛ-insensitive loss

function, with which to ensure the existence of the global minimum and the optimisation of

reliable generalisation bound. The ɛ-insensitive loss function is defined by

(3)

where  is the estimated value of expression log-ratio ygt.

The goal of SVR is to find a function f that minimises the loss function while keeping as flat

as possible. By introducing slack variables ξg and  for soft margin, we can formulate the

optimisation problem as follows (Drucker et al., 1997):

(4)

The constant C > 0 determines the trade off between the flatness of f and the amount up to

which deviations larger than ɛ are tolerated.

By further introducing non-negative Lagrangian multipliers αg and , we can formulate the

above optimisation problem to be the following equivalent one of maximising the dual

Lagrangian function with respect to αg and  (Drucker et al., 1997):

(5)

By solving the above optimisation problem, we can finally obtain the solution to the

regression problem as follows (Drucker et al., 1997):

Finally, there is one important issue that needs to be addressed, that is, how to determine an

appropriate motif set for SVR fitting. Due to the large number of motifs under study

(typically in a range of 50–500), it is not feasible to consider all possible motif combinations

when the order of the motif set increases. In order to reduce the computational complexity,
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we use a stepwise forward greedy search strategy to find the cooperative motifs in a given

gene set. Specifically, starting from each individual motif, we incorporate one more motif

into current motif set from the remaining motifs at each step. The selected motif should be

the one that can best reduce the fitting error compared to the other motifs. Notice that this

procedure is not immune to the overfitting problem, i.e., adding in more motifs will reduce

the fitting error mathematically – a result of fitting to the noise rather than the true signal. In

order to avoid this problem, we use a modified ɛ-intensive loss function to determine if a

new motif should be added into the current motif set. The modified ɛ-intensive loss function

is defined as follows, by adding a penalty term to equation (3):

(6)

The motif set searching procedure will stop when the following condition is satisfied:

(7)

where MA is the whole motif set and M0 is the current motif set. In our implementation, we

allow up to triplet motifs to be searched for, assuming that a regulatory module is only

regulated by a small number of TFs.

2.3 Significance analysis of regulatory modules

A significance analysis procedure is designed to test if a selected motif set is statistically

significant in regulating a given gene set, aiming to identify active cooperative regulators for

a given gene set. The null and alternative hypotheses (H0 and H1, respectively) are given as

follows:

H0: The motif set is not actively regulating a given gene set.

H1 : The motif set is actively regulating a given gene set.

We design a summary statistic to represent the fitting results shown below:

(8)

where RSS0 is the residual sum of squares without motif participation, and RSS1 is the

residual sum of squares with motif participation. The above equation is proportional to the

typical F-statistic used in statistics for comparing two models (Lomax, 2007). In order to

calculate p -value, we use the permutation method described below to form null distribution.

For a given motif set, we randomly select a gene set G0 with the same size of G from the

whole gene population, and then repeat B times to generate the corresponding null statistic

score F0b, for b = 1, 2, …, B. The p-value can be obtained for each gene set by calculating

the probability that a null gene set has a statistic more extreme than the observed statistic.

Mathematically, the p-value can be calculated by the following equation:

(9)
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2.4 Multi-level regulatory module identification

Assuming that most genes involved in a regulatory module are co-expressed under a given

condition, we can use a clustering method to form the gene set for regression analysis.

However, simple gene clustering, on one hand, often results in many false-positives for gene

module identification; motif information, on the other hand, is quite noisy and also

incomplete due to the current status of limited biological knowledge. Hence, some real

cooperative regulators would not be easily revealed, or instead, false-positives would be

included based on a fixed gene set. In order to reduce the false-positives, we further

postulate that a condition-specific regulatory module and its enriched motifs will appear

more and more significantly and stably in different levels of clustering, when the irrelevant

genes are gradually eliminated in a coarse-to-fine fashion. Based on this assumption, a

multi-level analysis strategy is further developed to enhance the SVR approach described

above for reliable regulatory module identification. In particular, a multi-level gene

clustering procedure, such as Self-Organising Map (SOM) clustering (Kohonen, 1997), is

used to form the gene clusters to gradually reduce the noises in gene expression data and

motif information. The flowchart of multi-level analysis procedure is shown in Figure 1 and

also can be summarised as follows:

1. Set cluster number c = 1 and cluster level l = 1. Identify all possible enriched motif

sets and calculate their p-values on current gene set G through SVR analysis and

significance analysis.

2. Increment c by 1 and l by 1. Cluster the gene population into c clusters, denoted as

3. For each gene cluster, discover all possible enriched motif sets and calculate their

p-values.

4. Repeat Steps 2 and 3 until the following stop criterion is met, that is, the number of

genes is less than a threshold t0 for all gene clusters.

5. Let us use  to denote the p-value of a candidate motif set M at different levels

and clusters. Output the significantly and stably enriched motif sets if they satisfy

min  where  is the threshold of p-value at each level l.

6. Use a voting scheme to determine the gene members of a regulatory module with

the enriched motif set M; the voting scheme is described as follows:

a. Initialise a gene weight vector w as 0

b. Update w by the following equation:

Finally, the genes whose weights are greater than a threshold w0 are chosen as the members

of a corresponding regulatory module. In our implementation, we set w0 as the mean of w
plus one standard deviation.

3 Results

3.1 Data description

We applied the proposed method to two gene expression profiling studies:

• a yeast cell cycle microarray data set (Spellman et al., 1998)
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• a breast cancer cell line microarray data set (Creighton et al., 2006).

The yeast cell cycle data set consists of the expression of 6178 Open Reading Frames

(ORFs) during the cell replication cycle in the budding yeast (Saccharomyces cerevisiae).

The cell cycle consists of four distinct phases: G1 phase, DNA synthesis (S) phase, G2 phase

(also known as interphase) and mitosis (M) phase (Spellman et al., 1998). The microarray

data set consists of 77 samples collected with three different synchronisation experimental

conditions (alpha, cdc and elu). For the binding information, we utilised the ChIP-on-chip

experimental result from (Lee et al., 2002), which provides significant levels (p-values) of

113 TFs binding to their target genes. We took negative of logarithm (base 10) of p-values

to convert the significant levels to binding strengths. After mapping these two data sets, we

finally obtained 6,099 ORFs that have expression measurements and binding information

simultaneously. Among them, approximately 800 genes have been identified as cell cycle-

regulated genes (Spellman et al., 1998). The goal of this study is to identify the cell cycle-

related condition-specific gene modules, demonstrating the feasibility of the proposed

method.

A breast cancer cell line microarray data set (Creighton et al., 2006) was further utilised in

this study to identify condition-specific regulatory modules related to breast cancer. The

original profiling study was designed to examine how estrogen-induced mRNA expression

patterns observed in in vitro cell line models correlate with the expression patterns in breast

tumours in vivo. Estrogen plays a significant role in breast cancer development and

progression. The authors in Creighton et al. (2006) treated three estrogen-dependent breast

cancer cell lines (MCF-7, T47D and BT-474) with 17β-estradiol (E2) and profiled the gene

expression using Affymetrix Genechip Arrays. As reported in Creighton et al. (2006), eight

E2-induced gene clusters were formed and their biological function was annotated by Gene

Ontology (GO) terms. Among them, the expression patterns in two clusters (i.e., Cluster B

and Cluster D as in Creighton et al. (2006)) clearly showed early up-regulation and late up-

regulation, respectively. Significant GO terms in Cluster B are related to ‘ribosome

biogenesis’, ‘RNA metabolism’ and ‘protein folding’, while significant GO terms in Cluster

D include ‘cell cycle’, ‘cell proliferation’, ‘mitosis’ and ‘DNA replication’. After mapping

the expression data with motif binding strength data, we finally obtained gene expression

measurements with 39,407 probe sets and their corresponding binding strengths with 586

motifs. Specifically, the number of probe sets in early up-regulation stage is 692 and the

number in late up-regulation stage is 334.

3.2 Identifying cell cycle-related regulatory modules in yeast

We used MATLAB SVM toolbox (Gunn, 1997) to implement the ɛ-insensitive linear SVR

and SOM clustering algorithm (Kohonen, 1997) to form multi-level gene clusters. The

parameters in the algorithm were empirically determined for this experiment. Specifically,

we set the permutation parameter B (see equation (9)) as 1000, threshold t0 (see Step 4 in the

multi-level analysis procedure) as 50, and p-value threshold for each level as

 Since the clustering method (i.e., SOM) generated slightly

different results depending on its random initialisations, we repeated the whole procedure

ten times with different initialisations in search for more reliable results. The significant

motif sets and their regulatory modules were determined according to their average values of

ten different initialisations. We also compared k-means (Hartigan and Wong, 1978)

clustering results with SOM results after multiple initialisations and found the overlap rate is

greater than 90% in terms of clustering membership, which would lead to the similar results

for regulatory module identification. Therefore we only analysed the results based on SOM

clustering method in follows.
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We first calculated the significant level of each individual transcription factor on the cell

cycle gene set using our approach. Table 1 lists the top 15 regulators, their functional

descriptions, and their average p-values (<0.01). Among these regulators, 13 have been

biologically validated as cell cycle-related regulators (Lee et al., 2002) and their phases of

cell cycle are also shown in the table. The number of genes regulated by each regulator is

also shown in the table. For those cell cycle-related regulators, the heatmap of their target

gene expression profiles is shown in Figure 2, ordered by cell cycle phases in which the

regulators are activated. From the heatmap we can clearly observe the cell cycle pattern of

those targets genes across different phases, which demonstrated the effectiveness of our

method for condition-specific regulatory module identification.

We then searched for cooperative TFs through a greedy forward search strategy. The upper

limit number of regulators was set to 3 in this study. Table 2 lists the found cooperative TFs,

their functional descriptions, the average p-values across all levels and the number of genes

in the regulatory modules. In Table 2, several cooperative TFs have been demonstrated to be

cell cycle-related in the previous studies (Tsai et al., 2005). For instance, DIG1-STE12,

MBP1-SWI6, ACE2-SWI5 and SWI4-SWI6 (SBF) are known as synergistic pairs to

regulate genes at cell cycle phases and they are also stably and significantly shown in our

study. Interestingly, neither DIG1 nor STE12 is included in our individual regulator list

(Table 1). Rather, the interaction between them showed significant regulation effect. More

specifically, DIG1 is involved in the MAP kinase (MAPK) signalling pathway to regulate

STE12, which is responsible for activating genes in response to MAP kinase cascades

controlling mating and filamentous growth (Olson et al., 2000). MBP1 forms a complex

(MBF) with SWI6 that binds to MluI cell cycle box regulatory element in the promoters of

DNA synthesis genes. DNA binding component of the SBF complex (formed by SWI4 and

SWI6) is a transcriptional activator that in concert with MBF regulates late G1-specific

transcription of targets including cyclins and genes required for DNA synthesis and repair

(Ubersax et al., 2003). ACE2 and SWI5 bind the same DNA sequences in vitro with similar

affinities, regulating a shared set of genes in vivo (McBride et al., 1999). In addition,

MCM1, FKH1 and FKH2 are the critical activators of a group of M phase-specific

transcripts (Breeden, 2003) and we found in this study that these three TFs formed a

cooperative group to regulate their target genes.

3.3 Identifying condition-specific regulatory modules related to breast cancer

As a pre-processing step, we took the average of expression levels across all samples as the

control value for each gene to calculate the log ratio data. The parameters in the algorithm

were again empirically determined for this experiment as described in Section 3.2. We set

the p-value threshold for each level as  Similarly, we repeat

the whole procedure ten times with different clustering initialisations for a more reliable

result. The significant motif sets and their regulatory modules were selected according to

their average values of the ten different initialisations.

Tables 3 and 4 list the identified motif sets for early and late stages, respectively. For each

individual significant motif set, we list their motif identifiers, corresponding TFs, the

average p-value across all levels and the number of genes in the regulatory modules. From

Tables 3 and 4, we can see that the significantly enriched motif sets are quite different for

early and late stages, which indicates the condition-specific nature of transcriptional

regulation. Among them, we have found that many motif sets are biologically meaningful as

reported in previous studies. For instance, STAT5A belongs to Jak2/Stat5 signalling

pathways that plays a central role in principal cell fate decisions, regulating the processes of

cell proliferation, differentiation and apoptosis (Wagner and Rui, 2008). E2F and Sp1/Sp3

have been shown to be synergistic to control gene expression (Kramps et al., 2004). Nuclear
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factor 1 (NF-1) family members interact with hepatocyte nuclear factor 1 (HNF-1) to

synergistically active L-type pyruvate kinase gene transcription (Satoh et al., 2005).

For a more detailed analysis, we focus on the most significant single motif in each stage. In

the early stage, the most significant module is regulated by c-Myc through binding site V

$MYCMAX_03. Figure 3(a) shows several expression profiles associated with c-Myc,

indicating the average gene expression profile of the module, the gene expression profile of

c-Myc and the estimated transcription factor activity. From the figure, we can clearly see

that the gene expression pattern of c-Myc is quite consistent with its estimated transcription

factor activity, which is over-expressed in very early stage. c-Myc is a proto-oncogene that

is amplified and plays a role in amplification of multiple other genes in breast cancer (Liao

and Dickson, 2000). The significant functional annotations for this module include ‘nucleic

acid binding’, ‘Ribosome’ and ‘RNA binding’ as obtained from the David database (Dennis

et al., 2003). We further examined this gene module with Ingenuity Pathways Analysis and

Figure 3(b) shows a c-Myc-involved network related to cancer, tumour morphology, cellular

growth and proliferation.

Similarly, in the late stage, we found a module regulated by Oct-1 through the binding site V

$OCT1_06, which was significantly enriched in multi-level clusters. Figure 4(a) shows

several different expression profiles related to OCT-1. The Oct-1 gene expression profile is

very much consistent with its estimated TFAs. Octamer transcription factor-1 (Oct-1) is a

member of the POU family of TFs, and is involved in the transcriptional regulation of a

variety of gene expressions related to cell cycle regulation, development, and hormonal

signals (Kakizawa et al., 2001). The significant functional annotations from the David

database for this module include ‘nucleic acid binding’, ‘cell cycle’ and ‘mitosis’. Figure

4(b) also shows a network extracted from Ingenuity Pathways Analysis for the OCT-1

module, which is largely related to gene expression, cancer and cell cycle.

4 Conclusions

Identification of transcription regulatory module has become increasingly important to

understand the underlying mechanisms related to cancers. However, it is a quite challenging

problem due to many noises in data sources and little knowledge available for data

integration. In this paper, we have proposed a new method, namely multi-level regulatory

module identification, to identify condition-specific gene regulatory modules. Motif binding

information and gene expression profiles are integrated by SVR followed by significance

analysis to find the active motif sets. A multi-level analysis strategy is further developed to

help reduce false positives for reliable regulatory module identification. The method has

been applied to a yeast cell cycle data set and a breast cancer microarray data set to identify

the condition-specific regulatory modules. The experimental results show that our method

can be reliably used to identify biologically meaningful regulatory modules. The regulatory

modules identified from the breast cancer study may have important implications to

understanding the pathways associated with breast cancer. In future work, the regulatory

module identification method by SVR could be improved through iteratively updating

regulatory binding strength and more simulation experiments are needed in order to compare

with other methods.
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Figure 1.
Flowchart of multi-level regulatory module identification procedure
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Figure 2.
Heatmap of gene expression profiles for regulatory modules at different cell cycle phases.

Each row represents gene expression profile across different conditions and each column

represents one sample. Genes are ordered by the cell cycle phased in which their regulators

are activated (see online version for colours)
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Figure 3.
The identified c-Myc module in the early stage: (a) the expression profiles indicating the

average gene expression profile of the module, the gene expression profile of c-Myc and the

estimated transcription factor activity and (b) the c-Myc network related to cancer, tumour

morphology, cellular growth and proliferation (see online version for colours)
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Figure 4.
The identified OCT-1 module in the late stage: (a) the expression profiles indicating the

average gene expression profile of the module, the gene expression profile of OCT-1 and the

estimated transcription factor activity and (b) the OCT-1 network related to gene expression,

cancer and cell cycle (see online version for colours)
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Table 1

Identified significantly enriched individual regulators in yeast cell cycle data set

TF Description Phases p-value No. of genes

NDD1 Activation of its M phase-specific target genes M 0.0003 45

MCM1 Activator of G2 and M phase-specific transcripts G2, M 0.0004 72

FKH2 Activation of its M phase-specific target genes M 0.0004 75

HIR1 Subunit of the HIR complex, a nucleosome assembly complex involved in regulation of histone
gene transcription

S 0.0011 43

MBP1 Transcription factor involved in the regulation of cell cycle progression from G1 to S phase G1, S 0.0014 83

STB1 Protein with a role in regulation of MBF-specific transcription at Start, phosphorylated by Cln-
Cdc28p kinases in vitro; unphosphorylated form binds Swi6p and binding is required for Stb1p
function; expression is cell-cycle regulated

G1, S 0.0017 79

SWI4 Involved in cell cycle-dependent gene expression G1, S 0.0023 79

HIR2 Subunit of the HIR complex, a nucleosome assembly complex involved in regulation of histone
gene transcription; recruits Swi-Snf complexes to histone gene promoters

S 0.0027 53

ACE2 Activates expression of early G1-specifci genes G1 0.0029 43

SWI6 Forms complexes with DNA-binding proteins Swi4p and Mbp1p to regulate transcription at the
G1/S transition; involved in meiotic gene expression

G1, S 0.0036 80

SWI5 Activates expression of early G1-specific genes G1 0.0058 48

YAP5 bZIP transcription factor G1 0.0063 47

GAT3 Protein containing GATA family zinc finger motifs – 0.0063 46

MET4 Lecine-zipper transcriptional activator, responsible for the regulation of the sulphur amino acid
pathway

– 0.0066 88

GAL4 DNA-binding transcription factor required for the activation of the GAL genes in response to
galactose

– 0.0072 58

Thirteen TFs (in boldface) have biological support to be cell cycle-related.

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2013 August 22.
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Table 3

Identified significantly enriched motif set in the early stage

Motif identifier Transcription factor Average p-value No. of genes in module

Single

V$MYCMAX_03 c-Myc 0.034 128

V$AHRARNT_02 AhR 0.040 60

V$PAX9_B PAX 0.046 98

V$STAT5A_02 STAT5A 0.058 83

Doublets

V$OSF2_Q6 AML3
0.032 52

V$AP2GAMMA_01 AP-2gamma

V$E2F1_Q6_01 E2F
0.045 132

V$SP3_Q3 SP3

V$STAT5A_04 STAT5A
0.074 138

V$ZF5_01 ZF5

V$AP1_01 AP1
0.081 82

V$SOX5_01 SOX5

Triplets

V$TATA_01 TATA

V$IRF_Q6 IRF 0.040 58

V$TBX5_Q5 TBX5

V$STAT5A_01 STATA5

V$EGR3_01 Egr3 0.074 79

V$XFD1_01 XFD1

V$FOXO1_02 FOX

V$SP3_Q3 SP3 0.085 187

V$NRF2_01 NRF-2
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Table 4

Identified significantly enriched motif set in the late stage

Motif identifier Transcription factor Average p-value No. of genes in module

Single

V$OCT1_06 Oct-1 0.055 60

V$NKX25_02 Nkx2-5 0.060 68

V$IK2_01 Ik-2 0.068 87

Doublets

V$STAT5A_03 STATA5
0.0284 106

V$ZIC1_01 ZIC1

V$HNF1_01 HNF-1alpha-A
0.100 12

V$NF1_Q6 NF-1
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