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Abstract 
Genetic risk factors often localize in non-coding regions of the genome with unknown effects on 

disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory 

mechanisms underlying the association of genetic risk factors with disease. More mechanistic 

insights can be derived from knowledge of the context, such as cell type or the activity of 

signaling pathways, influencing the nature and strength of eQTLs. Here, we generated 

peripheral blood RNA-seq data from 2,116 unrelated Dutch individuals and systematically 

identified these context-dependent eQTLs using a hypothesis-free strategy that does not require 

prior knowledge on the identity of the modifiers. Out of the 23,060 significant cis-regulated 

genes (false discovery rate ≤ 0.05), 2,743 genes (12%) show context-dependent eQTL effects. 

The majority of those were influenced by cell type composition, revealing eQTLs that are 

particularly strong in cell types such as CD4+ T-cells, erythrocytes, and even lowly abundant 

eosinophils. A set of 145 cis-eQTLs were influenced by the activity of the type I interferon 

signaling pathway and we identified several cis-eQTLs that are modulated by specific 

transcription factors that bind to the eQTL SNPs. This demonstrates that large-scale eQTL 

studies in unchallenged individuals can complement perturbation experiments to gain better 

insight in regulatory networks and their stimuli.  
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Introduction 
The molecular mechanisms underlying the association of genetic risk factors with disease and 

complex traits are still largely elusive. Many disease-associated genetic variants are found in 

non-coding parts of the genome 1,2 and thus must have a regulatory effect on expression. 

Mapping single nucleotide polymorphisms (SNPs) with an effect on the regulation of gene 

expression (expression quantitative trait loci, eQTLs) helps to unravel the regulatory networks 

that underlie physiological traits and diseases 3–8. Given differences between the regulatory 

networks of different cell types, it is not surprising that a substantial fraction of eQTLs are only 

apparent in specific cell types or tissues 9–14. The presence of external stimuli and the activity of 

internal signaling pathways may also determine the presence and strength of the regulatory 

effects of eQTLs. For example, a subset of eQTLs in immune cells may only be observed after 

activation of these cells by immunological triggers 15–20. Knowledge of the cellular context in 

which disease-associated eQTLs are active can help to identify the cell types that are relevant 

in the pathophysiology; identification of the cell type in which a risk locus shows the most 

profound effects allows prioritization of variants for functional experiments. Additionally, insights 

into the activity of signaling pathways modifying eQTL effects help to unravel the regulatory 

networks underlying disease. Here, we developed and applied a strategy to identify the most 

important intrinsic and extrinsic factors that modify eQTL effects in blood cells, without making 

any prior assumptions on the identity of these modifiers. We demonstrate how the eQTLs and 

their modifiers contribute to better understand the molecular basis of disease.   

Results 

Main-effect cis-eQTLs 

We generated a comprehensive set of cis-eQTLs by sequencing whole peripheral blood mRNA 

of 2,176 healthy adults from four Dutch cohorts 21–24 (2,116 individuals remaining after stringent 

quality control (Table S1, Supplementary material)). We quantified gene and exon expression, 

as well as exon ratios (the proportion of expression of an exon relative to the total expression of 

all exons of a gene) and polyA ratios (the ratio of the expression in upstream and downstream 

parts of the 3’-UTRs separated by annotated polyadenylation (polyA) sites) and performed cis-

eQTL mapping for all of these. We detected cis-eQTL effects for 66% of the protein coding 

genes tested and 19% of the non-coding genes tested. In total, we found eQTL effects for 

23,060 different genes (false discovery rate (FDR) ≤ 0.05). We replicated 84% of 6,418 

previously reported cis-eQTL genes that we had previously detected in a meta-analysis of 5,311 
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array-based blood samples 4 (90% with the same allelic direction) (Table S2). This 

demonstrates the superior statistical power to detect eQTLs when using RNA-seq data (Tables 

S2 and S3). We also observed strong overlap with RNA-seq based cis-eQTLs from EBV-

transformed lymphoblastoid cell lines (LCL) 5 (78% of the LCL cis-eQTLs could be replicated, 

88% with the same allelic direction), but substantially extended the list of genes that are known 

to be under genetic regulation (replication results in Supplementary material online, Table S2). 

In addition to detected gene-level eQTLs, we identified for 21,888 different genes with one or 

more exon-level QTL effects and 9,777 and 2,322 genes where SNPs affected the inclusion rate 

of exons and the usage of polyA sites, respectively (Table S3). A complete catalogue of all our 

eQTLs can be downloaded and explored via a dedicated browser at 

http://genenetwork.nl/biosqtlbrowser. 

Multiple unlinked SNPs in the same locus may independently influence expression or mRNA 

processing of the same gene 25. We analyzed this using stepwise regression of the effects of 

the top eQTL SNPs. More than half of the cis-regulated genes showed evidence for multiple 

independent eQTL effects (Figure 1a, Figure S1).  

The gene cis-eQTL SNPs are strongly enriched for DNase I footprints, various histone marks 

and binding sites of multiple transcription factors 26 (Table S4) suggesting that our substantial 

sample-size enabled us to pinpoint likely causal regulatory variants. Moreover, top eQTL SNPs 

were significantly enriched for general and blood-cell-type-specific enhancers (as taken from 

Andersson et al., 2014 27), but not for non-blood tissue-specific enhancers (Table S5). Evidence 

for the functionality of exon ratio and polyA ratio QTLs in mRNA splicing and polyadenylation is 

presented in the supplementary material. 

One third (2,064 / 32.7%) of previously established genetic risk factors for disease or complex 

traits (derived from the NHGRI GWAS catalog and a set of reported ImmunoChip associations, 

P ≤ 5 x 10-8) were in strong linkage disequilibrium (LD r2 ≥ 0.8) with a top eQTL SNP (Table S6, 

Figure 1b). As expected, eQTL effects were predominantly found for SNPs associated with 

hematological, lipid or immune-related traits. We observed a highly significant enrichment of co-

localization of eQTL and GWAS SNPs (LD r2 ≥ 0.8) for many immune disorders, as compared to 

height (see supplementary material for details), indicating that our blood cis-eQTLs are highly 

informative for diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid 

arthritis (Figure 1c).  
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Context-dependent eQTLs 

The effects of SNPs on gene expression often depend on the cell type or tissue under 

investigation 9–12, and may be modified by external and environmental factors 15–19. To identify 

these context-dependent eQTLs, we developed a hypothesis-free strategy that does not 

assume any prior knowledge about the factors that may modify the eQTL effects (Figure 2a). 

Instead of using known factors, such as the percentage of neutrophils in blood 28,  in a gene by 

environment interaction model, we used the expression levels of other genes as interaction 

factors. Here, we expect that the genes whose expression levels modify eQTLs are proxies of 

cell types or other intrinsic or extrinsic factors, and we call these genes 'proxy genes'. 

To do this in a systematic manner, we ran interaction analyses for all the eQTLs identified for 

each gene, evaluating each gene for its potential to influence eQTLs and quantifying per gene 

the extent to which it influenced the complete set of cis-eQTLs. We first identified the proxy 

gene acting on the highest number of eQTLs. We subsequently corrected the expression data 

for interaction effects with the top proxy gene and repeated this process in an iterative fashion to 

find additional independent proxy genes (Figure 2a). We first concentrated on the top 10 proxy 

genes that independently affected, in total, 1,842 unique cis-eQTL genes (Figure 2c).  

An example is shown in Figure 2b. We found a significant eQTL effect of SNP rs1981760 (a 

SNP associated with leprosy susceptibility) on NOD2 expression. The first top proxy gene, 

STX3, had a significant interaction effect on this eQTL. Samples with very low expression of 

STX3 showed only a very weak eQTL on NOD2, whereas samples with very high STX3 

expression showed a stronger eQTL effect size. When visualizing this using an interaction plot, 

a clear divergence in NOD2 expression between samples with different genotypes can be 

observed (Figure 2b). Further analysis demonstrated that STX3 expression was strongly 

correlated (Pearson r = 0.74) with the percentage of neutrophils in the blood, suggesting that 

STX3 is a proxy for neutrophils. In this example, the eQTL effect is found to be more prominent 

in neutrophils than in other blood cell types, and the expression of NOD2 found to be lower in 

carriers of the risk allele compared to carriers of the protective allele. It also confirms a role for 

neutrophils in the disease for which a genetic association with the locus is found, i.e. leprosy. 

To investigate the biological context reflected by the 10 independent proxy genes, we selected, 

for each of these genes, the top 100 genes showing a nearly identical interaction effect with 

eQTLs (see Methods and Table S7 for full details). As expected, these genes are highly co-

expressed (Figure 2c), and we refer to such a set of genes as an ‘interaction module’.  
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We first assessed whether these interaction modules might represent markers for specific cell 

types, and correlated the top 100 genes per module with the blood cell counts measured in our 

samples (neutrophils, lymphocytes, eosinophils, basophils and monocytes) and assessed their 

baseline gene expression levels in purified blood cells from the BLUEPRINT consortium 29. 

Based on higher correlation with counts of the corresponding cell type and the higher 

expression in BLUEPRINT data, we concluded that eight out of the ten modules were strongly 

associated with specific blood cell types (Figure 2c and Figure S2), namely neutrophils, CD4+ 

T-cells, NK cells, CD8+ T-cells, monocytes, erythroblasts, macrophages and eosinophils.  

The eQTLs modified by cell type proxies were enriched in cell-type-specific signaling pathways 

(Figure 2c, Table S8). For example, genes for which the cis-eQTL effects were particularly 

strong in erythroblasts (module 4) had erythrocyte-specific functions. They were also enriched in 

binding sites for transcription factors involved in erythrocyte development based on ENCODE 

ChIP-seq data (GATA1, TAL1, GATA2 and MafK, each with enrichment p-values ≤ 10-5) 30–32. 

For the other modules, we also identified specific transcription factors having established 

functions in the corresponding cell types (Table S9). Analysis of eQTL interactions with the 

blood cell counts measured confirmed the cell-type-dependent effects on neutrophils, 

lymphocytes, eosinophils and monocytes (Table S10). However, the comparison with 

BLUEPRINT expression data showed that our unbiased analysis also identified effects for cell 

types for which actual cell counts were not available (erythroblasts, CD4+ T-cells and NK 

cells/CD8+ T-cells), showing the usefulness of such an approach in datasets without 

comprehensive cell count measurements.  

eQTLs that are lymphocyte-dependent and that show a stronger signal in B-, T- or NK cells are 

expected to replicate better within the in B-cell-derived LCL eQTL data generated by the 

Geuvadis consortium 5. We indeed found that replication of the lymphocyte-dependent eQTL 

effects is higher than our overall replication rate in Geuvadis (Table S11) (46% vs 38%, Fisher 

exact p-value = 0.005). In contrast, for our neutrophil-dependent eQTLs, the replication rate was 

similar to the overall replication rate (39% vs 38%, Fisher exact p-value = 0.58). Here, however, 

we observed that these neutrophil-dependent eQTLs are enriched for opposite allelic effects 

between our data and the Geuvadis results (27% opposite effects, compared to 14% for all 

overlapping eQTLs, Fisher exact p-value = 8.08 x 10-5). While the Geuvadis LCLs are not a 

perfect model for any of our lymphoid modules, our replication results do provide further 

evidence of the cell-type dependent nature of the identified context-dependent eQTLs. 
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The 10 proxy genes identified using the gene-level eQTLs also affected 4,216 exon-level eQTLs 

and 572 exon ratio QTLs. Gene function enrichment analysis on the exon-level and exon ratio 

QTLs showed results similar to that of eQTL genes (Table S8), indicating that the proxy genes 

do not solely represent the factors modulating gene-level eQTLs but also those that affect 

alternative splicing eQTLs. 

Risk factors for immune disorders show context-dependent effects 

To demonstrate how eQTLs and their context-specific effects can help to better understand 

disease, we highlight cis-eQTLs for inflammatory bowel disease (IBD) and rheumatoid arthritis 

(RA). We performed clustering of the eQTL genes based on co-expression in our dataset. 

These clusters consisted of genes expressed in the same cell types according to the 

BLUEPRINT data. Functional enrichment analyses of the eQTL genes revealed pathways 

relevant to the disease etiology. Moreover, the subset of context-specific eQTLs provides 

additional evidence for the cell types in which the disease risk alleles are most active. Examples 

are shown in Figures 3 (IBD), 4 (RA), S3 (other immune disorders), and Table S12. 

For IBD we included the loci reported by a recent multi-ethnic meta-analysis 33. Of the 232 top 

SNPs reported in this meta-analysis, 95 loci (41%) are in strong LD (r2 ≥ 0.8) with a top eQTL 

SNP (median r2 = 0.96 and median D’ = 0.996). Importantly, 42 risk variants are in perfect LD 

with the top eQTL SNP (Figure 3e), which was proportionally much higher compared to non-

immune traits (Figure 1c). In total, eQTL SNPs that are proxies for these 95 IBD loci affected 

expression of 233 genes (Figure 3a).  

Clustering of these 233 genes revealed a set of 123 genes mainly related to T-cell biology and a 

set of 110 genes specific to neutrophils and toll-like receptor signaling (Figure 3b and 3c, see 

Table S13 for full enrichment analysis results), confirming existing knowledge of the cell types 

relevant in IBD 20,21. There was a significant imbalance in the direction of regulation within the T-

cell cluster: 54 genes were up-regulated by the IBD risk allele whereas only 29 were down-

regulated (binominal test p-value: 0.003), suggesting increased T-cell activity in IBD.  

Incorporation of exon level eQTLs can be used to better understand gene level eQTLs. For 

instance, rs727088 lowered CD226 expression. Zooming into the exon QTL effects of this gene, 

we found two exons that were strongly up-regulated, both of them unique to a non-sense 

mediate decay (NMD) transcript (as annotated by Ensembl). The other exons showed down-

regulation by the risk allele, suggesting that a shift to the NMD isoform is lowering overall gene 

expression levels (Figure S4). 
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Twelve IBD-linked genes demonstrated context-dependent eQTL effects (Table S12). Five of 

these eQTLs were strongest in neutrophils (positive interaction score for module 1) and the 

genes containing these eQTLs were present in the neutrophil cluster (Figure 3d). We also 

observed negative interactions, where the effect becomes smaller in a specific module, e.g. the 

eQTL effect of rs1728801 regulating ZPF90 (Figure 3f), a gene that is known to be important in 

T-helper cells 36. We found that carriers of the protective allele show increased expression of 

ZPF90 in CD4+ T-cells, while the risk allele carriers show consistently high expression levels 

independent of CD4+ T-cells. This indicates that while ZFP90 expression normally is restricted 

to T-cells this does not apply to carriers of the risk allele which have high expression levels in 

multiple cell-types, potentially activating T-cell specific pathways in other cells. 

For RA, 81 eQTL genes were found that cluster into three groups (Figure 4a). The median r2 

between the top eQTL SNPs and the top GWAS hits is 0.95, the median D’ is 0.996 and 24 

variants are in perfect LD. The genes in two clusters showed high expression levels in B-cells 

and NK/T-cells, respectively (Figure 4d). This was supported by the gene function enrichments 

(Figure 4c). The genes in the third cluster were highly expressed in macrophages, neutrophils 

and monocytes and were related to platelet activation and coagulation. RA patients are known 

to be at increased risk for venous thromboembolism 25 and the importance of blood coagulation 

factors in RA pathogenesis has recently been established 26. The eQTL results link risk loci and 

genes to this symptom. 

Eight RA-associated eQTLs were context dependent (Table S12). In concordance with their 

gene expression patterns, six of these demonstrated stronger eQTL effects in T- or B-cells 

(Figure 4b). FAM167A demonstrated an interaction with both module 9 (B-cells) and module 2 

(CD4+ T-cells). Interestingly, we observe that for carriers of the protective allele there is no 

correlation between CD4+ T-cells and the expression levels of FAM167A, whereas for carriers 

of the risk allele we do see up-regulation of this gene in CD4+ T-cells.  

We obtained similar results for celiac disease (Figure S3a), type 1 diabetes (Figure S3b), 

multiple sclerosis (Figure S3c) and systemic lupus erythematosus (Figure S3d).  

Modules not associated with cell types 

We found that most modules represented different cell types, except module 6 and 7. Although 

module 6 could not be attributed to a clear biological process, module 7 contains many genes 

that are known to be involved in the type I interferon response. Pathway enrichment of the 51 

module 7 proxy genes, which were positively correlated with the expression of the top proxy 
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gene SP140, revealed that many of these genes are involved in the type I interferon response to 

viral infection. The other 48 genes that correlated negatively with SP140 are involved in anti-

bacterial response and inflammation (Figure 5a). The positively correlated genes are enriched 

for up-regulated genes upon rhinovirus stimulation 16 (Fisher exact p-value 1.14 x 10-9), in line 

with their involvement in the type I interferon response. In contrast, the negatively correlated 

genes are enriched for genes up-regulated upon LPS stimulation (Fisher exact p-value 0.02) 

and interferon-gamma stimulation (Fisher exact p-value 8.72 x 10-4) 15, supporting the anti-

bacterial function of these genes (Table S14). Likewise, the affected eQTL genes can be 

divided into two groups: those that were positively correlated with SP140 expression and those 

with negative correlations to SP140. Similarly to the proxy genes, the most significantly enriched 

pathway for the positively correlated eQTL genes was ‘response to type I interferon’ (Figure 5b). 

Gene annotations from the interferome database 39 confirmed that the up-regulated eQTL genes 

are indicative of a type I, but not of a type II interferon response (Figure 5c). Type I interferon 

signaling is activated in a viral response and type II interferon signaling is activated upon 

bacterial response 40. Both type I and type II interferon signaling result in binding of 

heterodimers of the STAT1 transcription factor. Unique to type I interferon is that STAT1 forms a 

complex with STAT2 and IRF9, resulting in the activation of viral response genes. STAT3 

activation is also unique to the type I response, resulting in the down-regulation of inflammatory 

pathways 41. The eQTLs were enriched for STAT1 (p-value = 4.82 x 10-04), STAT2 (3.12 x 10-04) 

and STAT3 (4.72 x 10-05) binding sites (based on ENCODE ChIP-seq experiments) (Table S9). 

Motif enrichment analysis 42 on the 25 bp flanking regions of the eQTL SNPs confirmed the 

enrichment of STAT-binding motifs (Wilcoxon rank-sum test, p-value = 9.61 x 10-05). In support 

of the modifying effects of viral cues on this set of eQTLs, eQTL genes that have recently been 

reported as rhinovirus-response QTLs 16 typically have higher interaction z-scores for module 7 

than other eQTL genes (Wilcoxon p-value = 0.02). We therefore conclude that the effect of 

these 145 eQTL genes is dependent on stimulation with type I interferon. 

Regulatory network discovery 

Each of the aforementioned ten modules demonstrated effects on many (>120) eQTLs. 

However, some other factors may also exist that affect more limited numbers of eQTLs. To 

identify these, we first corrected the expression data for the 10 module interaction effects and 

then ascertained for each gene-level eQTL whether the eQTL effect size was significantly 

dependent on the expression of any other gene. This resulted in the identification of an 

additional set of 901 context-dependent eQTL genes (FDR ≤ 0.05). Of these eQTL 
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interactions,113 could be replicated in Geuvadis LCLs (FDR ≤ 0.05, 94% with the same 

interaction direction) (Table S15). These LCLs are derived from a single cell type so any 

interaction effect that replicates is unlikely due to cell type specific eQTL effects, but likely reflect 

an external stimulation or activation of core biological processes. A few of these context-

dependent eQTLs enable inference of regulatory networks: 

An example is a cis-eQTL effect on the lipid biosynthesis gene FADS2 that is modified by the 

expression of the sterol regulatory element binding transcription factor SREBF2 (p-value = 4.1 x 

10-14, p-value in Geuvadis = 0.002) (Figure 6a and 6b). The eQTL SNP was in close proximity to 

an SREBF2 binding site (ENCODE ChIP-seq data, Figure 6c) and it is therefore likely that the 

SNP modifies the affinity of the FADS2 promoter for SREBPF2. SREBF2 showed a significant 

negative correlation to HDL cholesterol (Pearson r = -0.18, p-value = 5.1 x 10-6) and a positive 

correlation to lymphocyte percentage (Pearson r = 0.19, p-value = 1.6 x 10-6). A partial 

correlation analyses revealed that the correlation to HDL cholesterol is independent of the 

correlation to the lymphocyte percentage (Pearson r on residuals of HDL after correcting for 

lymphocytes: -0.17, p-value = 2.7 x 10-5), showing that the correlation to HDL is not driven by 

cell type composition. We propose a model where extracellular (HDL) cholesterol levels modify 

SREBF2 binding to the FADS2 promoter, which, in turn has effects on the expression of FADS2 

and the lipid unsaturase activity in the cell. 

We found 109 genes that alter the rs285205 cis-eQTL effect on MYBL2, which encodes a 

known transcription factor that controls cell division and has a known tumor suppressing 

function 43. Co-expression clustering based on these 109 proxy genes revealed six clusters 

(Figure 6d). Gene function enrichment analyses on the genes in these clusters revealed that all 

were related to proliferation or cell cycle checkpoints. Interestingly, only one cluster increased 

the magnitude of the MYBL2 eQTL effect in contrast to the other clusters, which all repressed 

this eQTL. This eQTL activating cluster was strongly enriched for “positive regulation of B cell 

proliferation” (p-value = 1 x 10-7), and the strongest proxy gene in this cluster was FCRLA, 

which is known to be highly expressed in proliferating B-cells residing in the germinal center of 

the lymph nodes (centroblasts) 44. FCRLA is also reported to be highly expressed in 

lymphoblastoid cell lines, which are in a highly proliferative state 45. However, in our analysis we 

had initially only considered genes that where expressed in each of our individuals (see 

methods), and therefore had not studied low-abundant transcription factor genes. When also 

including these genes, we observed this cluster of genes is strongly co-expressed with EBF1, a 

transcription factor that drives B-cell differentiation and proliferation, suggesting that EBF1 might 
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drive the eQTL interaction effect for MYBL2. This was indeed confirmed using ENCODE ChIP-

seq data in LCLs: we observed strong binding of EBF1 at rs285205 (Figure 6g). EBF1 is a 

known player in B-cell differentiation and proliferation and positively correlated to both MYBL2 (r 

= 0.11, p-value = 6.99 x 10-7) and FCRLA (r = 0.8, p-value ≤ 2.2 x 10-16). Finally, testing EBF1 

as a proxy gene directly also revealed a significant interaction (p-value = 1.8 x 10-14) effect 

(Figure 6f). As such EBF1 influences MYBL2 gene expression, but because of its binding at 

SNP rs285205, this SNP likely affects the binding affinity of EBF1. In the Geuvadis dataset 

these MYBL2 interactions are not significant, however 74% were in the same direction 

(binominal p-value = 2.2 x 10-5).  

Discussion 
Using whole blood RNA-seq data we greatly expanded the catalog of SNPs that have a known 

regulatory function. Our study on 2,116 individuals allowed identification of many independent 

genetic effects influencing expression levels. We observe co-localization of one third of the 

disease- and trait-associated variants with eQTL signals, and we observed significantly more 

overlap for traits related to blood (immunological disorders/metabolic levels) as compared to 

other traits such as height and BMI, and thus arrive at different conclusions as compared to a 

recent paper that observed that blood eQTL and IBD variants do not significantly more often co-

localize as compared to chance 46. However, since that analysis used earlier array-based blood 

eQTL results that had not been imputed to recent reference panels, this suggests that earlier 

eQTL studies either have lacked sufficient statistical power to identify eQTLs (i.e. limited sample 

size and/or the use of microarrays instead of RNA-seq) or were unable to fine-map these 

associations (i.e. imputation to older reference panels). Additionally, the presence of multiple 

independent regulatory variants might have been missed; while the regulatory effects of nearly 

500 GWAS hits were not in strong LD with our top eQTL SNPs, they were in strong LD with our 

secondary, tertiary or even higher order eQTLs (Figure 1a, Figure S1). Moreover, approximately 

10% of the GWAS hits did not affect the regulation of overall gene expression levels, but had an 

impact on mRNA processing because they were found only in the exon, exon ratio or polyA-

ratio QTL analyses (Figure 1b, Table S6, examples in Supplementary Material online). 

To gain a better understanding of the biology behind these regulatory variants, we identified 

2,743 context-dependent eQTLs (1,842 in the first 10 modules and 901 in the remainder) and 

identified many of the determinants that modify these eQTLs. These provide further insight into 

the cell types in which the genetic risk factors are regulating gene expression and the regulatory 

networks in which they participate, further refining our findings on GWAS risk loci. Unlike other 
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approaches (15,16,20), our method does not rely on any prior knowledge or assumptions on 

differences in cell type composition or naturally occurring stimulations acting on our whole tissue 

data.  

We also observed various examples where eQTLs are influenced by transcription factors that 

bind to the eQTL SNP. This includes rs968567 that strongly influences FADS2 gene expression 

and depends on SREBF2 activity, but which also increases risk for rheumatoid arthritis, blood 

metabolite levels and lipid levels. With future increases in sample-size we expect it might also 

become possible to observe gene x environment interaction effects for this SNP on these 

(disease) phenotypes as well.   

Our method can easily be applied to other tissues and we expect that many more cell-type-

dependent eQTLs will become detectable in such datasets once sample-sizes become 

sufficiently large. This will likely lead to the identification of even more unanticipated intrinsic 

factors and external stimuli that modify the downstream effects of genetic risk factors. As such 

our approach complements perturbation experiments to gain better insight in regulatory 

networks and their stimuli.  
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Figures 

Figure 1 

 

Figure 1. Over 20,000 genes are regulated by cis-eQTLs overlapping with 33% of the 

entries in the GWAS catalog. (A) Bar plot listing the numbers of cis-regulated genes having 

one, two, three, four and five or more independent eQTL effects (FDR ≤ 0.05). Different shades 

of blue represent the type of eQTL (gene, exon, exon ratio or polyA ratio). The number of 

eQTLs overlapping with SNPs in the GWAS catalog (r2 ≥ 0.8) are indicated in red. (B) 

Distribution of GWAS catalog variants over the different types of eQTLs. Of the GWAS catalog 

SNPs, 8% affect exon-level QTLs or polyA ratio QTLs but not overall gene expression levels. 

(C) Auto-immune disorders and traits related to blood show a higher co-localization with eQTLs 

compared to anthropometric traits and diseases without an immune or hematological 

component. 
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Figure 2 

 

Figure 2. Identification of the strongest modifiers of eQTL effects (A) Strategy for 

hypothesis-free identification of modifiers of eQTL effects: each of the highly expressed genes 

(at least one read in all samples) was tested for its ability to modify each of the 17,291 eQTL 

effects (for eQTL genes with at least one read in all samples). For each of these covariate 

genes, we determined the overall strength of the interaction effects with all eQTLs. We selected 

the strongest covariate gene and regressed-out the interaction term from the data. We did this 
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for 10 iterations allowing the identification of 10 independent modules that affect the strength of 

eQTLs. (B) An example of a context-dependent eQTL effect is rs1981760, a strong eQTL for the 

NOD2 gene. This SNP is in strong LD (r2 = 0.99) with rs9302752, a variant associated to 

Leprosy susceptibility. The leprosy risk allele results in decreased expression of NOD2. In 

samples with low STX3A expression, only a weak eQTL effect is observed. In samples with high 

STX3A expression, a strong eQTL effect is observed. In accordance with this, using this STX3A 

gene as a covariate in an interaction model reveals a very strong interaction effect. This STX3A 

gene is the top covariate of our first interaction module. This module correlates strongly to 

neutrophil percentage (Pearson r = 0.72) and gene enrichment analysis shows involvement in 

antibacterial response. Furthermore, individuals carrying the Leprosy risk allele have 

significantly weaker NOD2 up-regulation in neutrophils compared to non-carriers. This is in line 

with earlier reports showing this eQTL to be stronger in FACS-sorted neutrophils compared to 

monocytes 47. (C) We annotated each of our 10 modules using the top 100 proxy genes and 

show that these top 100 genes are strongly correlating per module. This top 100 was used for 

gene function enrichments (for full results see Table S9) and was correlated to known cell 

proportions. We used BLUEPRINT expression data for sorted populations of blood cells to 

validate cell-type-specific expression in each module. 
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Figure 3 
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Figure 3. eQTLs associated with inflammatory bowel disease are predominantly active in neutrophils and T-cells. (A) The 

expression levels of 233 genes are regulated by 95 IBD loci. The gene-level eQTLs affected are indicated with arrows showing 

whether the risk allele increases or decreases expression. Genes without an arrow show exon QTL effects or polyA-ratio QTLs. 

Genes regulated by loci specific for ulcerative colitis (UC) or Crohn's disease (CD) are marked accordingly (those without label are 

found in both). Genes regulated by an eQTL showing a significant interaction with one of our 10 modules are marked with a star. 

Clustering of the genes based on co-expression in our data revealed two clusters (colored yellow and blue). For the yellow cluster, 

we identified a significant overrepresentation of genes where the risk allele increases gene expression. (B) Gene function enrichment 

per cluster showed T-cell biology for the yellow cluster and neutrophil biology for the blue cluster. (C) Expression levels in the cell-

sorted BLUEPRINT data show that the genes in the yellow cluster show higher expression in T-cells and the genes in the blue 

cluster show higher expression in neutrophils. (D) All positive eQTL interaction effects for IBD eQTLs. All positive interactions with 

module 1 (the neutrophil module) are by genes in the neutrophil cluster. (E) Distribution of LD (r2 and D’-values) between the top IBD 

variant and the top eQTL variant. (F) Two examples of negative interaction effects. Note: ENSG00000262820 has been removed in 

newer Ensembl versions. 

https://doi.org/10.1101/033217
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Figure 4 

 

Figure 4. eQTLs associated with rheumatoid arthritis affect blood coagulation and NK- 

and B-cell biology. (A) We found 81 genes with eQTLs linked to RA. The gene level eQTL 

affected are marked with arrows indicating whether the risk allele increases or decreases 

expression. Genes without an arrow show exon QTL effects or polyA-ratio QTLs. Genes 

regulated by an eQTL showing a significant interaction with one of our 10 modules are marked 

with a star. Clustering of the genes based on co-expression revealed three clusters (colored 

yellow, aquamarine and blue). (B) Positive interaction for eQTL effects of RA loci. Genes in the 

blue NK-cell cluster show interactions for module 3 (the NK/CD8+ T-cell module) and genes in 

the aquamarine B-cell cluster show interaction in module 9 (the B-cell module). (C) Gene 

function enrichment per cluster showed B-cell biology for the aquamarine cluster and NK-cell 

pathways for the blue cluster. The yellow cluster shows different types of pathways not specific 

to a cell type. (D) Expression levels in the cell-sorted BLUEPRINT data confirm the B-cell and 
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NK-cell annotations of the aquamarine and blue clusters. (E) Distribution of LD (r2 and D’-

values) between the top IBD variant and the top eQTL variant. 

Figure 5 

 

Figure 5. eQTLs modified by type I interferon signaling (A) The top 100 covariate genes for 

module 7 are clustered based on expression levels, revealing two distinct clusters of genes. 

Genes positively correlated with the top covariate (SP140) are indicated in blue and those 

negatively correlated with SP140 in red. Enrichment analysis of these two clusters show distinct 

biology: the up-regulated genes are enriched for type I interferon response and response to 

viruses whereas the down-regulated genes indicate an anti-bacterial inflammatory response. (B) 
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The eQTLs affected by module 7 can also be divided into those genes positively or negatively 

correlated with SP140 expression. The significantly positively correlated eQTL genes are also 

enriched for type I interferon response, whereas the negatively correlated eQTL genes do not 

show strong enrichment for biological functions. (C) Interferome DB annotation of the up-

regulated eQTL genes confirmed their role in type I (and not type II or III) interferon signaling. 

Figure 6 
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Figure 6. Context-dependent eQTL effects not present in the 10 modules. (A & B) SREBF2 

expression modulates the eQTL effect on FADS2. (C) The eQTL SNP affecting FADS2 

expression is located in an ENCODE ChIP-seq peak of SREBF2 binding. (D) Heatmap of the 

co-expression of 109 proxy genes that affect the eQTL effect on MYBL2 expression. The 

different clusters show pathway function enrichments related to proliferation and cell-cycle. (E) 

Regulation of MYBL2 by the different cell-cycle clusters is likely modulated via EBF1 and 

rs285205. (F) Interaction plot when using EBF1 as proxy gene (G) EBF1 binds directly over the 

MYBL2 eQTL SNP rs285205.  

Data availability 
All results can be queried using our dedicated QTL browser:  

http://genenetwork.nl/biosqtlbrowser/. Raw data was submitted to the European Genome-

phenome Archive (EGA, accession number EGAS00001001077). 
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