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Abstract

Prediction of conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) is of major interest in AD
research. A large number of potential predictors have been proposed, with most investigations tending to examine one or a
set of related predictors. In this study, we simultaneously examined multiple features from different modalities of data,
including structural magnetic resonance imaging (MRI) morphometry, cerebrospinal fluid (CSF) biomarkers and
neuropsychological and functional measures (NMs), to explore an optimal set of predictors of conversion from MCI to
AD in an Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. After FreeSurfer-derived MRI feature extraction, CSF
and NM feature collection, feature selection was employed to choose optimal subsets of features from each modality.
Support vector machine (SVM) classifiers were then trained on normal control (NC) and AD participants. Testing was
conducted on MCIc (MCI individuals who have converted to AD within 24 months) and MCInc (MCI individuals who have
not converted to AD within 24 months) groups. Classification results demonstrated that NMs outperformed CSF and MRI
features. The combination of selected NM, MRI and CSF features attained an accuracy of 67.13%, a sensitivity of 96.43%, a
specificity of 48.28%, and an AUC (area under curve) of 0.796. Analysis of the predictive values of MCIc who converted at
different follow-up evaluations showed that the predictive values were significantly different between individuals who
converted within 12 months and after 12 months. This study establishes meaningful multivariate predictors composed of
selected NM, MRI and CSF measures which may be useful and practical for clinical diagnosis.
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Introduction

Mild cognitive impairment (MCI) has been conceptualized as

a disorder situated in the spectrum between normal cognition

and dementia. However, only a proportion of individuals with

MCI progress to dementia. Consequently, prediction of the like-

lihood of MCI individuals developing Alzheimer’s disease (AD)

is increasingly essential. Moreover, successful prediction offers the

opportunity for the enrichment of clinical trials of disease-

modifying therapies which aim to slow or prevent AD.

Presently, there are few clinical or imaging markers for the

early identification of MCI which progresses to AD and MCI

which does not progress. Based upon subsequent diagnosis status

at follow-up evaluations, MCI participants can be divided into two

subgroups: MCI patients who have converted to AD (MCI

converters, MCIc), and MCI patients who have not converted to
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AD (MCI non-converters, MCInc). Different modalities of disease

indicators have been studied for AD progression including

neuroimaging biomarkers [1,2,3,4,5], biomedical biomarkers [6],

and neuropsychological assessments [7,8,9]. Structural magnetic

resonance imaging (MRI) captures disease-related structural

patterns by measuring loss of brain volume and decreases in

cortical thickness. A number of studies, covering region of interest

(ROI), volume of interest, voxel-based morphometry and shape

analysis, have reported that the degree of atrophy in several brain

regions, such as the hippocampus, entorhinal cortex and medial

temporal cortex, are sensitive to disease progression and predict

MCI conversion [10,11,12,13,14,15]. Biochemical changes in the

brain are reflected in the cerebrospinal fluid (CSF). CSF con-

centrations of total tau (t-tau), amyloid-b 1 to 42 peptide (Ab1–42)

and tau phosphorylated at the threonine 181 (p-tau181p) are

considered to be CSF biomarkers which are diagnostic for AD

[6,16,17]. An increase in levels of CSF t-tau and a decline in Ab1–

42 have been identified as being amongst the most promising and

informative AD biomarkers [6,18]. Neuropsychological assess-

ments are potentially useful for disease prognosis. Some cogni-

tive measurements have shown statistically significant differences

between MCI progressors and nonprogressors over the course of

12 months [19].

While most research focuses on a single modality of data,

different modalities of data may provide complementary informa-

tion. A recent study showed that a combination of MRI, CSF

and fluorodeoxyglucose positron emission tomography (FDG-

PET) predicted MCI converters within 18 months with a sensi-

tivity of 91.5% and a specificity of 73.4% (total 99 individuals)

[20]. Davatzikos and colleagues analyzed MRI and CSF bio-

markers and correctly classified 55.8% (sensitivity, 94.7%; speci-

ficity, 37.8%) of 239 individuals as either MCIc or MCInc using

SPARE-AD (Spatial Pattern of Abnormalities for Recognition of

Early AD) index [15]. Ewers et al. [21] obtained accuracies from

64% to 68.5% for 130 MCI participants with different markers:

MRI, CSF, neuropsychological tests, and their combinations.

Although significant progress has been made, most investiga-

tions concerning MCI prediction have chosen features based on

prior knowledge and findings. To the best of our knowledge, few

publications have selected the most relevant features automati-

cally, thereby eliminating the scope for redundancy in MCI pre-

diction. In this study, using an Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset, we employed data-driven techniques

and examined single and multiple modalities of features to capture

MCI conversion within 24 months; we also analyzed conversion

time. Firstly, structural measures of each ROI were extracted

using FreeSurfer; CSF biomarkers and neuropsychological and

functional measures (NMs) were downloaded from the ADNI

website. Secondly, feature selection was performed on three moda-

lities of features, respectively, in order to select optimal feature

subsets. Finally, support vector machine (SVM) classifiers were

trained to classify MCI individuals using selected features. Training

was conducted on baseline normal control (NC) and AD groups,

and testing was conducted on the baseline MCI group. Our

hypothesis was that there could be symptoms of brain structural and

functional deficits in the MCIc group, but not (much) in MCInc

group, which could be identified at baseline. Previous research

about spatial patterns of brain atrophy has demonstrated that

characteristics of the MCIc group almost entirely overlap with those

of AD individuals, and MCInc group characteristics almost entirely

overlap with those of NC individuals [22]. Additionally, studies by

Fan et al. [22], Costafreda et al. [10] and McEvoy et al. [13]

successfully predicted MCIc using classifiers constructed from NC

and AD participants, suggesting our hypothesis was convincing.

Theoretically, classifiers constructed on MCI individuals should be

able to separate MCIc/MCInc accurately; however, the follow-up

of 24 months is not sufficient to obtain ground truth labels of MCIc/

MCInc, which can only be achieved a much longer time-frame. In

our study, some MCInc participants converted after 24 months, and

the use of MCI participants for model generation may result in high

training errors. For these reasons classifiers were constructed on NC

and AD participants, and then applied to MCI individuals. We

hypothesized that the combination of different modes of data would

achieve better results because each modality separately produces

a limited prediction. On the other hand, cross-sectional baseline

differences between MCInc and MCIc would be most like NC and

AD, respectively. In other words, the individuals with MCI who are

about to develop AD would appear more similar to AD, whereas

those who will not convert to AD would appear more similar to NC

within selected features.

Materials and Methods

Ethics
For the purpose of this study we used ADNI data that were

previously collected across 50 sites. Study subjects gave written

informed consent at the time of enrollment for data collection and

completed questionnaires approved by each participating site’s

Institutional Review Board (IRB), including Albany Medical

College, Banner Alzheimer’s Institute and Baylor College of

Medicine etc. The complete list of ADNI sites’ IRBs can be found

at the link: http://adni.loni.ucla.edu/about/data-statistics/, or in

Text S1.

Participants
Data used in the preparation of this article were obtained from

the ADNI database (www.loni.ucla.edu/ADNI) in April 2010.

The ADNI was launched in 2003 by the National Institute on

Aging, the National Institute of Biomedical Imaging and Bioen-

gineering, the Food and Drug Administration, private pharma-

ceutical companies and non-profit organizations, as a $US60

million, 5-year public–private partnership. The primary goal of

the ADNI has been to test whether serial MRI, positron emission

tomography (PET), other biological markers, and cognitive and

neuropsychological assessment can be combined to measure the

progression of MCI and early AD. Determination of sensitive and

specific markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials. For up-to-date information, please refer to: http://www.

adni-info.org.

The eligibility criteria for the inclusion of participants are

described at: http://www.adni-info.org/Scientists/ADNIGrant/

ProtocolSummary.aspx. General inclusion/exclusion criteria are

as follows: normal subjects had Mini-Mental State Examination

(MMSE) [23] scores between 24 and 30 (inclusive), a Clinical

Dementia Rating (CDR) [24] of 0, and were non depressed, non

MCI, and non demented. MCI patients had MMSE scores

between 24 and 30 (inclusive), a memory complaint, had objective

memory loss measured by education adjusted scores on the

Wechsler Memory Scale Logical Memory II [25], a CDR of 0.5,

absence of significant levels of impairment in other cognitive

domains, essentially preserved activities of daily living, and an

absence of dementia. AD patients had MMSE scores between 20

and 26 (inclusive), a CDR of 0.5 or 1.0, and met NINCDS/

ADRDA [26] criteria for probable AD.

Only ADNI subjects who had pre-processed and quality

checked MR images, baseline CSF measurements and at least

Prediction of Conversion from MCI to AD
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24-month follow-up evaluations were included in this study. This

yielded a total of 87 MCInc, 56 MCIc, 111 NC and 96 AD

patients. Table 1 provides detailed participant demographics infor-

mation for training data and test data. There were no significant

differences between NC and AD, MCInc and MCIc groups in

terms of age and sex. We focused on baseline classification of MCI

individuals, therefore MRI scans, CSF biomarkers, demographic

information and neuropsychological data were all obtained at the

baseline visit.

MRI imaging acquisition
Structural MRI scans were acquired from 1.5T scanners at

multiple sites across the United States and Canada. MRI protocols

ensured comparability across a variety of scanners (GE, Siemens

or Philips). The imaging sequence was a 3-dimentional sagittal

magnetization prepared rapid gradient-echo (MPRAGE). The

MPRAGE sequence was repeated back-to-back to increase the

likelihood of acquiring at least one good quality MPRAGE scan.

In addition, a dual fast spin-echo (proton density/T2-weighted)

sequence was acquired to evaluate the presence or state of vascu-

lar disease and general pathology detection [27,28]. The pre-

processing correction procedure was as follows: (1) grad warp

correction of image geometry distortion due to gradient non-

linearity; (2) B1 non-uniformity processing to correct the image

intensity non-uniformity; and (3) N3 processing to reduce residual

intensity non-uniformity [28]. Original scans and pre-processed

images are available at http://adni.loni.ucla.edu/.

Overview of prediction procedure
The prediction procedure consisted of three processing stages:

feature extraction and collection, optimal feature subset selection,

and classification. Figure 1 illustrates the diagram of the prediction

framework. During the training stage, MRI features which had

been extracted automatically using FreeSurfer, as well as a set of

NM and CSF biomarkers, were downloaded from the ADNI

website. A feature selection method was then employed to choose

optimal subsets of features, respectively. After feature selection, we

combined multiple features, including the MRI, NM and CSF

features to train classifiers to distinguish between NC and AD. In

the testing stage, we extracted what we had determined to be the

optimal feature subsets during the training stage. A predictive

value was then generated for each test subject through the SVM

classifier.

MRI feature extraction
Advances in MR image analysis algorithms have led to the

development of automated parcellation tools which can segment

the whole brain into anatomic regions and quantify the features of

each region [29]. The widely used FreeSurfer software package

(http://surfer.nmr.mgh.harvard.edu/) was applied to each partic-

ipant’s pre-processed scan. Processing results using FreeSurfer

Version 4.3.0 have been published on the website: www.loni.ucla.

edu/ADNI. Briefly, the processing included automated Talairach

space transformation, intensity inhomogeneity correction, removal

of non-brain tissues, intensity normalization, tissue segmentation

(the subcortical structures, brain stem, cerebellum, and cerebral

cortex) [30,31], automated correction of topology defects, surface

deformation to form the gray/white matter boundary and gray

matter/CSF boundary [32], and parcellation of the cerebral

cortex [33]. The atlas used, detailed in [33], included 34 cortical

ROIs per hemisphere. For each ROI, the cortical thickness

average (TA), standard deviation of thickness (TS), surface area

(SA) and cortical volume (CV) were calculated as features. SA was

calculated as the area of the surface layer equidistant between the

gray/white matter and gray matter/CSF surfaces. CV at each

vertex over the whole cortex was computed by the product of the

SA and thickness at each surface vertex. Left and right hemisphere

SA and total intracranial volume (ICV) were also included. For

each subcortical structure, the subcortical volume (SV) was

extracted. This yielded a total of 323 MRI features including

279 cortical and 44 subcortical features (see Table S1).

CSF biomarker collection
Baseline CSF samples were obtained through lumbar punc-

ture at all participating sites. The CSF collection and transpor-

tation protocols and details on CSF are described in [6] and

on the ADNI website (http://www.adni-info.org/Scientists/

ADNIScientistsHome.aspx). CSF concentrations of t-tau, Ab1–42

and p-tau181p were measured, as were ratios of t-tau to Ab1–42, and

p-tau181p to Ab1–42. CSF features for subjects taken at baseline are

listed in Table 2.

NM collection
NMs were undertaken at the time of scan acquisition as shown

in Table 3. Neuropsychological tests used in this study include

Logical Memory II (LM) [25], Auditory Verbal Learning Test

(AVLT) [34], category fluency and digit span, Trail Making Tests

Table 1. Participant demographic characteristics.

Training data Test data

NC (n = 111) AD (n = 96) pa MCInc (n = 87) MCIc (n = 56) pb

Age 75.465.12 74.868.01 0.454 74.366.98 75.0267.49 0.585

Male (%) 50.5 58.3 0.256 63.2 67.9 0.570

Education (years) 15.762.81 15.263.35 0.196 16.462.74 15.463.11 0.042

ApoE e4 carriers (%) 23.4 69.8 ,0.001 47.1 64.3 0.045

MMSE 29.0761.0 23.5161.9 ,0.001 27.1361.7 26.5761.9 0.066

CDR 060 0.760.25 ,0.001 0.560 0.560 ——

Note: Values are mean 6 SD unless otherwise indicated. NC, normal control; AD, Alzheimer’s Disease; MCInc, mild cognitive impairment patients who have not
converted to AD within 24 months; MCIc, mild cognitive impairment patients who have converted to AD within 24 months; ApoE, apolipoprotein E; MMSE, Mini-Mental
State Examination; CDR, Clinical Dementia Rating.
aTwo sample t-test for all comparisons between NC and AD groups except sex and ApoE e4 carriers, where Pearson’s chi-square tests were used.
bTwo sample t-test for all comparisons between MCInc and MCIc groups except sex and ApoE e4 carriers, where Pearson’s chi-square tests were used.
doi:10.1371/journal.pone.0021896.t001

Prediction of Conversion from MCI to AD
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A and B [35], Boston Naming Test [36], and clock drawing [37].

The Functional Assessment Questionnaire (FAQ) [38] was used

for functional testing. Details of ADNI NMs are available at

(http://adni.loni.ucla.edu/wp-content/uploads/2010/09/BLCog

TestingWorksheet.pdf) and on the ADNI cognitive testing web-

page: http://www.adni-info.org/Scientists/CognitiveTesting.aspx.

Feature selection
Of the pool of available features, some were sensitive and rele-

vant to AD and some were less relevant or redundant for classi-

fication. We therefore performed a feature selection procedure in

NC and AD groups in order to identify the most characteristic

structural AD-like patterns which could be looked for in MCInc

and MCIc individuals. The approach applied for MRI and CSF

features is a filter followed by a wrapper method, while we used a

filter for NM feature selection.

MRI and CSF feature selection. An optimal feature subset

is achieved by selecting the most relevant features and eliminating

redundant features. Feature ranking followed by a wrapper me-

thod is accepted as a recommended part of a feature selection

procedure [39]. Feature ranking evaluates all of the features by

looking at the intrinsic characteristics of the data with respect to

clinical evaluations. Wrapper methods evaluate the effectiveness

of a subset by the accuracy (or AUC) of its classification. We

performed the same feature selection approach for MRI and CSF

features. During the feature ranking stage, we first linearly

normalized all the features to the range between 0 and 1, since

features have different scales. We then employed the minimum

redundancy and maximum relevance (mRMR) filter method

introduced by Peng et al. [40,41]. This method computes the

mutual information of two variables by their probabilistic density

function. The mRMR feature ranking is obtained by optimizing

two criteria, i.e., maximum relevance and minimum redundancy,

simultaneously. The detailed implementation algorithm is de-

scribed in [40,41]. In order to select the optimal feature subset

after feature ranking, we employed the popular classifier SVM by

incrementally adding features based on their ranking (highest to

lowest). Optimal features were selected when the highest AUC was

obtained. We performed 10-fold cross-validation and repeated the

procedure 20 times with training samples in order to identify

robust and stable discriminative features. Selection frequency was

computed by dividing the number of selection by the total num-

ber of times the procedure was repeated. The higher the selec-

tion frequency, the more stable and reliable the feature is for

discrimination. In order to identify the most discriminative fea-

ture subset, we selected features with over 50% selection fre-

quency. This yielded a subset of 7 features out of a possible 323

MRI features, and a subset of 2 features out of 5 CSF biomarkers.

NM feature selection. Our neuropsychological feature

selection was performed using a filter method. A wrapper was not

Figure 1. Overview of the prediction procedure.
doi:10.1371/journal.pone.0021896.g001

Table 2. Baseline CSF biomarker concentrations and ratios of subjects.

t-tau(pg/ml) Ab1–42 (pg/ml) p-tau181p (pg/ml) t-tau/Ab1–42 p-tau181p/Ab1–42

NC (n = 111) 69.8630.6 205.6655.6 24.9614.6 0.3960.3 0.1460.1

AD (n = 96) 122.9658.0 142.8640.0 42.2620.1 0.9360.5 0.3260.2

MCInc (n = 87) 96.1653.2 163.6658.5 34.3617.1 0.7260.6 0.2660.2

MCIc (n = 56) 110.5645.1 142.2635.9 39.5615.5 0.8260.3 0.3060.1

Note: Values are mean 6 SD. NC, normal control; AD, Alzheimer’s Disease; MCInc, mild cognitive impairment patients who have not converted to AD within 24 months;
MCIc, mild cognitive impairment patients who have converted to AD within 24 months; CSF, cerebrospinal fluid; t-tau, total tau; p-tau181p, tau phosphorylated at the
threonine 181; Ab1–42, amyloid-b 1 to 42 peptide.
doi:10.1371/journal.pone.0021896.t002

Prediction of Conversion from MCI to AD
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involved because NMs are very separable between NC and AD

groups. If a wrapper were to be used, the highest accuracy would be

achieved when using the top ranked feature. Therefore, only one

feature can be selected in NC and AD groups, whereas this feature

may be not an optimal subset for MCI classification. Therefore we

filtered neuropsychological features based on two rankings: the

maximal relevance method which ranked features based on mutual

information between each feature and corresponding clinical labels

[41], and the AUC values in SVM classification of each individual

NM to discriminate between NC and AD. Note that linear feature

normalization was applied before ranking. In order to reduce

variability, we carried out two feature ranking schemes 20 times

using 10-fold cross-validation on the training set.

Classification using SVM
SVM is a powerful, supervised, classification algorithm for

pattern classification that uses a kernel function to construct linear

classification boundaries in high (often infinite) dimensional spaces

[42]. It is widely accepted as one of the most powerful classifiers

available. In SVM, the output in a linearly separable case has the

form

f (x)~wTxzb

where x is an input vector.

For a given hyperplane (decision surface) described with the

equation wTxzb~0, and for a vector z that does not belong to

the hyperplane, the following is satisfied [42,43]:

wTzzb~+d wk k

where d is the ‘‘distance’’ of the ‘‘point’’ z to the given hyperplane.

Therefore the output f(x) (i.e. predictive value) of the SVM is

Table 3. Baseline neuropsychological and functional measures.

Assortment variable NC (n = 111) AD (n = 96) MCInc (n = 87) MCIc (n = 56)

LM delayed recall 12.663.6 1.161.8 4.362.7 2.862.3

LM immediate recall 13.563.6 3.962.9 7.562.5 6.063.0

Boston Naming Test 27.562.4 23.166.1 25.864.1 25.763.7

AVLT trials 1–5 43.368.4 23.467.1 32.868.9 26.666.7

AVLT delayed recall 7.363.5 162.0 3.363.4 1.561.9

AVLT delayed recall/trial 5 (%) 66.5630.0 14.2625.0 35.2630.6 21.1626.7

Category fluency (vegetable) 14.463.8 8.163.4 11.163.5 10.163.1

Category fluency (animal) 19.365.7 12.864.9 16.364.8 15.664.8

Trail Making Test A, s 36.7613.5 68.4638.7 42.6620.6 49.6627.2

Trail Making Test B, s 88.5641.5 204.3686.7 118.2663.2 144.6671.2

Clock drawing 4.660.7 3.361.3 4.360.9 3.861.2

Digit forwards 8.762.1 7.861.9 8.162.1 8.561.9

Digit backwards 7.062.2 4.961.8 6.362.0 6.261.7

FAQ 0.260.7 12.766.7 2.863.9 5.264.4

Note: Values are mean 6 SD. NC, normal control; AD, Alzheimer’s Disease; MCInc, mild cognitive impairment patients who have not converted to AD within 24 months;
MCIc, mild cognitive impairment patients who have converted to AD within 24 months; LM, logical memory II; AVLT, Auditory Verbal Learning Test; FAQ, Functional
Assessment Questionnaire.
doi:10.1371/journal.pone.0021896.t003

Table 4. Selected MRI features.

Ranking Selection frequency (%) Feature Type NC vs. AD MCInc vs. MCIc

p Corr. pa p Corr. pa

1 91.50 Entorhinal Cortex L TA ,0.0001 ,0.0001 0.1735 1.0

2 88.50 Middle Temporal Gyrus R CV ,0.0001 ,0.0001 0.0008 0.0056

3 71.00 Hippocampus R SV ,0.0001 ,0.0001 0.0015 0.0105

4 65.50 Hippocampus L SV ,0.0001 ,0.0001 0.0063 0.0441

5 60.00 Inferior Parietal Cortex R TA ,0.0001 ,0.0001 0.0008 0.0056

6 59.00 Retrosplenial Cortex L TA ,0.0001 ,0.0001 0.0222 0.1554

7 53.00 Middle Temporal Gyrus L TA ,0.0001 ,0.0001 0.0012 0.0084

Note: NC, normal control; AD, Alzheimer’s disease; MCInc, mild cognitive impairment patients who have not converted to AD within 24 months; MCIc, mild cognitive
impairment patients who have converted to AD within 24 months; CV, cortical volume; TA, cortical thickness average; SV, subcortical volume; L, left hemisphere; R, right
hemisphere.
aBonferroni-corrected (Corr.) p values are shown after controlling for multiple comparisons, with significant differences in bold (Corr. p,0.05).
doi:10.1371/journal.pone.0021896.t004
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actually proportional to the norm of vector w and the distance d(x)

from the chosen hyperplane. In a non-linear case, we still look for

a linear separation hyperplane within the mapped feature space.

For each MCI participant, the classifier generated a continuous

predictive value, which was then forced to be either positive

(MCIc) or negative (MCInc) using threshold decision rules. The

relationship between predictive values and conversion time was

then analyzed. In the present study, SVM classifiers were imple-

mented using the LIBSVM toolbox [44] with the Gaussian radial

basis function (RBF) kernel, i.e. K(xi,xj)~ exp ({c xi{xj

�
�

�
�

2
),

cw0. Unlike the linear kernel, the RBF kernel can handle cases

where the relationship between clinical labels and features are

nonlinear [45]. The parameters, C (a constant determining the

tradeoff between training error and model flatness) and c
(Gaussian kernel width) were optimized via cross-validation on

the training data. Note that, as different features had different

scales, we linearly scaled each training feature to conform to a

range between 0 and 1; the same scaling method was sub-

sequently applied to the test data.

Results

Discriminating MRI, CSF and NM features
Optimal MRI and CSF feature subsets are summarized in

Table 4 and Table 5. For selected MRI features, the subcortical

region was the hippocampus and the cortical regions included

the entorhinal cortex, middle temporal gyrus, inferior parietal

cortex and retrosplenial cortex. The thickness of the left

entorhinal cortex was the highest ranked with 91.50% selection

frequency. The volume of the right middle temporal gyrus was

ranked second with 88.50% selection frequency. Volumes of the

right and left hippocampus were also important features ranking

third and fourth, respectively, followed by the thickness of the

right inferior parietal cortex, left retrosplenial cortex and left

middle temporal gyrus. t-tests of the 7 features showed statis-

tically significant differences between NC and AD groups. Mean-

while, t-tests of MCInc and MCIc groups showed significant

differences, with the exception of average thickness of the left

entorhinal cortex and retrosplenial cortex. For CSF features, t-tau/

Ab1–42 and p-tau181p/Ab1–42 were selected. There were significant

differences between NC and AD subjects, but no significant

differences found between MCInc and MCIc individuals (see

Table 5).

The rankings of 14 NM features based on two schemes are

presented in Table 6. We chose measures with a correlation

coefficient above 0.3 and classification AUC above 0.95 in order

to select the most discriminate features. 5 NM features were

selected, including FAQ, LM delayed recall, LM immediate recall,

AVLT delayed recall and AVLT trials 1–5 (see Table 7). Statistical

analysis showed all of the selected features to be significantly

different between NC and AD, and between MCInc and MCIc

groups.

Table 5. Selected CSF features.

Ranking Selection frequency (%) Feature NC vs. AD MCInc vs. MCIc

p Corr. pa p Corr. pa

1 94.5% t-tau/Ab1–42 ,0.0001 ,0.0001 0.2894 0.5788

2 56.5% p-tau181p/Ab1–42 ,0.0001 ,0.0001 0.1351 0.2702

Note: NC, normal control; AD, Alzheimer’s disease; MCInc, mild cognitive impairment patients who have not converted to AD within 24 months; MCIc, mild cognitive
impairment patients who have converted to AD within 24 months; t-tau, total tau; Ab1–42, amyloid-b 1 to 42 peptide; p-tau181p, tau phosphorylated at the threonine 181.
aBonferroni-corrected (Corr.) p values are shown after controlling for multiple comparisons, with significant differences in bold (Corr. p,0.05).
doi:10.1371/journal.pone.0021896.t005

Table 6. Neuropsychological feature ranking.

Ranking 1 Correlation coefficient Ranking 2 Classification AUC Neuropsychological and functional test

1 0.4832 2 0.9889 FAQ

2 0.4742 1 0.9990 LM delayed recall

3 0.3832 3 0.9794 LM immediate recall

4 0.3219 5 0.9576 AVLT delayed recall

5 0.3160 4 0.9685 AVLT trials 1–5

6 0.2741 6 0.9211 AVLT delayed recall/trial 5

7 0.2594 9 0.8677 Trail Making Test B

8 0.2392 7 0.9068 Category fluency (vegetable)

9 0.1973 12 0.8015 Trail Making Test A

10 0.1917 8 0.8976 Clock drawing

11 0.1560 10 0.8275 Category fluency (animal)

12 0.1176 13 0.7730 Boston Naming Test

13 0.1074 11 0.8236 Digit backwards

14 0.0384 14 0.6588 Digit forwards

Note: FAQ, Functional Assessment Questionnaire; LM, logical memory II; AVLT, Auditory Verbal Learning Test.
doi:10.1371/journal.pone.0021896.t006
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Classification performance using single and multiple
modalities of features

We trained SVM classifiers using selected NM, MRI and CSF

measures to discriminate between NC and AD participants, and

tested on MCI participants. As shown in Table 8, NM method

achieved a good AUC (0.761), for which it outperforms individual

MRI (0.650) and CSF (0.641) method. Combining NM and CSF/

MRI features increased the classification performance. The best

performance was achieved using a combination of three modalities

of features, i.e., NM, CSF and MRI, which had an accuracy of

67.13%, a sensitivity of 96.43%, a specificity of 48.28%, and an

AUC of 0.796.

During the testing stage, the classifier generated a predictive

value for each subject. Most MCIc subjects have negative pre-

dictive values which indicated the majority had been classified

correctly (96.43%); while MCInc subjects have a wider range of

predictive values from negative to positive values (see Figure 2).

Further analysis of the predictive values at different conversion

times using selected NM, MRI and CSF features is presented in

Figure 3 and Figure 4. Specifically, MCIc subjects who converted

at 6 months, 12 months, 18 months and 24 months are

21.0760.35, 20.8860.29, 20.6560.34, and 20.6660.42, res-

pectively. Predictive values of MCIc subjects who converted within

12 months and after 12 months (before 24 months) are

20.9260.31 and 20.6660.38, respectively, which were signifi-

cantly different (p,0.01, Figure 4).

Discussion

Te present study examined the capability of single and mul-

tiple modalities of predictors to identify conversion from MCI to AD

using pattern classification techniques. We used a feature selection

approach and selected optimal feature subsets from different

modalities. In addition, prediction of conversion time was investi-

gated through the predictive values at different conversion times.

Single mode predictors
Feature selection from MRI features provided a subset of dis-

criminating structural measures. Our data-driven method showed

that spatial atrophy predictors of MCI conversion included ROIs

of the entorhinal cortex, inferior parietal cortex, retrosplenial

cortex, middle temporal gyrus and hippocampus. Our results cor-

respond with a number of previous studies showing that atrophy in

these structures has been found to be predictive during disease

progression. [1,21,29,46,47,48]. These ROIs are from the episodic

memory network and they served as the strongest predictors of

memory performance, reflecting the association between regional

atrophy and loss of memory [49,50]. The entorhinal cortex and

hippocampus atrophies are established imaging AD biomarkers

[51]; both contribute to prediction [21,47,48]. Moreover, the

entorhinal cortex and inferior parietal lobule are important pre-

dictors of time to progression [46]. In addition, we found the

entorhinal cortex was the highest ranked of other morphometry

features, even superior to hippocampus volumes. This is consistent

with findings from previous studies [46,47,48]. t-tau/Ab1–42 and

p-tau181p/Ab1–42 are the most sensitive predictors in the early

diagnosis of AD. They both increase sensitivity in prognosis. Some

studies [6,52] have reported similar results.

Statistically significant differences between NC and AD groups

illustrate that the selected MRI and CSF features were highly

discriminative. The t-test conducted on evaluation results from

MCInc and MCIc subjects showed that most features were sta-

tistically significant. This suggests that the trends involving features

which discriminate between NC and AD may also distinguish

between MCInc and MCIc subjects. Although the entorhinal

cortex, t-tau/Ab1–42 and p-tau181p/Ab1–42 were not significantly

different, our results indicated that they were indispensable since the

combination of features performed better, suggesting that these

features are mutually complementary and that their combination

works as a good classificatory predictor. An additional factor

concerned short-term follow-ups. These influence labels of MCInc

and we found that subjects changed from MCInc to MCIc when

evaluations were provided over a longer period of time.

Table 7. Selected NM features.

Ranking Feature NC vs. AD MCInc vs. MCIc

p Corr. pa p Corr. pa

1 FAQ ,0.0001 ,0.0001 0.00082 0.0041

2 LM delayed recall ,0.0001 ,0.0001 0.00078 0.0039

3 LM immediate recall ,0.0001 ,0.0001 0.00188 0.0094

4 AVLT delayed recall ,0.0001 ,0.0001 0.00031 0.0016

5 AVLT trials 1–5 ,0.0001 ,0.0001 0.00002 0.0001

Note: NC, normal control; AD, Alzheimer’s disease; MCInc, mild cognitive impairment patients who have not converted to AD within 24 months; MCIc, mild cognitive
impairment patients who have converted to AD within 24 months; NM, neuropsychological and functional measure; LM, logical memory II; AVLT, Auditory Verbal
Learning Test; FAQ, Functional Assessment Questionnaire.
aBonferroni-corrected (Corr.) p values are shown after controlling for multiple comparisons, with significant differences in bold (Corr. p,0.05).
doi:10.1371/journal.pone.0021896.t007

Table 8. Classification of MCIc versus MCInc at baseline.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC

NM, CSF, MRI 67.13 96.43 48.28 0.796

NM, CSF 65.04 94.64 45.98 0.784

NM, MRI 62.24 92.86 42.53 0.781

NM 65.04 91.07 48.28 0.761

MRI, CSF 58.74 71.43 50.57 0.673

MRI 62.24 57.14 65.52 0.650

CSF 60.84 80.36 48.28 0.641

Note: AUC, area under the receiver operating characteristic curve; MRI
represents 7 selected structural features; NM represent 5 selected
neuropsychological and functional measures; CSF represents 2 selected CSF
features.
doi:10.1371/journal.pone.0021896.t008
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Neuropsychological tests are strong descriptors for the decline of

cognition from MCI to AD [7,8]. Neuropsychological measures

(either alone or combined with other predictors) are being widely

investigated to predict which individuals progress to AD and

which do not [7,8,21,53]. MCIc/MCInc were labelled by both

baseline and follow-up diagnoses, which required clinical exam-

ination and comprehensive neuropsychological assessments, there-

fore NM could be biased compared with MRI and CSF measures.

Our results also indicated that NM achieved better prediction

performance. Our findings of NM predictors included 5 features,

which are significantly different between NC and AD groups, and

between MCInc and MCIc groups. Classification performance for

the use of all 14 NM features was comparable with the use of 5

selected features, suggesting our approach with feature selection is

effective since simple and relatively fewer markers might make

prediction more practical. We found that LM delayed recall was

especially sensitive in distinguishing between MCInc and MCIc

groups. This is consistent with related research which has shown

that this test has typically greater power (highest loading) in

predicting conversion to AD [7,9,54]. While relatively few studies

have included functional measures in the detection of MCI con-

version, our findings indicated that inclusion of FAQ scores was

important for achieving a sensitive indicator of disease progression.

Multivariate predictors
NMs outperformed FreeSurfer-derived MRI and CSF features

and attained a good AUC. However, multimodal feature com-

bination appears more promising. The combination of NM, MRI

and CSF features outperformed any single modality of data. The

high sensitivity suggests this combination may be a good pre-

dictor for prognosis of MCI. Our results marginally outperformed

Davatzikos et al.’s state-of-the-art study [15] in terms of accuracy,

sensitivity, specificity and AUC. Our results are consistent with

Figure 2. The histograms of SVM predictive values of MCInc (left) and MCIc (right).
doi:10.1371/journal.pone.0021896.g002

Figure 3. Predictive values of MCIc at different conversion
time. Predictive values of MCIc at 6-month (21.0760.35), 12-month
(20.8860.29), 18-month (20.6560.34) and 24-month (20.6660.42)
follow-up evaluations.
doi:10.1371/journal.pone.0021896.g003

Figure 4. Predictive values of MCIc at different conversion
time. Predictive values of MCIc within 12-month (20.9260.31) and
after 12-month (20.6660.38) follow-up evaluations. *Significant
differences between predictive values of conversion time within 12
months and after 12 months (p,0.01).
doi:10.1371/journal.pone.0021896.g004
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their findings that MCIc had mostly AD-like baseline markers,

while MCInc had mixed markers, suggesting that some MCInc

participants may convert later [15]. For example, in our study, 10

MCInc subjects had 36-month follow-ups. We found our classifier

was able to detect 8 (80%) of them as converters, suggesting longer

follow-up will clarify the specificity of baseline measures. We note

that our accuracy is higher than Zhang et al.’s study, which used

the combination of MRI, CSF and PET data [20], although our

specificity is lower. In terms of accuracy, our method is com-

parable to Ewers et al.’s study, which used logistic regression and

picked up features by prior knowledge [21]. It is problematic to

compare classification results from studies using different popula-

tions, therefore we only compared our results with the studies

using ADNI cohorts.

Taken together, MRI measures offer information regarding the

structural degeneration of AD, CSF biomedical levels correspond

with the pathological changes at the biological level, and NMs

reflect the memory deficits and behavioral symptoms of AD. Of

the three modalities of data, NMs are the most distinguishing, and

MRI and CSF data provide complementary predictive informa-

tion, which enhanced prediction performance and prognostic

power overall. The optimal combination of these multimodal

features would therefore enable greater insight into the disease, as

they provide complementary information about AD progression.

While it is challenging to predict conversion time, it is highly

significant for clinical diagnosis. In our study, MCI converters who

converted within 12 months of follow-up have AD-like patterns;

hence their predictive values are lower. Predictive values for

MCI subjects who converted after 12 months are generally higher.

Therefore our methodology appears to be a useful means for

predicting conversion time.

Limitations
Our study has some limitations. Firstly, we did not use weigh-

tings for different modalities when we combined them. Zhang et

al.’s approach of using different weightings may improve the

prediction performance of our method [20]. Another limitation is

the relatively short interval of 24-month follow-up. A longer

follow-up interval for MCInc subjects would make the ground

truth labels more reliable because some MCI subjects may convert

later. Accordingly, prediction specificity and accuracy could be

better validated.

Conclusions
The present study proposed multivariate predictors for tracking

AD progression using pattern classification techniques. Multimod-

al features were combined after feature selection from structural

MRI, CSF and NM measures. Classification results verify our

hypothesis that the combination of multimodal features, including

NM, MRI and CSF, outperforms a single modality of features,

possibly because different features are mutually complementary.

Our proposed multivariate predictors achieved good baseline

accuracy and high sensitivity. In addition, predictive values of

MCIc within 12 months and after 12 months are significantly

different. Furthermore, the selected features have proved to be

closely related to AD progression, which corresponds with the

findings of recent studies and verifies the effectiveness of our

feature selection method. In summary, our prediction procedure

may be practical and helpful for clinical diagnosis.
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