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Identi�cation of conductivity imperfections of small

diameter by boundary measurements. Continuous

dependence and computational reconstruction.

D.J. Cedio-Fengya�, S. Moskowy and M.S. Vogeliusz

Abstract

We derive an asymptotic formula for the electrostatic voltage potential in

the presence of a �nite number of diametrically small inhomogeneities with

conductivity di�erent from the background conductivity. We use this for-

mula to establish continuous dependence estimates and to design an e�ective

computational identi�cation procedure.
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1 Introduction

The non-destructive inspection technique known as electrical impedance imag-

ing has recently received considerable attention in the mathematical- as well as

in the engineering literature [2, 4, 10, 14, 17]. Using this technique one seeks

to determine information about the internal conductivity- (or impedance) pro-

�le of an object based on boundary information about the applied steady-state

currents and corresponding voltage potentials. The goal could well be to im-

age an entirely unknown internal conductivity pro�le, but frequently it may be

somewhat more limited in scope: a priori one has some knowledge of the overall

form of the conductivity pro�le and one then seeks to determine very speci�c

�Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA. Current

address: Mathematics Department, James Madison University, Harrisonburg, VA 22807, USA
yDepartment of Mathematics, University of Minnesota, Minneapolis, MN 55455
zDepartment of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

1



features. Examples of the latter type are found in connection with the identi-

�cation of cracks [12, 15] and the identi�cation of one or more inhomogeneities

[1, 6, 7, 8]. Following this line of investigation the purpose of the present paper

is to design an e�cient method to determine the location and size of diametri-

cally small conductivity imperfections inside a conductor of known background

conductivity. The imperfections (inhomogeneities) have constant conductivities.

These conductivies may be known or unknown, depending on the application.

Unlike the inhomogeneities treated in [1, 6, 8] the ones considered here are of

small size, and this shall allow for the design of a very e�ective identi�cation pro-

cedure. The identi�cation of small inhomogeneities has previously been analysed

in [7], but whereas those inhomogeneities were either perfectly insulating (voids)

or perfectly conducting (merely a dual) the ones considered here are just required

to have a (�nite) conductivity di�erent from the background conductivity.

The fundamental step in the design of our identi�cation procedure is the

derivation of an asymptotic formula for the steady-state voltage potential for a

conductor with a �nite number of well separated, small inhomogeneities. In one

particular version this asymptotic formula states that the voltage potential has

the form

u(y)= �n �m
i=1

(zi)((zi)� ki)

ki
rxN(zi; y) �MirxU(zi) (1)

+

Z
@

 (x)N(x; y) d�x + O(�n+

1
2 ) :

Here 
 is the bounded n�dimensional domain occupied by the conductor, m is

the number of inhomogeneities, zi, 1 � i � m, represents the \centers" of the

inhomogeneities (which are not necessarily balls) and � is the common order of

magnitude of their \diameters". The function  is the background conductivity

and ki is the (constant) conductivity of the i
th inhomogeneity. N(x; y) is the Neu-

mann function corresponding to the domain 
,  is the applied boundary current,

and U is the voltage potential corresponding to the background conductivity .

Indeed with this notation

U(y) =

Z
@

 (x)N(x; y) d�x :

Mi (a symmetric, positive de�nite n � n matrix) is a \polarization" tensor as-

sociated with the ith inhomogeneity. Finally, the notation O(�n+
1
2 ) signi�es a

term which goes to zero like �n+
1
2 , uniformly in y when y is bounded away from

the inhomogeneities. For our identi�cation procedure we shall only make use

of the asymptotic representation formula (1) for y 2 @
. Two special cases of

the formula (1) corresponding to inhomogeneities of conductivity 0 and of con-

ductivity 1 were previously derived in [7]. The analysis leading to the general

formula is considerably di�erent from that used in those two special cases. The

two special formulas may be recovered by letting ki tend to 0 and 1 respectively

in the general formula derived here. At this point it should be noted that the
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the \polarization" tensor Mi in addition to the shape of the ith inhomogeneity

also depends on the conductivity ratio (zi)=ki. The formula (1) asserts that the

expression

�n �m
i=1

(zi)((zi)� ki)

ki
rxN(zi; y) �MirxU(zi) (2)

+

Z
@

 (x)N(x; y) d�x

is a good approximation to the voltage potential for inhomogeneities that are

well separated and for � that are su�ciently small; however, numerical evidence

strongly indicate that it is also a quite reasonable approximation even for inho-

mogeneities that are relatively close and for � that are fairly large.

The asymptotic formula (1) and a slight variation thereof are used for two dif-

ferent purposes. (a): Given two di�erent sets of inhomogeneities such a formula

allows us estimate the di�erence in the location and relative size of the inhomo-

geneities in terms of the di�erence of the two corresponding boundary voltage

potentials (the two prescribed currents are the same). This estimate is similar to

one derived earlier for the case of inhomogeneities of extreme conductivity. (b):

Such a formula suggests a very e�ective procedure to identify, for instance, the

location and the size of a �nite number of inhomogeneities based on knowledge of

the boundary voltage potential. Namely, to select the parameters of an approxi-

mate expression like (2) so that it best �ts the the (measured) boundary voltage

potential. We construct a procedure to obtain a (nearly) best �t by employing a

fairly straightforward least-squares approach, and we demonstrate by numerical

examples the viability of this procedure. If the size and the location of the inho-

mogeities were known, then it is natural to try to use an approximate expression,

such as (2), to reconstruct the conductivities ki. We are currently undertaking

work to develop an e�ective procedure for this purpose.

2 The electrostatic problem

In the introduction we have briey made reference to some of the ingredients

of the electrostatic conductivity problem. In this section we shall provide more

concise de�nitions. We suppose the conducting component occupies a bounded,

smooth subdomain of <n, n = 2 or 3. For simplicity we take @
 to be C1, but

this assumption could be considerably weakened. Let (�) denote the smooth

background conductivity, that is the conductivity in the absence of any inhomo-

geneities. We suppose that

0 < c0 � (x) � C0 <1; x 2 


for some �xed constants c0 and C0. For simplicity, we assume that  is C1(�
),

but this latter assumption could be considerably weakened. The function  

denotes the imposed boundary current. It su�ces that  2 H1=2(@
), with

3



R
@
  d� = 0. The background voltage potential, U , is the solution to the

boundary value problem

r � ((x)rU)= 0 in 
 ; (3)


@U

@�
= on @
 :

Here � denotes the unit outward normal to the domain 
. Let m denote the

number of inhomogeneities and suppose that each inhomogeneity has the form

zi + �Bi; where Bi � <n is a bounded, smooth domain containing the origin.

We assume that each Bi is strictly star-shaped (meaning there exists y0 2 Bi

such that (y � y0) � � > 0 for y 2 @Bi, � denoting the outer normal to Bi).

For simplicity we assume that Bi is a C
1 domain, but this assumption could be

considerably weakened. The points zi 2 
; i = 1; :::m; determine the location of

the inhomogeneities; we shall assume they satisfy

0 < d0 � jzi � zj j; 8 i 6= j

(4)
0 < d0 � dist(zi; @
); 8i :

We also assume that �, the common order of magnitude of the diameters of the

inhomogeneities, is su�ciently small so that the inhomogeneities are disjoint and

their distance to <nn
 is larger than d0=2.

Let ̂� denote the conductivity pro�le in the presence of the small inhomo-

geneities. The function ̂� is equal to  except on the inhomogeneities; on the

ith inhomogeneity, zi + �Bi, we have ̂� = ki ; where ki ; i = 1 : : :m, is a set of

positive constants. Let

!� =
m[
i=1

(zi + �Bi)

denote the total collection of inhomogeneities. With this notation we have

̂�(x) =

(
(x); x 2 
 n �!�
ki; x 2 zi + �Bi; i = 1 : : :m

(5)

The voltage potential in the presence of the inhomogeneities is denoted u�(x). It

is the solution to

r � (̂�(x)ru�) = 0 in 
 ; (6)

̂�
@u�

@�
= on @
 :

We normalize both U and u� by requiring thatZ
@

Ud� = 0 ; and

Z
@

u�d� = 0 :
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To ensure the validity of our continuous dependence results and to guarantee the

success of our identi�cation procedure it becomes necessary to assume that the

following non-degeneracy conditions hold:

rxU(x) 6= 0 8x 2 
 ; and (zi) 6= ki i = 1; :::; m :

These conditions are necessary and su�cient to guarantee that each of the terms

(zi)((zi)� ki)

ki
rxN(zi; y) �MirxU(zi)

from the expression (2) is nontrivial. If this were not true then any continuous

dependence result for the ith inhomogeneity would depend on a higher order term

in the asymptotic expansion of u�, and it would not be as strong. Similarly the

ability to e�ectively identify the ith inhomogeneity would depend on �nding the

explicit form of this (higher order, nontrivial) term. As a result the identi�cation

would be considerably more complicated and not nearly as accurate.

In the computational identi�cation experiments we present at the end of this

paper, the inhomogeneities are assumed to be of the form zi+ ��iB or zi + �QiB

(or even zi+��iQiB) for a common, known domainB, but for unknown locations,

zi, dilatation parameters, ��i > 0, and rotations Qi. The conductivities ki are

also assumed to be known, and we seek to identify speci�c values of the unknown

parameters associated with the inhomogeneities.

3 An energy estimate

We start the derivation of the asymptotic formula for u� with the following esti-

mate of the H1(
) norm of U � u�.

Lemma 1 . There exists a constant C, independent of �, such thatZ


(jr(U � u�)j

2 + jU � u�j
2) dx � C�n: (7)

Proof . Since
R

 jU �u�j

2 dx � C(
R

 jr(U �u�)j

2 dx+ j
R
@
(U �u�) d�j

2) =

C
R

 jr(U � u�)j

2 dx; it su�ces to show thatZ


jr(U � u�)j

2 dx � C�n:

For v 2 H1(
), let E�(v) be the energy de�ned by

E�(v) =
1

2

Z


̂�jrvj

2 dx�

Z
@

 v d� :

Then, since
R

 jrU j

2dx =
R
@
  U d� and ̂� =  on 
 n !� ,

E�(U) =
1

2

Z


̂�jrU j

2 dx�

Z
@

 U d�

= �
1

2

Z


jrU j2 dx+

1

2

Z
!�

(̂� � )jrU j2 dx :

5



Expanding, integrating by parts, and using the formula for E�(U) given above,

we see thatZ


̂�jr(U � u�)j

2 dx =

Z


̂�jrU j

2 dx� 2

Z


̂�ru�rU dx+

Z


̂�jru�j

2 dx

=

Z


̂�jrU j

2 dx� 2

Z
@

 U d� +

Z


̂�jru�j

2 dx

= 2E�(U) +

Z


̂�jru�j

2 dx

= �

Z


jrU j2dx+

Z
!�

(̂� � )jrU j
2 dx (8)

+

Z


̂�jru�j

2 dx :

We note that
R

 ̂�jru�j

2 dx =
R

 rUru� dx and

R

 jrU j

2dx =
R

 ̂�ru�rU dx,

which together yieldZ


̂�jru�j

2 dx�

Z


jrU j2dx =

Z
!�

( � ̂�)ru�rU dx : (9)

Substituting (9) into (8) and simplifying we obtainZ


̂�jr(U � u�)j

2 dx =

Z
!�

(̂� � )(rU � ru�)rU dx

� (

Z
!�

jr(U � u�)j
2 dx)

1
2 (

Z
!�

(̂� � )2jrU j2 dx)
1
2 :

Thus, since ̂� is positive and uniformly bounded away from zero, and since 

and ̂� are both uniformly bounded, it follows thatZ


jr(U � u�)j

2 dx � C

Z


̂�jr(U � u�)j

2 dx

� C(

Z


jr(U � u�)j

2 dx)
1
2 (

Z
!�

jrU j2 dx)
1
2 :

Combining this last estimate with the fact that jrU j is uniformly bounded on !�
(due to elliptic regularity) we �nally obtain

(

Z


jr(U � u�)j

2 dx)
1
2 � C(

Z
!�

jrU j2 dx)
1
2 � C�

n
2 ;

from which the lemma immediately follows.

2

4 Some additional preliminary estimates

We begin by making the change of variables,

y = x=�
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and restating the energy estimate from the last section in terms of y. Let

~
 =

�
x

�
: x 2 


�

be the corresponding rescaled domain. From Lemma 1 it follows that,

ku�(�y)� U(�y)kL2(~
) � C; (10)

kry(u�(�y)� U(�y))kL2(~
) � C�; (11)

for some constant C; independent of �. To obtain a higher order estimate, we

need to subtract another function from u� � U:

For the remainder of this section we consider the case of a single inhomogeneity

�B, which for simplicity we have assumed to be \centered" at the origin, with

conductivity k. Let v�(y) denote the unique solution to

�yv� = 0 in B ; ry � (�y)ryv� = 0 in ~
 n �B

v�(y) is continuous across @B (12)

(�y)
@v�

@�y

+

� k
@v�

@�y

�

= �((0)� k)rxU(0) � � on @B

(�y)
@v�

@�y
= 0 on @ ~
 ;

with
R
@~
 v� d� = 0. The notation � (or frequently �y) is used for the outward

unit normal to both ~
 and B. The existence and uniqueness of v� is most easily

established by variational means. Elliptic regularity estimates then guarantee

that it is indeed a classical solution. Let v(y) denote a solution to

�yv = 0 in B ; �yv = 0 in <
n
n �B

v is continuous across @B (13)

(0)
@v

@�y

+

� k
@v

@�y

�

= �((0)� k)rxU(0) � � on @B

lim
jyj!1

v(y) = 0 :

The existence of v is most easily established by representing it as a single layer

potential on @B for a suitably chosen smooth density (that solves an associated

boundary integral equation, cf. [5] or [11]). A single layer potential always

vanishes at in�nity for n � 3, for n = 2 the vanishing at in�nity of this particular

representation relies on the fact that
R
@BrxU(0) � �y d�y = 0. A maximum

principle argument immediately gives that the solution to (13) is unique. We

shall use the fact (cf. [5]) that the function v exhibits the following behavior

(decay) at in�nity

v(y) =

(
O(jyj�1); n = 2

O(jyj2�n); n � 3
(14)
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and

ryv(y) =

(
O(jyj�2); n = 2

O(jyj1�n); n � 3:
(15)

This decay ensures that for any n,

kvkL2(~
) � C=�1=2: (16)

We now proceed with the analysis which eventually leads to an estimate for

ry(u�(�y) � U(�y) � �v(y)) (Theorem 1) an estimate that plays a crucial role

in the derivation of our representation formula. The proof of Theorem 1 we

provide holds for two and three dimensions, but with minimal changes it could

be extended to higher dimensions as well. We shall later point out the single

place where the fact that the dimension is either two or three is used. We �rst

prove the following lemma concerning ry(u�(�y)� U(�y)� �v�(y))

Lemma 2. There exists a constant C, independent of �, such that

kry(u�(�y)� U(�y)� �v�(y))kL2(~
) � C�2:

Proof . De�ne

z�(y) = u�(�y)� U(�y)� �v�(y)� c�

where the constant c� is chosen so thatZ
@B

z� d�y = 0:

Using the equations (3), (6) and (12) we compute that z� solves

�yz� = ��yU(�y) in B ; ry � (�y)ryz� = 0 in ~
 n �B

z� is continuous across @B ; and (�y)
@z�

@�y
= 0 on @ ~
 ;

along with the jump condition

(�y)
@z�

@�y

+

� k
@z�

@�y

�

= �((0)� k)rxU(0) � �y � ((�y)� k)ryU(�y) � �y

on @B. Now consider the quantityZ
~

̂�(�y)ryz� � ryz� dy =

Z
~
n �B

(�y)ryz� � ryz� dy +

Z
B
kryz� � ryz� dy :

Integrating each term on the right by partsZ
~

̂�(�y)ryz� � ryz� dy

=

Z
@B

"
k
@z�

@�y

�

� (�y)
@z�

@�y

+
#
z� d�y +

Z
B
k�yU(�y)z� dy

=

Z
@B

� [((�y)� k)rxU(�y)� ((0)� k)rxU(0)] � �yz� d�y

+�2
Z
B
k�xU(�y)z� dy :

8



Using Taylor's theorem, the smoothness of , and the fact that U and all of its

�rst and second derivatives are uniformly bounded on �B, we get that

((�y)� k)rxU(�y)� ((0)� k)rxU(0)

is O(�) in L1(@B) ( hence O(�) in H�1=2(@B)) and that 4xU(�y) is bounded in

L2(B). Therefore, by the trace theorem

kryz�k
2
L2(~
)

� C�2kz�kH1=2(@B)+ C�2kz�kL2(B) � C�2kz�kH1(B) :

Note that in de�ning z� we have subtracted the constant c� so that we can apply

Poincaire's inequality on B. In doing so we obtain

kryz�k
2
L2(~
)

� C�2kryz�kL2(B) � C�2kryz�kL2(~
)

which, upon division, implies the lemma.

2

The following corollaries now follow from Poincare's inequality and a change

of variables.

Corollary 1. There exists a constant C, independent of �, such that

ku�(�y)� U(�y)� �v�(y)kL2(~
) � C� :

Corollary 2. There exists a constant C, independent of �, such that

ku�(x)� U(x)� �v�(x=�)kH1(
) � C�n=2+1 :

We shall need a somewhat special Poincare-type inequality:

Lemma 3 . Let f 2 L1(@B) with 0 < � � f � �. Then there exists a constant

C such that

(

Z
B
juj2 dy)

1
2 � C

�
(

Z
B
jryuj

2 dy)
1
2 + j

Z
@B

fu d�yj

�
8u 2 H1(B) : (17)

The constant C depends on the constants � and �, but is otherwise independent

of f .

Proof . We shall prove the above by contradiction. Suppose (17) is not true,

then for all m; 9 um in H1(B) and 0 < � � fm � � such that

kumkL2(B) > m(krumkL2(B) + j

Z
@B

umfm d�y j) : (18)

We may normalize by taking kumkL2(B) = 1 8m: Then krumkL2(B) <
1
m
: By

compactness, there exists a subsequences, um, fm (with common index, m! 1)

9



such that um * u in H1(B), um ! u in L2(B), umj@B ! uj@B in L2(@B) and

fm * f in L2(@B), 0 < � � f � �. Passing to the limit we have

0 � krukL2(B) � lim inf krumkL2(B) � lim
m!1

1

m
= 0 :

This implies u � constant in B. In addition,����
Z
@B

uf d�y

���� = lim j

Z
@B

umfm d�y

���� � lim
m!1

1

m
= 0:

Now, since j
R
@B uf d�yj = 0 and

R
@B f d�y 6= 0, it follows that u = 0. However,

if u = 0 then kukL2(B) = 0 which contradicts the fact that um ! u in L2(B) and

kumkL2(B) = 1.

2

We now come to the only place in our analysis where we shall use the fact

that n is either 2 or 3.

Lemma 4. Suppose that n = 2 or 3 and suppose B is strictly star-shaped with

respect to the origin. Then there exist constants 0 < �0 and C such that

kv�kH1(B) � C ; 0 < � < �0 :

Proof . A combination of Lemma 2 and the estimate (11) immediately yields

kryv�kL2(B) � kryv�kL2(~
) � C. From Lemma 3 we know that

(

Z
B
jv�j

2dy)
1
2 � C

�
(

Z
B
jryv�j

2dy)
1
2 + j

Z
@B

f�v�d�yj

�

provided 0 < � � f� � �. In order to prove this lemma it thus su�ces to show

that ����
Z
@B

f�v�d�y

���� < C (19)

for some appropriate choice of 0 < � � f� � �.

Let N(x) be the Neumann function in 
 corresponding to a Dirac mass at

the origin and to coe�cient . That is, N is the solution to

�rx(x)rxN = �0 in 
 (20)

(x)
@N

@�x
= �

1

j@
j
on @
:

For n = 2 we can express N as the sum of a logarithm and a smoother function

[7]. More precisely

N(x) = �2(x) + R2(x) = �
1

2�(0)
log jxj+R2(x) (n = 2) ;

10



where R2(x) 2 W 2;p(
) for any 1 � p < 2 and solves

rx � (x)rxR2(x) =
1

2�(0)

rx(x) � x

jxj2
x 2 
 ; (21)

(x)
@R2

@�x
(x) =�

1

j@
j
+

(x)

2�(0)

x � �x

jxj2
x 2 @
 :

For n = 3 we can similarly express N as the sum of 1
4�(0) jxj

�1 and a remainder

in W 2;p(
), 1 � p < 3=2, but we shall need a more re�ned expansion, namely

N(x) = �3(x) +R3(x) =
1

4�(0)
jxj�1

�
r(0) � x

8�[(0)]2
jxj�1 + R3(x) (n = 3) ;

where the remainder, R3, is in W
2;p(
) for any 1 � p < 3 and solves

rx � (x)rxR3(x)=A �

h
jxj2r(x)� (r(x) � x) x+ 2((0)� (x)) x

i
jxj�3

+
1

4�(0)
[r(x)� r(0)] � x jxj�3 x 2 
 ; (22)

(x)
@R3

@�x
(x)=�

1

j@
j
� (x)

@�3

@�x
x 2 @
 :

Here the constant vector A is given by A = 1
8�[(0)]2r(0). From the way we

have written the right hand side of (22) it follows immediately that it is of order

jxj�1 at the origin, and therefore in Lp(
), for any 1 � p < 3. It is based on this

fact and elliptic regularity that we conclude R3 is in W 2;p, 1 � p < 3. Since in

particular Rn 2 H1(
) (and n = 2; 3) we get

�2(n�2)
Z
B
jryRn(�y)j

2 dy = �n�2
Z
�B
jrxRn(x)j

2 dx � C : (23)

The fact that Rn is in W 2;p(
) for any p < n (n = 2; 3) implies that Rn is

continuous (and thus uniformly bounded) on �
. Thus

�2(n�2)
Z
B
jRn(�y)j

2 dy � C�2(n�2)
� C :

From a combination of these two inequality we conclude that �n�2Rn(�y) is

bounded in H1(B) and therefore by the trace theorem

k�n�2Rn(�y)kH1=2(@B) � C (n = 2; 3) : (24)

We introduce the function

N�(y) =

(
N(�y) + log �

2�(0)
(n = 2)

�N(�y) (n = 3)
: (25)

11



Based on the formulas given above for N and the estimate (24) for �n�2Rn(�y)

it follows immediately that

kN�kH1=2(@B) � C (n = 2; 3) : (26)

In establishing (19) we shall need the normal derivative of N� on @B. A simple

calculation yields

ryN� =
�1

2�(0)

y

jyj2
+ryR2(�y) (n = 2) ;

and

ryN� = �
1

4�(0)
jyj�3

�
y +

�

2(0)
r(0) � y? y?

�
+�ryR3(�y) (n = 3) :

Thus, on @B

(�y)
@N�

@�y
= �fn;� + �n�2(�y)

@Rn(�y)

@�y
; (27)

where fn;�, n = 2; 3, is given by

f2;�(y) =
(�y)

2�(0)
jyj�2y � �y ;

and

f3;�(y) =
(�y)

4�(0)
jyj�3

�
y +

�

2(0)
r(0) � y? y?

�
� �y :

The positivity of  and the condition that B is strictly star shaped with respect

to the origin guarantee that there exist constants 0 < �0, � and � such that

0 < � � fn;�(y) � � for 0 < � < �0 : Rearranging (27) we obtain����
Z
@B

fn;�v� d�y

���� �
����
Z
@B

(�y)
@N�

@�y
v� d�y

����+ �n�2
����
Z
@B

(�y)ryRn(�y) � �yv� d�y

���� :

Integrating by parts, and using equations (12) and (20) we see that

Z
@B

(�y)
@N�

@�y
v� d�y = �

Z
~
n �B

(�y)ryN�ryv� dy

=

Z
@B

(�y)
@v�

@�y

+

N� d�y ;

and therefore����
Z
@B

fn;�v� d�y

���� (28)

�

����
Z
@B

(�y)
@v�

@�y

+

N� d�y

����+ �n�2
����
Z
@B

(�y)ryRn(�y) � �yv� d�y

���� :

12



The �rst term on the right-hand side is bounded by�����
Z
@B

(�y)
@v�

@�y

+

N� d�y

����� � C k(�y)
@v�

@�y

+

kH�1=2(@B)kN�kH1=2(@B)

� C k(�y)
@v�

@�y

+

kH�1=2(@B) ; (29)

since N� is bounded in H1=2(@B), according to (26). Furthermore, we have that

(�y)
@v�

@�y

+

= �((0)� k)rxU(0) � �y + k
@v�

@�y

�

(30)

is bounded in H�1=2(@B) independently of �. To see the latter, let � be any

function in H1=2(@B) and extend � into B so that

k�kH1(B) � Ck�kH1=2(@B) :

Then, Z
@B

k
@v�

@�y

�

� d�y =

Z
B
kryv�ry� dy

� Ckryv�kL2(B)k�kH1=2(@B) :

Hence

kk
@v�

@�y

�

kH�1=2(@B) � Ckryv�kL2(B) ;

the right hand side of which, as pointed out at the beginning of this proof, is

bounded independently of �. It now immediately follows that

k(�y)
@v�

@�y

+

kH�1=2(@B) � C ; (31)

as stated previously. The Estimates (29) and (31) in combination give that the

�rst term on the right hand side of (28) is bounded independently of �, i.e.,�����
Z
@B

(�y)
@v�

@�y

+

N� d�y

����� � C : (32)

We now seek a bound for the second term on the right-hand side of (28). Inte-

grating twice by parts, and using the fact that 4yv� = 0 in B we getZ
@B

(�y)ryRn(�y) � �yv� d�y

=

Z
B
(�y)ryRn(�y) � ryv� dy +

Z
B
ry � (�y)ryR(�y)v� dy

= ��

Z
B
Rn(�y)rx(�y) � ryv� dy +

Z
@B

Rn(�y)(�y)
@v�

@�y

�

d�y

+

Z
B
ry � (�y)ryRn(�y)v� dy : (33)

13



From the equations (21) and (22) for Rn it follows that

ry � (�y)ryRn(�y) = �Fn;�(y) ;

where

kFn;�kLp(B) � Cp for any p < n;

(independently of �). Based on (33) we may thus estimate����
Z
@B

(�y)ryRn(�y) � �yv� d�y

���� � �kRnrx(�y)kL2(B)kryv�kL2(B)

+kRn(�y)kH1=2(@B)k
@v�

@�y

�

kH�1=2(@B)

+Cq�kv�kLq(B) ;

for any q > n
n�1 (the dual of p < n). Since we have already veri�ed that Rn(�y)

is uniformly bounded on B (independently of �) and that the three quantities

kryv�kL2(B), k�
n�2Rn(�y)kH1=2(@B) and k

@v�
@�y

�
kH�1=2(@B) are bounded it now fol-

lows that

�n�2
����
Z
@B

(�y)ryR(�y) � �yv� d�y

���� � Cq

�
1 + �n�1kv�kLq(B)

�
; (34)

for any q > n
n�1 . Recall that v� integrates to zero on @ ~
. Since the gradient of v�

is bounded in L2(~
), a rescaling of Poincaire's inequality gives kv�kH1(~
) � C=�,

which then by Sobolev's imbedding theorem implies that

kv�kLq(B) � Cqkv�kH1(B) � Cq=� ;

for any q < 2n
n�2 (q <1 for n = 2). Hence, by selecting any n

n�1 < q < 2n
n�2

�n�2
����
Z
@B

(�y)ryRn(�y) � �yv�d�y

���� � C(1 + �n�2) � C :

This gives an �-independent bound for the second term on the right hand side of

(28), and thus completes the proof of Lemma 4.

2

We are now in a position to establish the estimate which is crucial for the

derivation of our representation formula. This estimate involves the function v,

the solution to the problem (13). Since the previous lemma, which was only veri-

�ed for dimensions 2 and 3, is used in the proof, the same dimensional restriction

will be maintained.

Theorem 1 . Suppose n = 2 or 3 and suppose B is strictly star-shaped with

respect to the origin. Then there exists a constant C, independent of �, such that

kry(u�(�y)� U(�y)� �v(y))kL2(~
) � C�3=2:

14



Proof. It is clearly su�cient to prove the desired estimate for � small, e.g., for

0 < � < �0, with �0 being the constant from Lemma 4. From Lemma 2 it follows

that it su�ces to show that

kry(v� � v)kL2(~
) � C�1=2 0 < � < �0 :

Now de�ne

w� = v� � v � c� ;

where c� is the constant chosen so that
R
@ ~
 w� d�y = 0: Then w� solves

�yw� = 0 in B ; ry � (�y)ryw� = ��rx(�y) � ryv in ~
 n �B

w� is continuous across @B

(�y)
@w�

@�y

+

� k
@w�

@�y

�

= ((0)� (�y))
@v

@�y

+

on @B

(�y)
@w�

@�y
= �(�y)

@v

@�y
on @ ~
:

For future reference we note that the condition
R
@ ~
 v� = 0 combined with the

decay of v guarantee that the constants, c�; are uniformly bounded (indeed they

are bounded by C�). Consider the following integral identityZ
~

̂�(�y)ryw� � ryw� dy =

Z
~
nB

(�y)ryw� � ryw� dy +

Z
B
kryw� � ryw� dy ;

where ̂ is as de�ned previously. Integrating each term on the right hand side by

parts, and using the equations for w�, we obtainZ
~

̂�(�y)ryw� � ryw� dy =

Z
~
n �B

�rx(�y) � ryv w� dy �

Z
@~


(�y)
@v

@�y
w�d�y

+

Z
@B

((�y)� (0))
@v+

@�y
w� d�y :

Continued integration by parts of the �rst term on the right hand side yieldsZ
~

̂(�y)ryw� � ryw� dy

= ��2
Z
~
n �B

(�x(�y))vw� dy � �

Z
~
n �B

(rx(�y))v � ryw� dy

+

Z
@ ~


�(rx(�y) � �y)vw� d�y �

Z
@B

�(rx(�y) � �y)vw� d�y

�

Z
@ ~


(�y)
@v

@�y
w� d�y +

Z
@B

((�y)� (0))
@v

@�y

+

w� d�y : (35)

We shall examine each term on the right hand side of (35) separately. The �rst

term is bounded by

�2
����
Z
~
n �B

(�x(�y))vw� dy

���� � C�2kvkL2(~
n �B)kw�kL2(~
n �B) :

15



Application of a rescaled Poincaire's inequality and (16) now yields

�2
����
Z
~
n �B

(�x(�y))vw� dy

���� � C�kvkL2(~
n �B)kryw�kL2(~
)

� C�1=2kryw�kL2(~
) : (36)

The second term is bounded by

�

����
Z
~
n �B

(rx(�y))v � ryw� dy

���� � C�kvkL2(~
n �B)kryw�kL2(~
n �B)

� C�1=2kryw�kL2(~
): (37)

To obtain a bound on the third integral, we change variables back to the original

domain. This yields

�

����
Z
@~


(rx(�y) � �y)vw� d�y

���� = �2�n
����
Z
@


(rx(x) � �x)v(x=�)w�(x=�) d�x

����
� C�2�nkv(x=�)kL2(@
)kw�(x=�)kL2(@
) (38)

� C�2�nkv(x=�)kL2(@
)krxw�(x=�)kL2(
) :

For the last inequality we have used the fact that
R
@
 w�(x=�) d�x = 0. We have

krxw�(x=�)kL2(
) = �n=2�1kryw�(y)kL2(~
) ; (39)

and due to the decay of v we also have

kv(x=�)kL1(@
) � C� n = 2 ;

kv(x=�)kL1(@
) � C�n�2 n � 3 :

These estimates, along with (38) and (39), give

�

����
Z
@~


(rx(�y) � �y)vw� d�y

���� � C�1=2kryw�kL2(~
) ; (40)

for any n � 2. For the fourth term, we obtain the estimate����
Z
@B

�(rx(�y) � �y)vw�d�y

���� � C�kw�kL2(@B)

� C�kw�kH1(B): (41)

To estimate the �fth term, we again change variables and obtain����
Z
@ ~


(�y)
@v

@�y
w� d�y

���� = �1�n
����
Z
@


(x)
@v

@�y
w�(x=�) d�x

���� (42)

� C�1�nk
@v

@�y
(x=�)kL2(@
)kw�(x=�)kL2(@
)

� C�1�nk
@v

@�y
(x=�)kL2(@
)krxw�(x=�)kL2(
) :
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Now note that from (15) it follows that

k
@v

@�y
(x=�)kL1(@
) � C�2 n = 2 ;

k
@v

@�y
(x=�)kL1(@
) � C�n�1 n � 3 :

In combination with (39) and (42) these estimates imply����
Z
@~


(�y)
@v

@�y
w� d�y

���� � C�1=2kryw�kL2(~
) ; (43)

for any n � 2. Finally, applying Taylor's theorem to estimate the sixth integral,

we obtain����
Z
@B

((�y)� (0))
@v

@�y

+

w�d�y

���� = �

����
Z
@B

y � rx(�x)
@v

@�y

+

w�d�y

����
� C�kw�kH1(B) (44)

where we have used the fact that (by elliptic regularity) @v+

@�y
is in L2(@B) . A

Combination of the identity (35) with the estimates (36){ (37), (40){ (41) and

(43) {(44) yields����
Z
~

̂�ryw� � ryw� dy

���� � C�1=2kryw�kL2(~
) + C�kw�kH1(B) :

From the previous lemma and that fact that the constants c� are uniformly

bounded it follows that w� is bounded in H1(B), 0 < � < �0. Based on the

above estimate we now conclude that

kryw�kL2(~
) � C�1=2 0 < � < �0 ;

which implies the theorem.

2

5 An asymptotic formula for the voltage potential

We are now ready to derive an asymptotic formula for u�(z) for those points, z,

a �xed distance, d, away from the inhomogeneities. We shall initially consider

the case in which u� is the potential corresponding to a conductor having a single

inhomogeneity, �B; that is \centered" at the origin.

Let N(�; z) denote the Neumann function for 
 corresponding to a Dirac mass

at the point z and co�cient . That is, N(x; z) is the solution to

�rx � (x)rxN(x; z) = �z in 
 ;

(x)
@N(x; z)

@�x
= �

1

j@
j
on @
 :
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We normalizeN(x; z) by requiring that
R
@
N(x; z) d�x = 0. Whenever no confu-

sion is possible we shall use the simpler notation 10 N(x) = N(x; z). Integrating

by parts and using the fact that
R
@
 u� d�x = 0 , we get

u�(z) = �

Z


u�rx � (rxN) dx

=

Z


rxu� � rxN dx�

Z
@

u�

@N

@�x
d�x

=

Z

n�B

rxu� � rxN dx+

Z
� �B
rxu� � rxN dx : (45)

We note that the third identity above is the only point in the derivation of

the asymptotic formula for u� where we use the speci�c form of the boundary

condition for N . If one is content with the presence of the term �
R
@
 u�

@N
@�x

d�x
then it su�ces that N(x; z) be a solution to �rx � (x)rxN(x; z) = �z which

is smooth in �
 n fzg. We shall make use of this observation later. Repeated

integration by parts in (45) yields

u�(z) =

Z
@

 N d�x �

Z
@(�B)


@u�

@�x

+

N d�x +

Z
�B
rxu� � rxN dx

=

Z
@

 N d�x �

Z
@(�B)


@u�

@�x

+

N d�x

+

Z
�B
((x)� (0))rxu� � rxN dx+

Z
�B
(0)rxu� � rxN dx

=

Z
@

 N d�x �

Z
@(�B)


@u�

@�x

+

N d�x (46)

+

Z
�B
((x)� (0))rxu� � rxN dx+

Z
@(�B)

(0)
@u�

@�x

�

N d�x

where � denotes the outward unit normal to both 
 and �B. If we expand

(x) = (0)+ x � rx(�x), �x 2 �B, and make the change of variable x = �y then

the second to last term in (46) may be estimated by����
Z
�B
((x)� (0))rxu� � rxNdx

���� = �n+1
����
Z
B
(y � rx(�x))rxu�(�y) � rxN(�y) dy

����
� C�n+1krxu�(�y)kL2(B)krxN(�y)kL2(B) :

From Lemma 1 we have Z
�B

jrx(U � u�)j
2 dx � C�n :

Changing variables we obtainZ
B
jrx(U � u�)(�y)j

2 dy � C ;
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and therefore, Z
B
jrxu�(�y)j

2dx � C :

Since z is bounded away from �B, in the sense that dist(z; �B) � d > 0, it now

follows that����
Z
�B
((x)� (0))rxu�rxN(x; z) dx

����� C�n+1krxN(�y; z)kL2(B) � C�n+1 :

Substituting this into (46) and using the boundary condition (x)@u
+
�

@�x
= k @u

�

�

@�x
on

@(�B), we obtain

u�(z) =

Z
@

 N d�x �

Z
@(�B)


@u�

@�x

+

N d�x +

Z
@(�B)

(0)
@u�

@�x

�

N d�x +O(�n+1)

=

Z
@

 N d�x +

Z
@(�B)

((0)� k)
@u�

@�x

�

N d�x + O(�n+1) :

Now let r�(x) = u�(x)� U(x) � �v(x
�
), where v is the function de�ned by (13).

Then

u�(z) =

Z
@

 N d�x+

Z
@(�B)

((0)� k)(
@U

@�x
+

@v

@�y

�

(x=�) )N d�x

+

Z
@(�B)

((0)� k)
@r�

@�x

�

N d�x +O(�n+1) : (47)

Integrating the last term in (47) by parts, we obtain

Z
@(�B)

((0)� k)
@r�

@�x

�

N d�x =

Z
�B
((0)� k)rxr�rxN dx

+

Z
�B
((0)� k)4xr�N dx :

Changing variables and using the fact that 4xr� = �4xU in �B we have

Z
@(�B)

((0)� k)
@r�

@�x

�

N d�x= �
n�1

Z
B
((0)� k)ryr�(�y)rxN(�y) dy

��n
Z
B
((0)� k)4xU(�y)N(�y) dy

= ��n
Z
B
((0)� k)4xU(�y)N(�y)dy +O(�n+

1
2 ) :

In the last inequality we have used the estimate kryr�(�y)kL2(B) � C�3=2 (which

follows immediately fromTheorem 1) as well as the fact thatrxN(�y) = rxN(�y; z)

is uniformly bounded on B (since z is bounded away from �B). Expanding the
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Neumann function, N , in a Taylor series about the origin, we see that the last

term in equation (47) can be written

Z
@(�B)

((0)� k)
@r�

@�x

�

N d�x = ��n((0)� k)N(0; z)

Z
B
4xU(�y) dy + O(�n+

1
2 ) ;

(48)

and that the next to last term in (47) can be written

Z
@(�B)

((0)� k ) (
@U

@�x
+
@v

@�y

�

(x=�) )N d�x

= �n�1
Z
@B

((0)� k)(
@U

@�x
(�y) +

@v

@�y

�

)N(�y; z) d�y

= �n�1((0)� k)N(0; z)

Z
@B

(
@U

@�x
(�y) +

@v

@�y

�

) d�y (49)

+�n((0)� k)rxN(0; z) �

Z
@B

(
@U

@�x
(�y) +

@v

@�y

�

)y d�y +O(�n+1) :

Now noting that
R
@B

@U
@�x

(�y) d�y = �
R
B4xU(�y) dy and

R
@B

@v�

@�y
d�y = 0, we

have, upon substitution into (49)

Z
@(�B)

((0)� k)(
@U

@�x
+
@v

@�y

�

(x=�) )N d�x = �n((0)� k)N(0; z)

Z
B
4xU(�y) dy (50)

+�n((0)� k)rxN(0; z) �

Z
@B

(
@U

@�x
(�y) +

@v

@�y

�

)y d�y + O(�n+1) :

Inserting (48) and (50) into (47) and envoking the jump condition for the deriva-

tive of v, given in (13), we get

u�(z) =

Z
@

 N d�x + �n((0)� k)rxN(0; z) �

Z
@B

(
@U

@�x
(�y) +

@v

@�y

�

)y d�y + O(�n+
1
2 )

=

Z
@

 N d�x + �n((0)� k)rxN(0; z) �

�Z
@B
rxU(0) � �y y d�y

+

Z
@B

1

k

 
((0)� k)rxU(0) � �y + (0)

@v

@�y

+
!
y d�y

�
+O(�n+

1
2 )

=

Z
@

 N d�x + �n(0)

((0)� k)

k
rxN(0; z) �

Z
@B

(rxU(0) � �y +
@v

@�y

+

) y d�y

+O(�n+
1
2 ) : (51)

Let �j denote the solution to

�y�j = 0 in B ; �y�j = 0 in <
n
n �B

�j is continuous across @B (52)
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(0)

k

@�j

@�y

+

�
@�j

@�y

�

= ��j on @B

lim
jyj!1

�j(y) = 0 :

The existence and uniqueness of �j is established in a manner completely similar

to that of v (cf. [5] or [11]). We note that �j and its �rst derivatives decay at 1

in the same way as v and its �rst derivatives do (cf. (14) and (15)). It follows

immediately from the de�nitions of v and �j that

v(y) =
(0)� k

k
�n
j=1

@U

@xj
(0)�j(y) ;

and so (51) may be rewritten

u�(z) = �n(0)
(0)� k

k
rxN(0; z) �MrxU(0)

+

Z
@

 (x)N(x; z)d�x+O(�n+

1
2 ) ; (53)

where the (rescaled) polarization tensor M = mij is given by

mij =

Z
@B

 
yi�j +

(0)� k

k
yi
@�j

@�

+
!
d�y

= jBj�ij +

�
(0)

k
� 1

�Z
@B
yi
@�j

@�

+

d�y :

The term O(�n+
1
2 ) is bounded by Cd�

n+ 1
2 uniformly in z 2 
\fdist(z; �B) � d >

0g, and so is its derivatives (the latter fact easily follows from the �rst by elliptic

apriori estimates). By continuity the formula (53) also holds for z 2 @
 (provided

dist(@
; �B) � d > 0). We note that the (rescaled) polarization tensor, M , only

depends on the ratio r = (0)=k, not on the individual conductivities (0) and

k. We shall occasionally use the notation M(r) to make this dependence on

r = (0)=kmore explicit. If the single inhomogeneity is given by z1+�B (instead

of B) then the only e�ect is to change 0 to z1. It is not essential that B be strictly

star-shaped with respect to the origin, it su�ces that B be strictly star-shaped

with respect to any point. We simply write B = p + ~B, where ~B = B � p is

now star-shaped with respect to the origin. The inhomogeneity z1 + �B may

now be written as z1 + �p + � ~B; the order � translation does not materially

a�ect the previous argument and ~B has the same polarization tensor as B, so

the formula (53) stays unchanged. In case of more than one inhomogeneity, say

!� = [mi=1(zi+ �Bi) (with zi+ �Bi of conductivity ki) the previous argument may

very simply be changed to proceed inductively one inhomogeneity at a time. In

summary we have therefore proven

Theorem 2 . Suppose n = 2 or 3 and suppose the domains Bi, i = 1; :::; m,

are strictly star-shaped. Also suppose the points zi 2 
, i = 1 : : :m, are mutually
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distinct and satisfy (4). Then for any z 2 �
 n fzig
m
i=1

u�(z) = �n�m
i=1(zi)

(zi)� ki

ki
rxN(zi; z) �MirxU(zi)

+

Z
@

 (x)N(x; z)d�x+O(�n+

1
2 ) ; (54)

for � su�ciently small. The term O(�n+
1
2 ) and its derivatives are uniformly

bounded by Cd�
n+ 1

2 on �
 \ fdist(z; !�) � d > 0g. The rescaled polarization

tensor, Mi, corresponding to the ith inhomogeneity is calculated just as before,

only with B replaced by Bi and k by ki.

Remark 1

An interesting special case is when the background conductivity, , is constant,

the inhomogeneities have a common conductivity k, and all the domains Bi have

been obtained from the same B by a dilatation and a rotation. Let �i > 0 be the

dilatation parameter and Qi the rotation corresponding to the i-th inhomogeneity,

i.e., Bi = �iQiB. In this case it is not di�cult to compute thatMi = �niQiMQT
i ,

whereM is the (rescaled) polarization tensor correponding to B and conductivity

ratio r = =k. Thus the representation formula for u� becomes

u�(z) = �m
i=1(��i)

n
 � k

k
rxN(zi; z) �QiMQT

i rxU(zi)

+

Z
@

 (x)N(x; z) d�x+ O(�n+

1
2 ) :

Remark 2

As pointed out earlier representation formuli similar to (54) may be obtained

using other fundamental solutions for the operator �r � r than the Neumann

function, N . The only di�erence will be the presence of a second boundary

integral. A particularly simple case is when the background conductivity  is

constant. In that situation it is natural in place of N(x; y) to use

�(x; y) =

(
�

1
2� log jx� yj ; n = 2
1
4� jx� yj�1 ; n = 3

The representation formula for u� now becomes

u�(z) = �n
mX
i=1


 � ki

ki
rx�(zi; z) �MirxU(zi)

+

Z
@

 (x)�(x; z) d�x�

Z
@

u�(x)

@�

@�x
(x; z) d�x+ O(�n+

1
2 ) ;
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or by subtraction of U(z) on both sides

u�(z)� U(z) = �n
mX
i=1


 � ki

ki
rx�(zi; z) �MirxU(zi)

�

Z
@


(u�(x)� U(x))
@�

@�x
(x; z) d�x+ O(�n+

1
2 ) :

The rearranged formula

u�(z)� U(z) +

Z
@


(u�(x)� U(x))
@�

@�x
(x; z) d�x (55)

= �n
mX
i=1


 � ki

ki
rx�(zi; z) �MirxU(zi) + O(�n+

1
2 ) ;

may be thought of as a representation formula for L(u��U) where L(V ) is de�ned

by L(V ) = V +
R
@
 V 

@�
@�x

d�x. For the inverse problem, when u� � U and thus

L(u� � U) is known on the entire boundary, then the formula (55) becomes a

very e�ective tool for the identi�cation of the zi and properties of �ki
ki

Mi (as

we shall see in the last section of this paper). It should be pointed out that the

formula (55) is not well suited for the inverse problem when the data u� � U

is only known on part of @
, nor is it suited to prove the kind of continuous

dependence results discussed in section 7. For those purposes the version of the

representation formula stated in Theorem 2 is much more useful.

6 Properties of the polarization tensor

In this section we analyse in some detail the properties of the n � n matrix M ,

introduced in the previous section. We have already referred to this matrix as the

rescaled polarization tensor associated to B and conductivity ratio r = (0)=k.

The polarization tensor itself is de�ned to be (r�1)M . We recall thatM = fmijg

is given by

mij = jBj�ij + (r � 1)

Z
@B

yi
@�j

@�

+

d�y : (56)

We begin by showing

Lemma 5 . The polarization tensor is symmetric.

Proof. In order to verify the symmetry, we shall rewrite the integral appearing

in the de�nition of M . Using the jump condition for
@�j
@�

on @B and integrating

by parts we obtainZ
@B

yi
@�j

@�

+

d�y =
1

r

Z
@B

yi(
@�j

@�

�

� �j) d�y

=
1

r

�Z
@B

�j�i d�y �

Z
@B

yi�j d�y

�

=
1

r

�Z
@B

�j�i d�y � jBj�ij

�
: (57)
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Substitution of (57) into (56) and simpli�cation yields

mij =
1

r
jBj�ij +

�
1�

1

r

�Z
@B

�j�i d� : (58)

To establish the symmetry of M (or (r � 1)M) it now su�ces to show thatR
@B �j�i d� =

R
@B �i�j d� ; 1 � i; j � n . Using the jump condition for

@�j
@� on

@B once more we get

Z
@B

�j�i d� =

Z
@B

@�i

@�

�

�j d� � r

Z
@B

@�i

@�

+

�j d� : (59)

The �rst integral on the right hand side of (59) may immediately be integrated

by parts to become
R
@B �i

@��
j

@� d�. As previously observed �j has the following

behavior (decay) at in�nity

�j(y) =

(
O(jyj�1) n = 2

O(jyj2�n) n � 3
ry�j(y) =

(
O(jyj�2) n = 2

O(jyj1�n) n � 3 :

This decay implies that the second integral on the right hand side of (59) may

also be integrated by parts. Altogether we obtain

Z
@B

�j�i d� =

Z
@B

@�j

@�

�

�i d� � r

Z
@B

@�j

@�

+

�i d�

=

Z
@B

�i�j d� 1 � i; j � n ;

and therefore, M is symmetric.

2

We shall use that the polarization tensor is invertible whenever (0) 6= k

(r 6= 1). This follows immediately from

Lemma 6 . The rescaled polarization tensor, M , is positive de�nite. Thus,

the polarization tensor (r � 1)M is positive de�nite for r > 1 ((0) > k) and it

is negative de�nite for r < 1 ((0)< k) .

Proof. Using (58)and (59) we compute

X
mij�i�j =

1

r

�
jBjj�j2 + (r� 1)

�Z
@B

@�

@�

�

� d� � r

Z
@B

@�

@�

+

� d�

��
;

where � =
P
�i�i, and � is the outer normal to B. Integrating by parts we obtain

X
mij�i�j =

1

r

�
jBjj�j2 + (r� 1)

�Z
B
jr�j2 dy + r

Z
<nn �B

jr�j2 dy

��
:
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It follows directly from this representation that if r � 1 ((0) � k) then M is

positive de�nite. Note that if r = 1 ((0) = k) then M is simply given by

mij = jBj�ij ;

however, the polarization tensor (r� 1)M vanishes.

We now seek a di�erent representation for M that will allow us to verify its

positive de�niteness in the case r < 1 ((0) < k). Rewriting (56) as a single

integral and rearranging terms, we have

mij =

Z
@B

�
yi�j + yi(r � 1)

@�j

@�

+�
d�y

=

Z
@B

yi

�
(r � 1)r�+j +ryj

�
� � d�y :

Using the jump condition for
@�j

@�
on @B and simplifying we get

mij =

Z
@B

yi

�
(1�

1

r
)(r��j � ryj) + ryj

�
� � d�y

=
1

r

Z
@B

yi

�
(r � 1)r��j + ryj

�
� � d�y :

Now note that the above can be rewritten as

mij =
1

r

� Z
@B

�
(r � 1)�i + yi

��
(r � 1)r��j + ryj

�
� � d�y

+ (1� r)

Z
@B

�i

�
(r � 1)r��j + ryj

�
� � d�y

�
: (60)

Application of the divergence theorem to the �rst integral in (60) yields

mij =
1

r

� Z
B
r((r� 1)�i + yi) � r((r� 1)�j + yj) dy

+ (1� r)

Z
@B

�i

�
(r � 1)r��j + ryj

�
� � d�y

�
: (61)

The second integral on the right hand side may also be further simplied. Using

the jump condition for
@�j

@�
on @B we obtain

(1� r)

Z
@B

�i

�
(r � 1)r��j + ryj

�
� � d�y

= (1� r)

Z
@B

�i

�
(r � 1)r��j + r��j � rr�+j

�
� � d�y

= (1� r)r

Z
@B

�i

�
r��j �r�+j

�
� � d�y : (62)
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Expanding the right hand side of (62) as two separate integrals and integrating

by parts (using the decay of �j) we get

(1� r)

Z
@B

�i

�
(r � 1)r��j + ryj

�
� � d�y

= (1� r)r

�Z
@B

�i
@�j

@�

�

d�y �

Z
@B

�i
@�j

@�

+

d�y

�

= (1� r)r

Z
<n
r�i � r�j dy :

Note that � is the outward unit normal to B. Substituting back into (61) we

�nally have

mij =
1

r

Z
B
r((r� 1)�i+ yi) � r((r� 1)�j + yj) dy + (1� r)

Z
<n
r�i � r�j dy ;

or X
mij�i�j =

1

r

Z
B
jr~�j2 dy + (1� r)

Z
<n
jr�j2 dy ; (63)

where ~� =
P
�i((r � 1)�i + yi) and � =

P
�i�i; . It follows immediately from

(63) that M is also positive de�nite for r < 1 ((0) < k).

2

Remark 3

When B is the unit ball we can explicitly determine M . In this special case

�j =
1

(n� 1)r+ 1
yj in B ; �j =

1

(n� 1)r + 1

yj

jyjn
in <n

nB ;

and a simple computation then gives

mij =
!n

(n� 1)r+ 1
�ij ;

where !n denotes the area of the unit sphere in <n. The polarization tensor itself

has entries �ij!n(r � 1)=((n� 1)r + 1).

2

In [7] we derived an asymptotic expansion for the voltage potential u� in the

special case of inhomogeneities that are either perfectly insulating or perfectly

conducting. We shall conclude this section by showing that the approximations

we obtained in these cases are entirely the same as those we would obtain by

letting k tend towards 0 or 1 in the approximation obtained here. Polarization

tensors corresponding to these two extreme cases have been considered many

other places in the literature; we refer the reader to [16] and [9].
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6.1 The limit as k ! 0.

Let �
(k)
j 2 C(<n); j = 1; :::; n; denote the unique solutions to

4�
(k)
j = 0; in B ; 4�

(k)
j = 0; in <

n
n �B

�
(k)
j is continuous across @B

@�
(k)
j

@�

+

�
k

(0)

@�
(k)
j

@�

�

= ��j ; on @B (64)

lim
jyj!1

�
(k)
j (y) = 0 :

There is a simple relation to the functions �j introduced earlier (cf. (52)), namely

�
(k)
j =

(0)
k �j .

Lemma 7. The sequence of functions f�
(k)
j j@Bg converges uniformly, as k ! 0,

to �
(0)
j j@B, where �

(0)
j is the solution to the following exterior Neumann problem,

��
(0)
j = 0 in <

n
n �B ;

(65)
@�

(0)
j

@�

+

= ��j on @B ; lim
jyj!1

�
(0)
j (y) = 0 :

Proof . We �rst note that the exterior Neumann problem (65) is uniquely

solvable. In <2, it owes its solvability to the fact that
R
@B �jds = 0. Let X be

the space of functions

X = f	 2 C(@B) :

Z
@B

	d� = 0g :

Let �(x; y) denote the fundamental solution

�(x; y) =

(
�

1
2� log jx� yj ; n = 2
1

(n�2)!n
jx� yj2�n ; n � 3

�(x; y) is as introduced before, only with  = 1. Writing �
(k)
j as a single layer

potential with density 	
(k)
j 2 X we have

�
(k)
j (y) =

Z
@B

�(x; y)	
(k)
j (x) d�x :

From classical potential theory (cf. [5], [11]) it follows that �
(k)
j is a solution to

(64) i�

k
@�

(k)
j

@�y

�

� (0)
@�

(k)
j

@�y

+

= (k� (0))

Z
@B

@�(x; y)

@�y
	
(k)
j (x) d�x+

k + (0)

2
	
(k)
j (y)

= (0)�j: (66)
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Multiplying equation (66) by 2
k+(0)

we obtain

(I � A(k))	
(k)
j = f

(k)
j ;

where A(k) is the compact operator (X ! X) de�ned by

A(k)	 = �2

�
k � (0)

k + (0)

�Z
@B

@�(x; y)

@�y
	(x) d�x ;

and

f
(k)
j =

2(0)

k + (0)
�j :

To see that A(k) maps X into X we use the fact that
R
@B

@�(x;y)
@�y

d�y = �1=2

for x 2 @B. Similarly writing �
(0)
j (y) =

R
@B �(x; y)	

(0)
j (x) d�x as a single layer

potential with density 	
(0)
j 2 X a necessary and su�cient condition that �

(0)
j

solves (65) is

(I �A(0))	
(0)
j = f

(0)
j : (67)

Here A(0) (X ! X) is the compact operator given by

A(0)	 = 2

Z
@B

@�(x; y)

@�y
	(x)d�x ;

and

f
(0)
j = 2 �j

j = 1; :::; n. To establish the lemma, it now su�ces to show that 	
(k)
j converges

uniformly to 	
(0)
j . From the uniqueness associated with (65) it follows that (67)

has at most one solution. By the Fredholm Alternative, (I � A(0))�1 exists and

is bounded. The sequence A(k) converges to A(0) in the operator norm as k ! 0,

and consequently, the invertible operators I�A(k) have a uniform bound for their

inverses

k(I �A(k))�1k � C ; 8k � 1 :

A simple estimation now gives

k	
(k)
j � 	

(0)
j k � k(I � A(k))�1k k(I � A(k))(	

(k)
j � 	

(0)
j )k

� C

�
k(I � A(k))	

(k)
j � (I �A(0))	

(0)
j k + k(A(k)

� A(0))	
(0)
j k

�

� C

�
kf

(k)
j � f

(0)
j k + k(A(k)

�A(0))	
(0)
j k

�
;

where all the norms pertain to the space X . The lemma now follows from the

facts that f
(k)
j ! f

(0)
j and A(k)

! A(0) as k ! 0.

2
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Let M (k) = fm
(k)
ij g denote the polarization tensor M (k) = (

(0)
k
� 1)M(

(0)
k
)

(with M(
(0)
k ) being the rescaled polarization tensor introduced earlier). From

(58) we get

m
(k)
ij = (1�

1

r
)jBj�ij + (1�

1

r
)2r

Z
@B

�j�i d�

= (1�
1

r
)jBj�ij + (1�

1

r
)2
Z
@B

�
(k)
j �i d� ;

with r =
(0)
k
. Due to Lemma 7 it follows immediately that the tensor M (k), as

k ! 0 (r!1) converges to the tensor M (0) = fm
(0)
ij g, given by

m
(0)
ij = jBj�ij +

Z
@B

�
(0)
j �i d� :

The latter is exactly the tensor de�ned in (5.7) of [7]. This means that the

present asymptotic formula in the extreme case k ! 0 (and for simplicity, with

one inhomogeneity \centered" at the origin)

u�(z) � �n
(0)((0)� k)

k
rxN(0; z) �M(

(0)

k
)rxU(0) + U(z)

= �n(0)rxN(0; z) �M (k)
rxU(0) + U(z)

is entirely consistent with the formula derived in [7] (with � = 1). The separate

proof of the asymptotic validity of this formula (for \k = 0") is still needed since

we have not shown that the term O(�n+
1
2 ) is uniform in k, as k ! 0.

6.2 The limit as k !1

To study the limit of the polarization tensor as k !1 it is convenient to perform

a di�erent rescaling of the functions �j . In this section we let �
(k)
j denote the

solution to

��
(k)
j = 0; in B ; ��

(k)
j = 0; in <

n
n �B

�
(k)
j is continuous across @B

(0)

k

@�
(k)
j

@�

+

�
@�

(k)
j

@�

�

= �
k � (0)

k
�j ; on @B (68)

lim
jyj!1

�
(k)
j (y) = 0 :

With this new de�nition �
(k)
j =

k�(0)
k �j , where �j is the solution to (52). Once

again, we represent �
(k)
j in the form of a single layer potential

�
(k)
j (y) =

Z
@B

�(x; y)	
(k)
j (x)d�x ;
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(k)
j 2 X . In this case

@�
(k)
j

@�y

�

=
1

2
	
(k)
j (y) +

Z
@B

@�(x; y)

@�y
	
(k)
j (x)d�x ; (69)

and

(0)

k

@�
(k)
j

@�y

+

= �
(0)

2k
	
(k)
j (y) +

(0)

k

Z
@B

@�(x; y)

@�y
	
(k)
j (x)d�x : (70)

Insertion of equation (69) and (70) into (68) yields

k + (0)

2k
	
(k)
j (y) + (1�

(0)

k
)

Z
@B

@�(x; y)

@�y
	
(k)
j (x) d�x =

k � (0)

k
�j :

Multiplication by 2k=(k+ (0)) therefore gives the following (necessary and suf-

�cient) equation for 	j

	
(k)
j (y) + 2

(k � (0))

(k + (0))

Z
@B

@�(x; y)

@�y
	
(k)
j (x) d�x = 2

k � (0)

k + (0)
�j :

Letting k !1 we formally obtain

	
(1)
j + A(1)	

(1)
j = 2�j ; 	

(1)
j 2 X ; (71)

where

A(1)	 = 2

Z
@B

@�(x; y)

@�y
	(x) d�x :

Indeed by an argument similar to that in the previous section one can show that

	
(k)
j converges uniformly to 	

(1)
j , and therefore, �

(k)
j j@B converges uniformly to

�
(1)
j j@B, where �

(1)
j is the single layer potential with density function 	

(1)
j . It is

also easy to prove that
@�

(k)

j

@�

+

converges uniformly to
@�

(1)

j

@�

+

on @B. From (71)

it follows that �
(1)
j jB solves the interior Neumann problem

��
(1)
j = 0 in B ;

@�
(1)
j

@�

�

= �j on @B :

In other words �
(1)
j = yj + cj on B, for some constant cj . From (71) it follows

that �
(1)
j j<nn �B solves the exterior Neumann problem (for the Laplacian) with

boundary data
@�

(1)

j

@�

+

= �j � 	
(1)
j , and it satis�es �

(1)
j ! 0 as jyj ! 1

(for n = 2 this relies on the fact that
R
@B	

(1)
j d� = 0). Furthermore �

(1)
j

satis�es the exterior Dirichlet problem (for the Laplacian) with boundary data
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�
(1)
j j@B = yj + cj . From this latter observation it follows immediately that

�
(1)
j = ��j + cj� where �j is the solution to the exterior dirichlet problem

��j = 0 in <
n
n �B ;

�j =�yj on @B ;

�j is harmonic at 1 ;

and � is the solution to

��= 0 in <
n
n �B ;

�= 1 on @B ;

� is harmonic at 1 :

The requirement that a function, which satis�es the equation 4u = 0 outside �B,

be harmonic at1 is equivalent to the the requirement that its Kelvin Transform

have a removable singularity at 0. For n=2 the function � is identically equal to

the constant 1, and so

�
(1)
j = ��j + cj : (72)

The fact that limjyj!1 �
(1)
j (y) = 0, uniquely determines cj . For n � 3 the

requirement that � be harmonic at 1 is equivalent to the requirement that

limjyj!1 �(y) = 0, and so the function � is nontrivial.

As noted before we have
@�

(1)

j

@�

+

= �j �	
(1)
j on @B; ; since 	

(1)
j 2 X it now

follows that
R
@B

@�
(1)

j

@�

+

d� = 0. Therefore

0 =

Z
@B

@�
(1)
j

@�

+

d� = �

Z
@B

@�j

@�
d� + cj

Z
@B

@�

@�
d� :

For n � 3 we have that @�
@�

< 0 everywhere on @B (by the maximum principle)

and we may thus solve the above equation for cj

cj =

Z
@B

@�j

@�
d�

�Z
@B

@�

@�
d�

��1
:

Let M (k) = fm
(k)
ij g denote the polarization tensor M (k) = (

(0)
k
� 1)M(

(0)
k
)

(M(
(0)
k
) being the rescaled polarization tensor introduced earlier). From (56)

we get

m
(k)
ij = (r� 1)jBj�ij + (r � 1)2

Z
@B

yi
@�

(k)
j

@�

+

d�y ;

with r =
(0)
k . From the fact that

@�
(k)

j

@�

+

converges uniformly to

@�
(1)
j

@�

+

= �
@�j

@�
+ cj

@�

@�
;
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we conclude that the tensor M (k), as k ! 1 (r ! 0) converges to the tensor

M (1) = fm
(1)
ij g, given by

m
(1)
ij = �jBj�ij +

Z
@B
yi
@�

(1)
j

@�

+

d�y

= �jBj�ij �

Z
@B
yi
@�j

@�
d�y + cj

Z
@B
yi
@�

@�
d�y :

For n = 2 we substitute �i = �yi on @B and use that @�
@�

= 0 on @B, to get

m
(1)
ij = �jBj�ij +

Z
@B

�i
@�j

@�
d�y ;

for n = 3 we substitute �i for �yi on @B and integrate the last (nontrivial)

integral by parts, to obtain

m
(1)
ij = �jBj�ij +

Z
@B

�i
@�j

@�
d� � cj

Z
@B

@�i

@�
d�

= �jBj�ij +

Z
@B

�i
@�j

@�
d� �

�Z
@B

@�

@�
d�

��1 Z
@B

@�i

@�
d�

Z
@B

@�j

@�
d� :

The latter two formulas are modulo a change of sign exactly those given for

the polarization tensor in (3.8) of [7]. This means that the present asymptotic

formula in the extreme case k ! 1 (and for simplicity, with one inhomogeneity

\centered" at the origin)

u�(z) � �n
(0)((0)� k)

k
rxN(0; z) �M(

(0)

k
)rxU(0) + U(z)

= ��n(0)rxN(0; z) � (�M (k))rxU(0) + U(z)

is entirely consistent with the formula derived in [7] (with � = 1). The separate

proof of the asymptotic validity of this formula (for \k =1") is still needed since

we have not shown that the term O(�n+
1
2 ) is uniform in k, as k !1.

7 The continuous dependence of the inhomogeneities

In a fashion completely similar to that in [7] the representation formula (54) may

be used to prove asymptotic Lipschitz estimates for certain characteristics of the

inhomogeneities in terms of the (rescaled) boundary data. As an example let

!� = [
m
i=1(zi + ��iB) and !0� = [

m0

i=1(z
0
i + ��0iB) be two sets of inhomogeneities

with 0 < d0 � jzi � zj j ; 8i 6= j, 0 < d0 � dist(zi; @
) ; 8i, and 0 < d0 �

�i � D0 ; 8i (and similar restrictions on the z0i and �0i). We suppose all the

inhomogenieties have the same known conductivity k 2]0;1[n[min; max], where

min = minx2�
 (x) and max = maxx2�
 (x). Let u� and u
0
� denote the voltage

potentials corresponding to !� and !
0
� for a �xed, nontrivial boundary current  .

It is crucial that rU(x) 6= 0 8x 2 
.
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Theorem 3 . Suppose n = 2 or 3 and suppose B is strictly star-shaped. Let �

be an open, nonempty subset of @
. There exist constants 0 < �0, �0 and C such

that if 0 < � < �0 and ��nku� � u0�kL1(�) < �0 then

(i) m = m0 ; and, after appropriate reordering,

(ii)
mX
i=1

�
jzi � z0ij+ j�i � �0ij

�
� C

�
��nku� � u0�kL1(�) + �1=2

�

The constants �0, �0 and C depend on �, 
, ,  , d0, D0, B, and k but are

otherwise independent of the two sets of inhomogeneities.

The factor ��n in front of ku��u
0
�kL1(�) is best possible; it follows immediately

from our analysis (cf. Theorem 2) that even if jzi � z0ij and j�i � �0ij are all of

order 1 the di�erence in the boundary data is of order �n. For �xed (small) �

the above theorem essentially asserts that the locations of the inhomogeneities

and their relative sizes depend Lipschitz-continuously on the rescaled boundary

deviation ��nku� � u0�kL1(�). We shall only here provide a sketch of the main

ideas of the proof of Theorem 3; for complete details (of the proof of an almost

identical result) we refer the reader to [7]. Let us also note that for n = 2

and � = @
 there is a close relation between Theorem 3 and the continuous

dependence results found in [13].

Sketch of the main ideas of proof By combining the representation for-

mula (54) with the fact that Mi = �niM((zi)=k), where M(r) is the rescaled

polarization tensor associated with B and conductivity ratio r, we get

��n(u�(z)� u0�(z)) =
mX
i=1

�ni (zi)
(zi)� k

k
rxN(zi; z) �M(

(zi)

k
)rxU(zi)

�

m0X
i=1

(�0i)
n(z0i)

(z0i)� k

k
rxN(z0i; z) �M(

(z0i)

k
)rxU(z

0
i) + O(�1=2) :

It is now not hard to see that if ��nku� � u0�kL1(�) and � are both su�ciently

small then m and m0 must necessarily be equal; for if not one may argue that

there exists a function of the form

F (z) =
mX
i=1

rxN(zi; z) � �i �
m0X
i=1

rxN(z0i; z) � �
0
i

(with �i 6= 0 and �0i 6= 0) and m 6= m0 such that

F (z) = 0 z 2 � :

To see that �i as well as �
0
i are not 0 we use the fact that rU never vanishes and

that the tensor M is invertible. Since N(x; z) = N(z; x) we have rxN(zi; z) =

r1N(zi; z) = r2N(z; zi), where r1 and r2 indicate the gradient with respect
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to the �rst and second variable respectively. From the de�nition of N(x; z) it

follows that

(z)
@

@�z
r2N(z; zi) = 0 z 2 @
 ;

and we thus obtain

(z)
@

@�z
F (z) = 0 z 2 @
 :

The function F is also easily seen to be harmonic in 
 n (fzig [ fz
0
ig). From the

uniqueness of the solution to the Cauchy problem for the Laplacian we conclude

that F (z) � 0 in 
, but this contradicts the fact that m 6= m0 (since the points

in the set fzig as well as in the set fz0ig are mutually distinct and since all the

vectors �i and �
0
i are di�erent from zero).

When it comes to \verifying" (ii) consider for simplicity the case when (x) =

 (a constant), and suppose also that U(x) = x1 (corresponding to boundary

current  = �1). Then

��n(u�(z)� u0�(z)) (73)

=
( � k)

k

mX
i=1

�
�nirxN(zi; z)� (�0i)

n
rxN(z0i; z)

�
� �1 + O(�1=2) ;

�1 being the �rst column of M(=k). A simple calculation givesX�
�nirxN(zi; z)� (�0i)

n
rxN(z0i; z)

�
� �1

=
Xh

(�i � �0i)n(��i)
n�1

rxN(zi; z) � �1 + (�0i)
n
�
rxN(zi; z)�rxN(z0i; z)

�i
� �1

=
X

(j�i � �0ij+ jzi � z0ij)

�
Xh

d�i n(��i)
n�1

rxN(zi; z) � �1 + (�0i)
n < dzi; D

2
xN(�zi; z) �1 >

i
;

with
P
(jd�ij+ jdzij) = 1 for some ��i(z) and �zi(z) (\between" �i and �

0
i and zi and

z0i respectively). By a fairly simple argument it follows from (73) that we either

(with appropriate reordering) have the desired continuous dependence estimate

mX
i=1

(j�i � �0ij+ jzi � z0ij) � C
�
��nku� � u0�kL1(�) + �1=2

�
;

or there exist (in�nitessimal) perturbations d�i and dzi (with
Pm

i=1(jd�ij +

jdzij) = 1), points zi (= z0i = �zi) and dilatation parameters �i (= �0i = ��i) so

that

G(z) =
mX
i=1

h
d�i n(�i)

n�1
rxN(zi; z) � �1 + (�i)

n < dzi; D
2
xN(zi; z) �1 >

i
= 0

for z 2 �. Just as was the case with F , the function G has a vanishing normal

derivative on @
 and it is harmonic in 
 except at the points fzig and fz0ig.If

G(z) = 0, z 2 �, it would now follow from the unique continuation property of
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harmonic functions that G(z) � 0 in 
. Since the points zi are mutually di�erent

and since the dilatation parameters �i and the vector �1 are nonzero, the function

G can only identically vanish if d�i = dzi = 0; i = 1 : : :m : This, however, would

be a contradiction to the fact that
P
(jd�ij + jdzij) = 1. We therefore conclude

that the desired continuous dependence estimate holds.

2

For n = 2 we could prove a similar continuous dependence estimate for the Qi

(the angles of rotations) and the \centers" zi, provided M(r) is not isotropic. It

is, however, not possible to prove such an estimate for the dilatation parameters,

the angles of rotations and the \centers" simultaneously (see [7]). To conclude

this section consider the case of two sets of inhomogeneities !� = [mi=1(zi+ ��iB)

and !0� = [
m
i=1(zi+��

0
iB) with B = the unit ball (centered at the origin).Suppose

the inhomogeneity zi+ ��iB has conductivity ki and the inhomogeneity zi+ ��
0
iB

has conductivity k0i. Notice that the number of inhomogeneities and their centers

are the same for !� and !
0
�. Suppose (x) =  (a constant) and U(x) = x1. In

this case

u�(z)� u0�(z)

= �n!n
mX
i=1

rxN(zi; z) � e1

"
( � ki)�

n
i

(n� 1) + ki
�

( � k0i)(�
0
i)
n

(n� 1) + k0i

#
+ O(�n+

1
2 ) :

It is clear from this expression that given a set of dilatation parameters �i and

conductivities ki we can chose any other set of dilatation parameters �0i > �i and

then determine conductivities k0i so that u��u
0
� is of order �

n+ 1
2 on @
. Similarly

given a set of dilatation parameters �i and conductivities ki we can chose any

other set of conductivities k0i, with k
0
i being on the same side of  as ki, and then

we can determine dilatation parameters �0i so that u��u
0
� is of order �

n+ 1
2 on @
.

In either case ��nku��u
0
�kL1(�)+ �

1=2 is of order �1=2, but
P
(j�i��

0
ij+ jki�k

0
ij)

is of order 1. Therefore there is no Lipschitz estimate like that in Theorem 3,

involving the �0s and the k0s. Equivalently, in terms of the inverse problem, it is

not possible to determine the ��0is and the k0is simultaneously from knowledge of

the lowest order term in u� � U .

8 Computational results

In this section we describe some computational experiments concerning the for-

mula (55). These experiments quite clearly demonstrate the viability of this

formula as an e�ective tool for the identi�cation of well separated, internal inho-

mogeneities inside an otherwise uniform conductor.

The constant background conductivity (x) =  is in all our actual computa-

tions chosen to be 1. We always use the background voltage potential U(x) = x1,

corresponding to the boundary current  = �1 (= �1). To apply the formula

(55) we need to calculate the tensorsMi. This is in each case done by calculating
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approximations to the functions �j (on @B) and then employing the formula (58)

to calculate the individual entries ofM . We also need the boundary data ( u�j@
);

in practice this data would be measured, but here we generate it numerically (so

called synthetic data). Approximations to the functions �j j@B and u�j@
 are cal-

culated by discretizations of integral equation formulations. Since the calculation

of an approximation to u�j@
 is very similar to the calculation of approximations

to the �j j@B, we describe in some detail how the latter approximations are arrived

at, and then we very briey discuss the main di�erences concerning u�. In all our

computational work we restrict attention to the two-dimensional case.

Recall, that �j is the solution to the boundary value problem (52). We note

that, as usual, a superscript of + and � will signify the values of the particular

function approaching @B from the exterior and interior of B respectively. Let �

denote the fundamental solution

�(x; y) = �
1

2�
log jx� yj ;

(� is as before, only with  = 1). Let x 2 <2 n �B and let SR be a disk of radius

R, with R su�ciently large that �B � SR and x 2 SR. Applying Greens formula

for the domain SRn �B we obtain

�j(x)=

Z
@SR

@�j

@�y
(y) �(x; y)d�y �

Z
@SR

�j(y)
@�(x; y)

@�y
d�y (74)

�

Z
@B

@�j

@�y

+

(y) �(x; y)d�y +

Z
@B

�j(y)
@�(x; y)

@�y
d�y x 2 SRn �B :

Here the unit normal, �, is directed towards the exterior of SR along @SR, and

towards the exterior of B along @B. Recall that for jyj ! 1 we have �j(y) =

O(jyj�1) and r�j(y) = O(jyj�2). Thus

lim
R!1

Z
@SR

@�j

@�y
(y) �(x; y) d�y = 0 ;

and

lim
R!1

Z
@SR

�j(y)
@�(x; y)

@�y
d�y = 0 :

As R!1 in (74) we now get

�j(x) =

Z
@B

�j(y)
@�(x; y)

@�y
d�y �

Z
@B

@�j

@�y

+

(y) �(x; y) d�y x 2 <n
n �B :

Using the boundary condition �
k

@�j
@�y

+
+

@�j
@�y

�
= �j on @B and the integral iden-

tity
R
@B

@�j
@�y

�
(y) �(x; y) d�y =

R
@B �j(y)

@�
@�y

(x; y) d�y ; x 2 <
2 n �B , we calculate

�j(x) =

Z
@B

�j(y)
@�(x; y)

@�y
d�y �

k



Z
@B

@�j

@�y

�

(y) �(x; y) d�y +
k



Z
@B

�j�(x; y) d�y
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=

Z
@B

�j(y)
@�(x; y)

@�y
d�y �

k



Z
@B

�j(y)
@�(x; y)

@�y
d�y +

k



Z
@B

�j�(x; y) d�y

=
 � k



Z
@B

�j(y)
@�(x; y)

@�y
d�y +

k



Z
@B

�j�(x; y) d�y :

In the limit as x! @B, this yields

�j(x) =
 � k



Z
@B

�j(y)
@�(x; y)

@�y
d�y +

 � k

2
�j(x) +

k



Z
@B

�j�(x; y) d�y ;

where the second term in the right hand side reects the jump associated with

the double layer potential. Rearranging terms and inserting the expression for

�(x; y) we �nally arrive at the integral equation

�j(x) +
(k � )

�(k+ )

Z
@B

�j(y)
(x� y) � �

jx� yj2
d�y = �

k

�(k + )

Z
@B

�j log jx� yj d�y ;

for x 2 @B. Equivalently, �j is the solution to

�j +A�j = fj ; (75)

with

(A�j)(x) =
k � 

�(k+ )

Z
@B

�j(y)
(x� y) � �

jx� yj2
d�y

and

fj(x) = �
k

�(k+ )

Z
@B

�j log jx� yj d�y :

We use a collocation method based on trigonometric interpolation for approx-

imating the solution to (75). That is, we seek an approximate solution for �j

on @B from the �nite dimensional subspace Tp =spanf�lg
p
l=1, generated by the

�rst p functions of the family f1; cos t; sin t; cos 2t; sin2t; :::g. We require that the

system of equations be satis�ed only at a �nite number of collocation points,

fx1; x2; :::; xpg, along @B. To be more precise, the approximation to �j is ex-

pressed as a linear combination �
(p)
j =

Pp
l=1 c

(l)
j �l, where the coe�cients c

(l)
j are

determined so that �
(p)
j satis�es

�
(p)
j (xi) +A�

(p)
j (xi) = fj(xi) i = 1; :::; p : (76)

The collocation points x1; :::; xp are chosen so that the subspace Tp is unisolvent

with respect to these points. Inserting �
(p)
j =

Pp
l=1 c

(l)
j �l into equation (76) we

get
pX

l=1

c
(l)
j �l(xi) +

pX
l=1

(A�l)(xi)c
(l)
j = fj(xi) i = 1; :::; p ;

or equivalently

Sĉj = f̂j ;
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where ĉj is the coe�cient vector ĉj = (c
(1)
j ; :::; c

(p)
j )T , and the entries in the matrix,

S = fsilg, and the right hand side, f̂j = ff̂
(i)
j g, are given by

sil = �l(xi) + (A�l)(xi) ;

f̂
(i)
j = fj(xi) :

The integral equation for u� is, as mentioned earlier, derived in a totally

similar fashion. There will now be equations corresponding to the boundaries

of all the inhomogeneities as well as to the outer boundary. We again use a

trigonometric collocation method to �nd an approximate solution. We take the

same number of collocation points for each inhomogeneity, this number being

somewhat smaller than the number of collocation points on the outer boundary.

Typically we take 25{50 points for each inhomogeneity and 50{100 points on the

outer boundary.

Having calculated the rescaled polarization tensors and the synthetic data

we use the formula (55) to identify the inhomogeneities. In the two dimensional

case, with the expression �
1

2� log jx�yj inserted in place of �(x; y), this formula

reads

u�(z)� U(z) +
1

2�

Z
@

(u�(x)� U(x))

(z � x) � �x

jx� zj2
d�x

= �2
1

2�

mX
i=1

 � ki

ki

(z � zi) � �x

jzi � zj2
�MirxU(zi) +O(�2+

1
2 ) : (77)

The left hand side L(u��U)(z) = u�(z)�U(z)+
1
2�

R
@
(u�(x)�U(x))

(z�x)��x
jx�zj2 d�x

is entirely known on @
 once u��U is known on @
. The sum on the right hand

side �(z) = �2 1
2�

Pm
i=1

�ki
ki

(z�zi)��x
jzi�zj2

�MirxU(zi) is a fairly explicit function of the

location and certain other features of the inhomogeneities. Our computational

identi�cation algorithm consists in minimizing a discreet L2 norm of the residual

L(u� � U) � � on @
. We choose the boundary expression L(u� � U) � � =

L(u� � U �L�1�) from (55) over the essentially equivalent boundary expression

u��U� ~� from (54) because of its explicitness and simplicity. It is clear that both

expressions are based on �nding the second term in an asymptotic expansion of

u� in powers of �n. In the calculations presented here we restrict our attention to

inhomogeneities, zi+ ��iQiB, which are dilatations, rotations and translations of

one common domain, and the conductivities of which are all the same. In this

case Mi = �2iQiMQT
i where �i > 0 are dilatation parameters, Qi are rotations

and M is the rescaled polarization tensor corresponding to the common domain,

B, and the common conductivity ratio =k. We take U to be the special solution

U(x) = x1, corresponding to the boundary current  = �1 (= �1). The domain


 is taken to be the disk of radius 10, centered at the origin, and we shall here only

consider inhomogeneities that are shaped as disks or ellipsoids (even though we

have performed experiments with other shapes). We select J equidistant points,
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y1; :::; yJ, on @
 (typically J = 50) and we seek the unknown parameters of the

inhomogeneities as the solution to the nonlinear least squares problem

min
JX

j=1

�
u� (yj)� U(yj) +

1

2�

Z
@


(u�(x)� U(x))
(yj � x) � �x

jx� yj j2
d�x

�
1

2�

mX
i=1

(��i)
2 ( � k)

k

yj � zi

jzi � yj j2
�QiMiQ

T
i e1

�2
: (78)

To calculate the inside, L(u��U)��, of the least squares functional, we use the

equivalent formula

L(u� � U)(z)� �(z) = u�(z)�
1

2�

 
mX
i=1

(��i)
2 ( � k)

k

z � zi

jzi � zj2
�QiMiQ

T
i e1

�

Z
@


�1 log jx� zj d�x �

Z
@


u�
(z � x) � �

jx� zj2
d�x

!
:

We minimize over fzi; ��ig when the orientations are known or when they are

irrelevant, as is the case when the inhomogeneities are all disks, and we minimize

over fzi; Qig when the dilatation parameters are known. When all the param-

eters are unknown one can attempt to minimize over fzi; ��i; Qig, however, as

pointed out earlier, there may be considerable non-uniqueness of the minimizer

in that case. The approximate formula L(u��U) � � on which our identi�cation

algorithm is based has been veri�ed to hold asymptotically as � ! 0. Before we

proceed to describe any of our identi�cation experiments we shall try to assess

the practical validity of this formula.

We consider a single inhomogeneity of the form z1+��1B, having conductivity

k = 10, and compare the graph of the function

u�(z)� U(z); z 2 @
 (79)

to the graph of

L(u� � U)(z)� �(z)

= u�(z)� U(z) +
1

2�

Z
@


(u�(x)� U(x))
(z � x) � �x

jx� zj2
d�x

�(��1)
2 1

2�

 � k

k

(z � z1) � �x

jz1 � zj2
�MrxU(z1); z 2 @
 : (80)

The reference conductivity is, as always, taken to be  = 1. Figure 1(a) and

(b) displays the graph of these two functions for a circular inclusion with center

z1 = (0; 6) and radius ��1 = 1:00 (in this case B is the unit disk). In �gure 2

(a) and (b) we graph the results obtained for an elliptical shaped inhomogeneity

having eccentricity ratio 1:2, center of mass z1 = (0; 6), and scaling factor ��1 =

0:50: In this case B is an ellipse with major axis 4 and minor axis 2; the major
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(a) u� � U

(b) L(u� � U)� �

Figure 1: Remainder terms for a circular inhomogeneity
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(a) u� � U

(b) L(u� � U)� �

Figure 2: Remainder terms for an elliptical inhomogeneity
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axis is parallel to the x2 axis. The graphs obtained in �gures 1 and 2 were

based on evaluating (79) and (80) at 100 uniformly spaced points along @
: As

anticipated, the remainder L(u� � U) � � is much smaller than the remainder

u� � U . In both cases the largest values are on that part of the boundary which

is nearest to the inhomogeneity. The two graphs are approximately of the same

shape for the disk, whereas their shapes di�er for the ellipse.

Our theoretical result estimate the term L(u� � U) � � to be of the order

�n+
1
2 = �2:5, however, this is far too conservative; one should expect it to be of

order �2n = �4, since it largely represents the \quadratic" term when L(u��U) is

expanded in a power series in the volume of the inhomogeneity. To demonstrate

this point, we have calculated a discrete L2 norm of the term L(u� � U) � �

correponding to four di�erent cases of a circular inhomogeneity centered at (0; 6)

with conductivity k = 10. For the l2 norm we used 25 evenly spaced points along

@
. The four inhomogeneities have the form (0; 6)+ ��1B with B being the unit

disk and the scaling factor ��1 taking the values ��1 = :5; 1; 2; and 3. The graph

of the l2 norm, E, as a function of the parameter ��1 is displayed on a log-log plot

in �gure 3(a). Geometric regression analysis shows the correlation coe�cient for

the data to be 0.919 and produces the \best �t"

E � 0:0141(��1)
3:95 :

We have repeated this experiment for four di�erent inhomogeneities of the form

(0; 6)+ ��1B, where B is the elliptical domain centered at the origin with major

axis 4 (parallel to the x2-axis) and minor axis 2. The l2 norm of the remainder,

based on 25 evenly spaced points along @
; was calculated for the values ��1 =

0:25; 0:50; 1:00; and 1.50. The corresponding graph is shown in �gure 3(b).

The correlation coe�cient for this data is calculated to be 0.914 and geometric

regression analysis produces the \best �t"

E � 0:0435(��1)
4:01 :

We next study the remainder terms for a conductor containing a single inho-

mogeneity, as we vary the conductivity, k, of the inhomogeneity. Speci�cally, we

examine the two norms

(a) ku� � UkL1(@
) and (b) kL(u� � U)� �kL1(@
) ;

for conductivities satisfying :00001 < k < 100000: The inhomogeneity is a unit

disk centered at (0; 6). The results are displayed in �gure 4. As expected, both

norms approach 0 as the conductivity on the inhomogeneity approaches the refer-

ence conductivity,  = 1. Figure 5 provides a comparison of the two remainders.

Here we have plotted kL(u� � U) � �kL1(@
) against ku� � UkL1(@
) on a log-

log scale. In plots 5 (a) and (b) we display the results for conductivity values

k < 1 and k > 1 respectively. Geometric regression analysis shows the correlation
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(a) Plot for circular inhomogeneities

(b) Plot for elliptical inhomogeneities

Figure 3: Log-log plots of the remainder (error) vs the scaling factor, ��1.
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(a) k vs. ku��Uk1. (b) k vs. kL(u��U)��k1

Figure 4: The remainder terms as a function of the conductivity, k.

(a) k < 1 (b) k > 1

Figure 5: Graph of kL(u� � U)� �k1 vs. ku� � Uk1 .
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z1; z2 k u� � U L(u� � U)� �

(0,6); (0,-6) 10 0.281 8.49E-3

(0,6); (0,3.9) 10 0.360 7.14E-3

(0,6); (0,3.9) 1000 0.425 .100

(6,0); (3.9,0) 10 0.823 .150

(6,0); (3.9,0) 1000 1.075 .255

Table 1: L1(@
) norms of remainder terms

coe�cient for k < 1 to be 0.984, and produces the \best �t", t = 0:0768s1:99;

where t represents kL(u� � U) � �kL1(@
) and s represents ku� � UkL1(@
) .

The correlation coe�cient for k > 1 is 0.984, and the corresponding \best �t" is

t = 0:0826s2:01: These results clearly indicate that the remainder L(u��U)�� is

of the order of the square of the remainder u��U itself, uniformly in k. This helps

to explain why the polarization tensor term in (54) (or (55) has the \correct" limit

as k ! 0 and k !1.

In our last example to assess the accuracy of our representation formula we

study the remainder terms u� � U and L(u� � U) � � as we vary the location

(closeness) and common conductivity, k; of two circular inhomogeneities. The

results are displayed in Table 1. In the �rst case, the (unit) disks, located at (0,6)

and (0,-6), are relatively far apart and the corresponding remainder L(u��U)��

is quite small. In the remaining four cases the disks are only a distance 0.1 apart.

When the two disks are centered on the x2-axis and k is moderately to very

large they have less impact on the electric �eld (which largely ows parallel to

the x1-axis), than when they are centered along the x1-axis. This explains why

the remainders are smaller in cases 2 and 3 when compaired with cases 4 and 5.

When k is 10 the remainder L(u��U)�� is smaller than when k is 1000 (for the

same geometric con�guration). In the second case when k is 10 and the disks are

close, but centered on the x2-axis the remainder L(u� � U)� � is small enough

(compared to u��U) that our approach would very easily locate these two disks,

however, as a general rule we must conclude that our approach will be somewhat

inaccurate when it comes to locating inhomogeneities that are closely spaced.

8.1 Identi�cation experiments

As mentioned earlier our identi�cation approach consists in solving the least

squares problem (78). For the actual minimization we employ Mor�e's routine,

a modi�ed Levenberg-Marquardt algorithm. To be quite speci�c, we call the

general least-squares solver LMDIF1 which is found in MINPACK. Note that we

solve the unconstrained problem. That is, in solving (78) we do not place any

restrictions on zi or ��i. Although we could have imposed conditions requiring

that for each i, zi 2 
; and ��i be su�ciently small so that the inhomogeneity

centered at zi remains strictly inside 
, these constraints were unnecessary. When

the true number of inhomogeneities is known, these restrictions have always been
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automatically satis�ed in the cases we have run. Moreover, when the number

of inhomogeneities is a priori unknown, then the unconstrained problem can in

our experience be used to determine the number of inhomogeneities as follows. If

the number of inhomogeneities in the initial con�guration is less than the actual

number present (in the data), then the �nal l2 residual produced remains rela-

tively large. Upon increasing the number of initial inhomogeneities, this residual

decreases until the number of inhomogeneities corresponds to the actual number

present. If the initial number of inhomogeneities is further increased, the addi-

tional inhomogeneities were eventually placed outside the domain 
 or shrunk

to zero. This provides an excellent indicator that one has exceeded the actual

number present.

When it comes to the requirement that the inhomogeneities stay disjoint and

well separated our intermediate iterates are frequently in violation. Admitting

overlapping inhomogeneities has in practice proven extremely useful in improving

the convergence of our procedure and in providing a simple (and quite reasonable)

initial estimate for the location and the size. The initial inhomogeneities are all

placed at the center of the domain. A \rough" estimate for the \size" of the

inhomogeneities is obtained by considering (78) with a prescribed number of

inhomogeneities (all \centered" at the origin and of identical \size") and then

solving for ��i = ��.

If the common scale (�) of the inhomogeneities is extremely small, then our

discretization errors may well dominate the data u��U j@
, and therefore, one can

not expect to locate such inhomogeneities with good accuracy. Consequently, in

all our computational work we have considered only those values for ��i satisfying

��i > 0:10; i = 1; :::m:

Our �rst experiment involves determining the location, size, and angle of

rotation of an elliptical inhomogeneity which is parametrically de�ned by

x1 = 0 + 0:25 (cos(t) cos(
�

4
)� 2 sin(t) sin(

�

4
))

x2 = 6 + 0:25 (cos(t) sin(
�

4
) + 2 sin(t) cos(

�

4
));

and has conductivity k = 10. Figure 6 depicts the convergence of the iterates

obtained from the least squares routine. The initial guess and all the iterations

have been graphed. After three iterations the location, size, and rotation of the

inhomogeneity were acurately determined to three signi�cant �gures. The �nal

result corresponds to the solid line ellipse.

We have (understandably) not been very successful in computationally de-

termining the location, size, and angle of rotation for multiple inhomogeneities.

However, if the sizes of the inhomogeneities are known then we have been able

to determine their locations and their angles of rotation. Our next experiment

addresses such a problem. That is, we determine the locations and angles of

rotation of the three ellipses which are parametrically given by
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Figure 6: Graph of the iterations for an ellipse.

(a) x1= 7 + 0:25 cos(t) (b) x1 = �1 + 0:50 cos(t)

x2= 0 + 0:50 sin(t) x2 = �6 + 0:25 sin(t);

(c) x1= �2 + 0:25(cos(t) cos(
�

4
)� 2 sin(t) sin(

�

4
)

x2= 4 + 0:25(cos(t) sin(
�

4
) + 2 sin(t) cos(

�

4
):

For all three ellipses we utilize the same rescaled polarization tensor which is

computed for the ellipse parametrically de�ned by x1 = cos(t) ; x2 = 2 sin(t).

The program is able to accurately determine the locations, zi, and the angles of

rotation, �i, for all the inhomogeneities by the �fteenth iteration. Each of the

inhomogeneities has a (�xed) scaling factor of �� = 0:25: For our initial data we

center all the inhomogeneities at the origin with a zero rotation angle as shown

in �gure 7(a). The inhomogeneities, determined by the �fth, tenth, and �fteenth

iterations of our program, are displayed in �gure 7(b)-(d) respectively. After the

�fth iteration, two of the inhomogeneities were estimated to have approximately

the same location and rotation. As a result, their images nearly coincide and

only two inhomogeneities are visible in �gure 7(b). Our computations yield the

following locations and angles of rotation
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Iteration z �Error ���Error Residual Norm

0 12.767145 0.385066 4.28148E-3

5 11.786228 0.346988 2.38138E-3

10 7.608637 0.308908 1.92556E-4

15 5.232940 0.180206 1.12363E-4

20 1.517874 0.124015 4.46768E-5

25 0.055479 0.005526 1.45346E-5

Table 2: Error analysis for iterations 0,5,10,15,20 and 25

(a) z1 = (6:982;�0:005); �1 = 3:134

(b) z2 = (�0:996;�5:976); �2 = 1:568

(c) z3 = (�2:026; 4:024); �3 = 0:761 :

In our third experiment we successfully locate and determine the sizes of �ve

circular inhomogeneities. Each of the inhomogeneities has conductivity k = 15:

Figure 8 shows the initial estimate for the location and size of the inhomogeneities,

as well as their estimated locations and sizes after I = 5, 10, 15, 20, and 25

iterations of the least squares algorithm. Table 2 provides an error analysis for

the iterations. More speci�cally, column 2 represents the l2 error in the location

of the inhomogeneities after the I-th iteration. Column 3 represents the relative

l2 error in the size of the inhomogeneities after the I-th iteration, and column 4

represents the relative l2 norm of the residual vector, that is,

Residual Norm =

qPJ
j=1(L(u� � U)(yj)� �I(yj))2qPJ

j=1(u�(yj))2
:

Here u� is the (discrete) solution to the conductivity problem coresponding to the

the \true" location of the inhomogeneities and �I is the sum from (78) with zi
and ��i replaced by the approximate locations and scaling factors obtained after

the Ith iteration.

For this example we have also calculated the relative l2 norm of the boundary

deviation u� � uF
� , where uF

� now is the (discrete) solution to the conductivity

problem with inhomogeneities the locations and sizes of which are given by the

�nal output from the minimization algorithm. This calculation yieldsqPJ
j=1(u�(yj)� uF

� (yj))
2qPJ

j=1(u�(yj))2
= 7.75533E-5:

As our last experiment we try to locate two circular inhomogeneities of a

�xed radius �� = :25 as they approach one another. We consider �ve di�erent
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(a) Initial location and size. (b) Location and size after 5 iterations.

(c) Location and size after 10 iterations. (d) Location and size after 15 iterations.

Figure 7: Convergence of iterates for 3 ellipses
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Figure 8: Convergence of the iterates for 5 circular inhomogeneities.

50



scenarios: the two circles are centered at z1 = (�s; 0) and z2 = (s; 0) with s =

2; 1; :75; :5 and :3 corresponding to a distance between the two inhomogeneities of

3:5; 1:5; 1; :5 and :1 respectively. For each scenario we run our minimization three

times corresponding to three di�erent initial guesses: (i) z
(init)
1 = (0; 0); z

(init)
2 =

(0; 5); (ii) z
(init)
1 = (0;�5); z

(init)
2 = (0; 5); and (iii) z

(init)
1 = (�5; 0); z

(init)
2 =

(5; 0) . In all cases we start with initial scaling factors between 0:14 and 0:16.

In the �rst scenario (s = 2) our algorithm always succesfully determined the

locations and sizes of the inhomogeneities. In the second scenario (s = 1) two

of the runs were very succesful { the third got stuck near a local minimum but

with a residual su�ciently large that it would indicate a problem (and thus

warrant another run). In the third and fourth scenario the ability to identifty

the two inhomogeneities accurately depended even more on the initial guess {

and quite troubling, the residual for a somewhat \inaccurate" identi�cation was

not always signi�cantly larger than for a more \accurate" identi�cation. Among

other things this signals that the approximate formula on which our algorithm

is based is starting to become \invalid". In the �nal scenario none of our initial

guesses produced a very accurate identi�cation of the inhomogeneities. In the

best case the estimated locations and sizes of the inhomogeneities were z1 =

(�0:280; 0) ; ��1 = 0:274 and z2 = (0:292; 0) ; ��2 = 0:269.

We have tested our approach in a variety of other cases including those with

multiple inhomogeneities having di�erent shapes and di�erent conductivities.

Our experience in these cases is very similar to that described above. But we

should note that for such problems the computational cost increases somewhat,

since multiple polarization tensors are required.
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