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Abstract

Motivation: Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D)

structure, which profoundly affects different cellular functions and outcomes including changes in

epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells

harbor chromosomal abnormalities [e.g. copy number variations (CNVs) and translocations] altering

their genomes both at the sequence level and at the level of 3D organization. High-throughput chromo-

some conformation capture techniques (e.g. Hi-C), which are originally developed for decoding the 3D

structure of the chromatin, provide a great opportunity to simultaneously identify the locations of

genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though

Hi-C data has been used for validating known rearrangements, computational methods that can distin-

guish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conforma-

tion of chromatin, and can precisely detect rearrangement locations de novo have beenmissing.

Results: In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distrib-

uted for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify

genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv),

(ii) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments

and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities

(AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods.

Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of

105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually

no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well

with whole genome sequencing data among chromosomes with CNV events for a breast cancer

cell line (r¼ 0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predic-

tions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer

cell lines. Furthermore, we show that our tools identify and correctly classify relatively under-

studied rearrangements such as double minutes and homogeneously staining regions.

Considering the inherent limitations of existing techniques for karyotyping (i.e. missing balanced

rearrangements and those near repetitive regions), the accurate identification of CNVs and translo-

cations in a cost-effective and high-throughput setting is still a challenge. Our results show that the

set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100–300 million

reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-

established cancer cell lines. With the decrease in required number of cells and the increase in

attainable resolution, we believe that our framework will pave the way towards comprehensive

mapping of genomic rearrangements in primary cells from cancer patients using Hi-C.
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Availability and implementation: CNV calling: https://github.com/ay-lab/HiCnv, Translocation call-

ing: https://github.com/ay-lab/HiCtrans and Hi-C simulation: https://github.com/ay-lab/AveSim.

Contact: ferhatay@lji.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a disease that is strongly associated with genomic abnor-

malities and rearrangements, such as CNVs (e.g. amplifications and

deletions) and chromosomal translocations (Mitelman et al., 2007;

Zack et al., 2013). These often recurrent genomic rearrangements,

such as the Philadelphia Chromosome formation in chronic myeloid

leukemia (Rowley, 1973), are generally associated with certain can-

cer types and subtypes. Therefore, systematic identification of these

rearrangements is critical for understanding the molecular mecha-

nism of oncogenesis as well as for clinical decision making in per-

sonalized medicine.

Recent studies have shown that rearrangements in cancer not

only alter the one-dimensional (1D) but also the three-dimensional

(3D) structure of the genome and individual chromosomes (Ay

et al., 2015; Barutcu et al., 2015; Engreitz et al., 2012; Harewood

et al., 2017; Seaman et al., 2017). These studies were made possible

by the development of high-throughput chromosome conformation

capture techniques (e.g. Hi-C) (Lieberman-Aiden et al., 2009; Rao

et al., 2014), which also revealed novel relationships between spatial

arrangement of the genome and its function (Ay et al., 2014a,b;

Belmont, 2014; Dileep et al., 2015; Dixon et al., 2012; Ma et al.,

2015; Pope et al., 2014; Rao et al., 2014; Sanyal et al., 2012; Sexton

and Cavalli, 2015; Stevens et al., 2017). More recent work also link

the variation in tightly regulated features of the 3D genome architec-

ture to dysregulation of genes and, increased disease risk in several

diseases including cancer (Groschel et al., 2014; Javierre et al.,

2016; Lupianez et al., 2015, 2016; Schmiedel et al., 2016).

Even though Hi-C data has been used to visually confirm

changes in 3D structure due to known genomic rearrangements (Ay

et al., 2015; Barutcu et al., 2015; Engreitz et al., 2012; Harewood

et al., 2017), to date, there are no computational methods to pre-

cisely identify multiple classes of rearrangements de novo from Hi-C

data. Traditional methods such as PCR, southern blotting and fluo-

rescent in situ hybridization are low throughput, whereas karyotyp-

ing is not precise in finding breakpoints of rearrangements (Davies

et al., 2005; LaFramboise, 2009; Schrock et al., 1996; Speicher

et al., 1996). When compared to more recent high-throughput meth-

ods for detection of genomic rearrangements, Hi-C has several

advantages (Harewood et al., 2017). First, copy number neutral (i.e.

balanced) events (e.g. balanced translocations) that are missed by

coverage-based methods, such as comparative genomic hybridiza-

tion (array-CGH) and whole-genome sequencing (WGS), are still

detectable by Hi-C. Second, because Hi-C read pairs span all

genomic distances (megabases) rather than a fixed insert size, such

as 200–800bp, 1, 2–5kb for WGS, short-range and long-range mate

pair sequencing, respectively, rearrangements involving repetitive

regions (e.g. translocations involving a centromere) could be

detected by Hi-C from the contact patterns of the surrounding map-

pable regions. Third, with moderate sequencing depths (150–300M

reads or 5–10� coverage), unlike shallow WGS with similar costs,

Hi-C allows detection of rearrangements beyond CNVs (Harewood

et al., 2017). However, it is important to note that, Hi-C based

methods will have limited power to detect fine-scale rearrangements

(<50kb in size) due to inherent limitations of the assay (e.g.

digestion sites are �1 to 4 kb apart) and/or the cost of sequencing

required to achieve sub-10kb resolution contact maps.

Here we provide a set of computational methods, which allow us

to predict, simulate and validate genomic rearrangements in cancer

with Hi-C data (Fig. 1). The inherent challenge in detecting CNVs

and translocations from Hi-C data lies in distinguishing the rear-

rangement related contact patterns from the expected 3D folding of

normal chromosomal regions and from technical and experimental

biases of the assay. In order to overcome these challenges, here

we develop computational methods to detect CNVs (HiCnv) and

translocations (HiCtrans), and, in addition, a versatile pipeline to

simulate (AveSim) realistic Hi-C contact maps with introduced chro-

mosomal abnormalities. HiCnv works on contact counts at the sin-

gle restriction enzyme (RE) fragment level in order to leverage Hi-C

data at its highest possible and native resolution. Briefly, HiCnv first

computes 1D read coverage for each RE fragment, followed by nor-

malization for GC content, mappability and fragment length, and

by smoothing using kernel density estimation (KDE). KDE

smoothed counts are divided into potential CNV segments using a

Hidden Markov Model (HMM), and these segments are further

processed for refinement of their breakpoint coordinates (segment

ends) and assignment of their CNV labels (Fig. 1). HiCtrans, on the

other hand, uses Hi-C counts binned at a fixed-size resolution (e.g.

40 kb). HiCtrans, then, scans interchromosomal contact maps of

each chromosome pair for potential translocations using change-

point statistics. Regions with change points are further tested for

enrichment with respect to their background and for potential com-

binations of ligations between two chromosomes to identify translo-

cation breakpoints (Fig. 1).

Fig. 1. Overall summary of the methods developed in this work. HiCnv and

HiCtrans are the two methods we develop for identifying copy number varia-

tions (CNV) and translocations from Hi-C data. AveSim is our simulation pipe-

line that generates simulated Hi-C data with genomic rearrangements

introduced. AveSim works either at restriction enzyme (RE) site/fragment res-

olution or with fixed-size genomic bins to create intra- and inter-chromoso-

mal Hi-C contact maps with the desired rearrangements in the genome
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Our results suggest that HiCnv and HiCtrans can accurately pre-

dict large scale CNVs (>1Mb) and translocations from both real

Hi-C data of cancer cell lines and in simulated contact maps with

desired rearrangements. We compare our CNV calls with existing

sequencing-based (WGS) and array-based (HAIB) genotyping efforts

and show that our results largely agree with WGS and to a lesser

extent with HAIB. The agreement between WGS and HAIB CNV

calls were also low. Both HiCnv and WGS results are consistent

with previous karyotyping at the chromosomal level. We show that

our CNV segment breakpoint predictions are at a median distance

of 3 RE sites (�12kb) from simulated breakpoints and are enriched

for transition of WGS coverage scores. For translocations, we iden-

tify a total of 90 translocating chromosome pairs in our 10 cancer

cell lines giving rise to 227 distinct contact enrichments in inter-

chromosomal maps. We find evidence in the literature for 30 of our

90 reported translocations. Finally, we report two highly amplified

regions that we predict as double minutes through simulations of

expected contact patterns. Our results demonstrate the power of Hi-

C data in predicting a wide range of large scale genomic rearrange-

ments and the importance of developing flexible tools to simulate

Hi-C data with custom made genomic rearrangements.

2 Materials and methods

2.1 Data collection

We download raw reads for publicly available Hi-C data for 12 can-

cer cell lines from the ENCODE project portal (encodeproject.org)

as well as from two normal diploid cell lines, namely hESC (Dixon

et al., 2012) and IMR90 (Jin et al., 2013). We discard two cancer

cell lines due to concerns about Hi-C data quality and mapping rates

(SJCRH30 and SKNDZ) (Table 1). All of these Hi-C libraries were

generated using the 6-bp cutter HindIII restriction enzyme (cut site:

AjAGCTT). We process the raw reads for each of the 12 cell lines

with HiCPro (Servant et al., 2015) to generate raw intra- and inter-

chromosomal matrices at a single RE resolution and with fixed-size

bins (e.g. 40 kb). For comparing our CNV calls, we use a �30�

coverage WGS data processed at 50 kb bins for the T47D breast

cancer cell line (personal communication with Feng Yue). We also

use CNV calls from ENCODE Illumina BeadChip array data gener-

ated by Hudson Alpha Institute (HAIB) and processed by circular

binary segmentation (CBS) (Olshen et al., 2004) for four of our

cancer cell lines, namely T47D, PANC1, LNCaP and A549

(wgEncodeHaibGenotype). For known translocations, we use kar-

yotype information from several websites as well as previous publi-

cations about each cell line. We perform all of our analysis using the

human genome build GRCh37 (hg19).

2.2 Copy number variation calling from Hi-C (HiCnv)

For calling CNVs, we first compute Hi-C read coverage at each

restriction site throughout the genome. Since all of our samples are

digested using HindIII, we get coverage measurements on average

from every 4 kb of the genome. This restriction site based approach,

instead of fixed size genomic bins allows us to utilize Hi-C data at

its native and highest possible resolution. We filter out RE fragments

with low GC-content (<0.2), mappability (<0.5) or any overlap

with blacklisted genomic regions as prescribed by ENCODE

(Consortium, 2012). Since the CNV information is reflected in a

region‘s coverage, commonly used Hi-C normalization methods that

aim to equalize coverage (Imakaev et al., 2012; Rao et al., 2014) are

not appropriate because they cancel out the copy number aberra-

tions (Supplementary Fig. S1). Therefore, starting from a previously

described regression-based method, HiCNorm (Hu et al., 2012),

here we employ a one-dimensional regression-based normalization

(1Dreg) on the RE fragment level coverage counts that corrects for

factors that are known to bias Hi-C data (i.e. GC content, mappabil-

ity, fragment length) without removing the CNV signal (Fig. 2).

Since it works on 1D coverages rather than 2D contact maps, our

regression is scalable to RE fragment level data. For a given chromo-

some, let ci denote total number of read ends that map to the ith RE

fragment where i¼1..n and fragi, gci and mapi represent the effec-

tive fragment length, GC content and mappability of the fragment i.

The equation for our Poisson regression model is as follows:

log mi

� �

¼ w0 þwfrag log fragi
� �

þwgclog gci
� �

þwmaplog mapi
� �

Here w0 denotes the intercept, wfrag, wgc and wmap represent the

fragment length, GC content and mappability biases, respectively.

We assume that ci follows a Poisson distribution with rate mi and

estimate the normalized count for RE fragment i as the residual

ri¼ ci/mi. Supplementary Figure S2 shows that 1Dreg effectively

removes aforementioned biases but not the differences between

regions with different copy numbers.

Next, we use the normalized coverage values for bivariate kernel

density estimation, which provides a probabilistic measure to find a

certain magnitude of count for each RE site in a given chromosome.

We use bkde2d function in R (Wand, 1994) for KDE as follows:

f p; rð Þ ¼
1

n

P

n

i¼1

K
�p�pi
hp

� �

� K �r�ri
hr

� �

hphr

0

B

B

@

1

C

C

A

Here pi and ri denote the index and the normalized coverage of an

RE site, where i¼1..n. K is the standard Gaussian probability den-

sity function, and hp, hr correspond to x-axis and y-axis bandwidths

used for KDE, respectively. f(p, r) gives the final probability density

of observing contact counts surrounding an RE position in the

genome. We then assign each RE site the count that is associated

with highest density in the density estimate. Supplementary Figure

S3 shows that KDE is an essential step as it eliminates much of the

unwanted noise from the Hi-C reads prior to the segmentation proc-

ess. Since the choice of bandwidth parameter for the x-axis (number

of consecutive RE sites) has a significant effect on the number of

false positive and false negative identifications, we assess different

bandwidth values on simulated data (Supplementary Fig. S4).

Table 1. Summary of Hi-C data used in this work

Cell line Raw/Valid pairs (M) Amp/Del/Trans/DMs

A549 251.9/133.1 1/2/4/0

CAKI2 323.7/158.0 2/5/20/0

G401 340.9/140.4 0/4/2/0

LNCaP 306.5/90.6 0/5/4/0

NCIH460 313.2/143.9 29/2/12/1

PANC1 289.0/152.4 5/5/18/1

RPMI7951 335.9/178.4 21/2/2/0

SKMEL5 303.5/75.5 13/9/7/0

SKNMC 313.8/146/6 2/8/5/0

T47D 247.7/132.6 32/2/16/0

IMR90 529.1/113.1 0/0/0/0

hESC 237.6/43.6 0/1/0/0

Note: The number of reads, valid pairs (in millions); amplifications

(Amp), deletion (Del), translocations (Trans) and double minutes (DMs)

are given.
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Consequently, we use a Hidden Markov Model-based approach

(HMM) to perform a segmentation on the KDE smoothed RE site

coverage values. We use the RHmm package (https://github.com/

cran/RHmm) to fit a univariate-Gaussian model to our coverages in

order to identify change points in the data. We use Bayesian infor-

mation criterion (BIC) to select the optimum number of states in

input coverages and subsequently the mostly likely hidden state that

correspond to copy number variation status. However, since cancer

cell lines can have very high modal numbers (e.g. hyper-triploid

HeLA cell line), assigning CNV labels such as deleted/normal/ampli-

fied is not trivial because the genome-wide average may not reflect a

truly diploid reference point. We, thus, choose a reference chromo-

some based on available biological information such as whole

genome sequencing (WGS) or karyotyping information as a baseline

to determine the true copy number of each chromosome and accu-

rate labelling of the segmented regions within a chromosome. Even

though finding such a reference chromosome is possible for all of

our cell lines and can be partially automated, it should be noted

that, only our whole chromosome level estimates are dependent on

it (i.e. distinguishing two full copies of a chromosome from three

full copies). Our segmentation within each chromosome can label

CNVs as amplified or deleted relative to each other without a

reference.

Next, we assign CNV labels by calculating an average normal-

ized coverage per RE site for each CNV segment i, NCi. We then

divide this number by the sum of all such coverages across all chro-

mosomes to get a proportion of interaction count, PICi, per chromo-

some or per a given segment. In the case of a given diploid reference

chromosome ref, we determine CNV labels by comparing the seg-

ment mean PIC value to PICref. We use a percentage threshold on

the increase or decrease of a segment‘s mean with respect to the

reference in order to label it as an amplification or deletion. We

assess different threshold values in Supplementary Figure S4.

Without a reference chromosome, the same process could be fol-

lowed using the average PIC value either across all chromosomes or

within each chromosome.

One important step remaining after labeling CNVs is the refine-

ment of segment breakpoint coordinates, which may be off because

of edge effects introduced by the KDE smoothing (Supplementary

Fig. S5). Such effects are known to be present at the segment boun-

daries, where the coverage is discontinuous and in transitive phase

from one segment to the next (Chiu, 2000). In order to detect precise

breakpoint coordinates of a CNV segment, we compute the ratio

between the median coverage of 10 upstream and 10 downstream

RE sites for each individual RE within a distance less than the

selected bandwidth from each segment end. We report RE sites with

peaks or dips of this ratio as the breakpoints between two adjacent

segments with differing CNV labels (Supplementary Fig. S5).

2.3 Translocation calling from Hi-C data (HiCtrans)

In order to detect translocation events, we analyze the inter-

chromosomal contact matrices at a fixed-size bin resolution (40 kb

in this work) for each possible pair of chromosomes from a given

cell line. For a given pair of chromosomes, we perform a change-

point analysis using binary segmentation, first on each row

and then on each column of the inter-chromosomal Hi-C matrix of

that chromosome pair (Fig. 3). A changepoint is defined in a

sequential set of data, d1:n ¼ ðd1; . . . ; dnÞ when there exists a time

t 2 1; � � � ; n� 1g;f such that the statistical properties of fd1; . . . ;

dtg and fdtþ1; . . . ; dng are different in some aspect (Killick and

Eckley, 2014). In our case this aspect would be the number of inter-

chromosomal contacts. Binary segmentation scans the data sequence

iteratively while comparing a model of one single changepoint to

that with changepoint. If a changepoint is identified, the segmenta-

tion procedure splits the data into two parts at that changepoint and

repeats the model comparison on each part separately until no new

changepoint is identified. For binary segmentation, we use the

BINGSEG function from the changepoint package in R, which runs

fast and reports more than one single segment only when a signifi-

cant change is detected in a given contact count row/column (Killick

and Eckley, 2014). This allows us to efficiently scan the full inter-

chromosomal matrix to detect candidate change-point events from

the perspective of each chromosome.

Next, we sequentially scan each row for the existence of a

change point. Let row i be the first such row with a change point at

coordinate j. We then determine an interval of [i, iþx�1], which

consists of consecutive rows that all have a change point at j. We

perform a similar operation on the columns of the interchromoso-

mal matrix, which provides us another interval [j, jþ y�1] of con-

secutive columns with a common change point from the interval

[i, iþx�1]. This provides us with a rectangular box of size x by y in

the interchromosomal matrix spanning x rows of the first chromo-

some and y rows of the second chromosome that are in considera-

tion. These boxes represent regions of inter-chromosomal contact

Fig. 2. Identification of CNVs from Hi-C data. (A) Our HiCnv pipeline starts

with extracting a one-dimensional coverage vector for each RE site from the

intra-chromosomal Hi-C contact matrix. We then use a one dimensional

Poisson regression model (1Dreg) to normalize the raw coverages for GC

content, mappability and fragment length biases, and apply kernel smoothing

to further remove noise. Next, we use a Hidden Markov Model-based

approach to find the possible CNV segments from the normalized and

smoothed coverage values. We assign CNV labels such as amplified or

deleted by comparing the mean segment coverage against that of a diploid

reference chromosome. We also correct for edge effects due to smoothing to

refine our CNV breakpoint calls. (B) Comparison of HiCnv and WGS coverage

scores for chromosome 3 of the breast cancer cell line T47D (Pearson corr.

0.92). We also plot the bedlogR scores and CNV labels for the same chromo-

some obtained from HAIB genotype (WGS vs HAIB correlation is 0.81). HAIB

CNV labels largely disagree with both HiCnv and WGS, whereas HiCnv and

WGS labels agree with each other and with karyotyping (top left inset)

Genomic rearrangements identified from Hi-C 341
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enrichment, which may correspond to translocation events. We then

test the significance of this enrichment within a given box compared

to the overall inter-chromosomal matrix by comparing the mean

contact counts of the two using a Poisson test. We then correct the

resulting P-value for the number of such boxes tested for a given

chromosome pair and consider further only boxes with an adjusted

P-value less than 0.05. This ensures filtering of spurious boxes from

the segmentation that do not have significant enrichment of contacts

expected as a result of a real translocation event. For each box that

passes the significance test, we then find the maximum inter-

chromosomal count within that box and report the corresponding

row and column as the breakpoints at which the two translocating

regions ligate to each other. We further eliminate weak inter-

chromosomal signals, by only reporting boxes with a maximum

count greater than five as our translocation breakpoints.

2.4 A versatile pipeline for simulating Hi-C data with

genomic rearrangements (AveSim)

In order to provide a benchmark for our HiCnv and HiCtrans calls,

we develop a simulation pipeline for generating Hi-C data from

chromosomes with inserted genomic rearrangements. We carry out

these simulations either at the RE site resolution or with fixed-size

genomic bins, which are described in detail below.

Simulating rearrangements at the RE fragment level: For the

amplification, deletion and translocation simulations, we first gener-

ate a rearranged sequence with an extra copy, deleted or translo-

cated region of a chromosome, respectively (Fig. 1, Supplementary

Figs S6–S9). The rearranged sequence is then in silico digested with

desired restriction enzyme (e.g. HindIII) to get the all possible RE

sites. We use Hi-C data from a karyotypically normal cell line (e.g.

IMR90) to learn scaling of contact probability with respect to

genomic distance using a smooth spline fit. We then use the selected

probability distribution to draw random contact counts among the

pairs of RE sites in the rearranged genome using their genomic dis-

tance, and generate paired-end reads from 50bp regions randomly

selected within 500 bp of each RE site. This pipeline also allows us

to mix and match user defined proportions of reads from the normal

and rearranged genomes in order to simulate homogeneous (e.g.

10M reads from the rearranged copy) and heterogeneous rearrange-

ments (e.g. 5M reads each from the normal and rearranged copies,

50% rearrangement) (Supplementary Figs S6–S9).

Simulating translocations with fixed-size genomic bins: Apart from

simulating at RE site resolution, we also carry out translocation simu-

lations with fixed-size genomic bins. For this, we generate different

biologically relevant translocation types, namely reciprocal-balanced,

non-reciprocal-balanced and unbalanced (Fig. 1, Supplementary Figs

S10–S11). For each type, we first choose a pair of chromosomes and a

pair of genomic positions to be exchanged/translocated. Next, we sim-

ulate intra- and inter-chromosomal Hi-C contact counts based on the

assumption that exchanged genomic regions will interact with their

new neighboring regions in a distance-dependent manner similar to

real intra-chromosomal neighbors and that they will interact with their

previous locations similar to what is expected from inter-chromosomal

partners. In order to generate these simulated counts, we use contact

probabilities from either Poisson or negative binomial (NB) distribu-

tions by determining the best fit using Bayesian information criterion

(BIC). We use NB for intra-chromosomal counts as it is the better fit

for distances up to 100Mb, and Poisson for inter-chromosomal counts

(Supplementary Figs S10–S11).

3 Results

3.1 Evaluation of CNV predictions from HiCnv

We first ask how HiCnv prediction performance is affected by selec-

tion of the KDE bandwidth and CNV labeling threshold parameters.

For this, we generate a total of 508 amplifications and 453 deletions

with sizes ranging from 1 to 30Mb in randomly selected regions

genome-wide (Supplementary Fig. S4). We observe that the optimal

KDE bandwidth value estimated by the bkde2 function outper-

formed two other bandwidth values in terms of both low false posi-

tive and false negative rates (Supplementary Fig. S4). Among CNV

labeling thresholds, we observe that 40% and 45% give balanced

results compared to smaller percentages with higher false positive

rates and compared to 50%, which has a very low recall. With these

selected parameter settings (optimal bandwidth and 45% threshold)

and a stringent criterion for defining true positives (predicted CNV

needs to cover 100% of the simulated), we correctly identify 313

and 291 simulated amplifications and deletions with only 3 and 47

false positives, respectively (Supplementary Fig. S4). For the cor-

rectly identified CNV segments, we predict segment boundaries very

accurately with a median offset of 3 RE sites (�12kb). Since the

simulated CNVs were scattered across the genome, we get varying

Fig. 3. Identification of translocations from Hi-C data. (A) Our HiCtrans pipe-

line starts with performing binary segmentation independently on each row

and each column of a fixed-size binned inter-chromosomal matrix. HiCtrans

then aggregates the change points identified from the perspective of each

chromosome to determine rectangular boxes of contact enrichment with

respect to the overall inter-chromosomal matrix. For each box, HiCtrans com-

putes a statistical significance for enrichment and for boxes passing this sig-

nificance test, it reports the pair of regions with the highest contact count as

the breakpoints. Two previously validated/observed real case examples of

translocations identified by HiCtrans in (B) T47D and (C) NCIH460 cell line
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performance depending on the genomic features and coverage varia-

tion of the region of CNV insertion.

We then run HiCnv on 10 cancer and 2 normal cell lines result-

ing in a total of 105 amplifications and 45 deletion calls (Table 1,

Supplementary File S1). The only CNV reported from the normal

cell lines was the whole X chromosome as a deletion in hESC, which

is expected as it was derived from a male donor. We then compare

our calls with WGS data from T47D, which showed that HiCnv

coverages and CNV calls highly agree with the WGS scores at the

genome-wide level (Supplementary Fig. S12), at the level of whole

chromosomes (Fig. 4A) and CNVs within individual chromosomes

(Figs 2B and 4B). Across all chromosomes with CNVs, HiCnv and

WGS scores show 0.89 overall correlation and an average correla-

tion of 0.83 with a standard deviation of 0.11 per chromosome

(Supplementary Fig. S12). Similar to simulation results, we also

assess whether our segment breakpoint calls are accurate in T47D

by making aggregate plots of WGS scores around the coordinates of

HiCnv predicted breakpoints between normal and amplified

regions. Our results show that the refinement step of HiCnv success-

fully corrects edge effects and reports breakpoints that are at the

transition of WGS scores (Fig. 4C).

We also use compare our CNV calls to those from HAIB geno-

type for four cancer cell lines (Fig. 2B, Supplementary Fig. S13). Our

results show that the overlap between segments from the two sets

highly varies among cell lines and depends heavily on whether its

coverage is computed from HiCnv or HAIB segments. For instance,

for T47D cell line, 30 of the 31 regions identified as amplified by

HAIB are fully contained in HiCnv calls, whereas only 7 out of the

26 HiCnv amplifications were covered by HAIB. Figure 2B provides

a potential explanation to the low number in the latter case as it

shows that HAIB CNV labels can be incorrect due to overestimation

of ‘normal’ for chromosomes that are mainly amplified. For the

example in Figure 2B, CNV labels from HAIB also disagree with

WGS and karyotyping results, even though the HAIB scores corre-

late well with WGS (r¼0.81).

3.2 Evaluation of translocation calls from HiCtrans

A translocation event introduces one or more regions of contact

enrichment depending on the type of the translocation (Supplementary

Figs S9 and S11). These enrichment regions correspond to breakpoints,

at which two previously inter-chromosomal regions ligate to one

another (Supplementary Figs S8 and S10). Here we capitalize on two

Fig. 4. Summary of results. (A) Relative copy numbers of each human chro-

mosome in one cancer (T47D) and two karyotypically normal (IMR90: fibro-

blast, hESC: embryonic stem cells) cell lines computed by HiCnv using

chromosome 2 as our diploid reference chromosome. Karyotype information

from T47D is shown for a subset of chromosomes. For chromosomes with

CNVs other that whole chromosome deletions or amplifications in T47D, the

relative copy number reflects chromosomal average (e.g. chr1, chr3, chr10,

chr20) rather than true copy numbers (e.g. chr2, chr4, chr5, chr13). Both

IMR90 and hESC relative copy numbers are 2þ/-0.2 confirming that all chro-

mosomes have two copies except for chromosome X in hESC, which was

derived from a male donor. (B) Read coverage plots for three example chro-

mosomes and their corresponding segmentations using HiCnv from T47D Hi-

C data (left panel) and T47D WGS data (right panel). (C) The distribution of

T47DWGS scores flanking the HiCnv identified breakpoints between adjacent

CNVs. We orient 47 such transitions such that all transition go from a normal

to an amplified region and plot the median value of each 50 kb region with-

inþ/-500 kb of the identified breakpoint. (D) An example inter-chromosomal

Hi-C contact map from the breast cancer cell line T47D with a known translo-

cation (Davidson et al. 2000) between chromosomes 10 and 20, and a depic-

tion of reported breakpoint coordinates and rearrangement reported by

HiCtrans (left). (E) Heatmap of a known translocation (Espino et al. 2009) in a

pancreas cancer cell line (PANC1) identified by HiCtrans. (F–G) Heatmaps

depicting the contact patterns generated by the two highly amplified regions

we identify in NCIH460 and PANC1 cell lines that are of size 1.71Mb (chr8)

and 1.07Mb (chr19), respectively. (H–I) Two panels show contact patterns

generated by AveSim for an introduced double minute (DM) and a homoge-

neously staining region (HSR), respectively, suggesting that both of the

highly amplified regions in F and G are DMs and not HSRs
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observations: 1) due to formation of chromosome territories, only a

very small fraction of interactions occur between chromosomes com-

pared to within, 2) for a pair of chromosomes with a translocation,

the inter-chromosomal Hi-C matrix exhibits contact enrichments that

are comparable to intra-chromosomal contacts and are distance

dependent. Our method HiCtrans identifies and reports these contact

enrichments (i.e. breakpoints) as the inter-chromosomal translocation

signatures (Fig. 3A). To evaluate predictions by HiCtrans, we first sim-

ulate different types of naturally occurring translocations through our

AveSim pipeline. We show that HiCtrans accurately identifies the

exact breakpoint locations of 176 translocations with 12 false positives

from a total of 200 simulations of reciprocal and non-reciprocal bal-

anced translocations carried out at 40kb resolution (Supplementary

Fig. S10).

Next, we assess the robustness of our translocations calls to

noise or heterogeneity in Hi-C data. For this purpose, we use Avesim

to generate RE site level simulations, which create paired-end read

libraries that contain a mixture of translocated and normal copies of

the chromosomes (Supplementary Fig. S6–S9). Our results in this

setting show that HiCtrans is very robust to heterogeneity and can

accurately identify translocations even when only 5% of the reads

come from translocated copies (Supplementary Fig. 9B). This sug-

gests HiCtrans could detect low prevalence sub clonal translocations

within, even though we do not know how the success at 5% from

our simulations would translate into real sub clonal events.

We then apply HiCtrans to our 10 cancer cell lines, which

resulted in identifications of 90 translocations corresponding to a

total 227 contact enrichments (Table 1, Supplementary File S2).

Even though there are no comprehensive sets of validated transloca-

tion calls, previous studies on A549 (lung), LNCaP (prostate),

NCIH-460 (lung), PANC1 (pancreas), SKMEL5 (skin), SKNMC

(brain) and, T47D (breast) cancer cell lines identified several translo-

cations, against which we compare our calls (Davidson et al., 2000;

Espino et al., 2009; Peng et al., 2010; Rondon-Lagos et al., 2014;

Takahashi et al., 1989). We find that 30 out of our 90 translocations

were previously reported (Supplementary File S2). One of these

examples is a non-reciprocal translocation between chromosomes 7

and 15 in T47D cells (Davidson et al., 2000), which results in two

copies of t(7;15) translocation products, two copies of normal chro-

mosome 7 and one copy of the normal chromosome 15 (Fig. 3B).

Another example is the formation of t(7;9) (Takahashi et al., 1989),

which is a marker chromosome of the NCIH-460 non-small cell

lung cancer cell line (Fig. 3C). Figure 4D–E show two additional

translocations that are also characterized before (Davidson et al.,

2000; Espino et al., 2009). We also show contact patterns from a

number of other known translocations in Supplementary Figure

S14, and in Supplementary Figure S15 we provide similar heatmaps

from 12 translocations that are novel predictions by HiCtrans to the

best of our knowledge. Even though further experiments (e.g. FISH,

PCR) are needed to confirm these potentially novel translocations,

we believe that the similarity of contact patterns of known translo-

cations to these new predictions provides strong evidence for their

presence in these cell lines.

4 Discussion

Here we proposed two new methodologies (HiCnv and HiCtrans)

that utilize chromatin contact maps to identify CNVs and transloca-

tions in cancer cell lines. Our comparisons with WGS, HAIB geno-

type and karyotyping demonstrated that our methods accurately

detect large scale CNVs (>1Mb) and translocations from

moderately sequenced Hi-C libraries, thereby, extending the utility

of Hi-C data to detection of genomic rearrangements in cancer.

Due to lack of precise maps of genomic rearrangements, which

could be used as true gold standards for evaluating our predictions,

we also developed a simulation framework (AveSim) that can intro-

duce rearrangements in Hi-C contact maps. This framework pro-

vided us with two different approaches to generate simulated Hi-C

data as well as the ability to introduce several different types of nat-

urally occurring rearrangements into contact matrices. An interest-

ing example was the highly amplified regions identified in two

cancer cell lines NCIH460 (chr8: 128691158–130402069) and

PANC1 (chr19: 39774739–40847406) (Fig. 4F–G). Such aberrant

amplifications have been reported previously in neuroblastoma

(Balaban-Malenbaum and Gilbert, 1977; Storlazzi et al., 2010) and

fall into two classes depending on whether the amplified regions are

localized to their native locus (homogenously staining regions –

HSRs) or created extrachromosomal DNA loci (double minutes –

DMs). By simulating both of these possible scenarios (Fig. 4H–I), we

show that both regions we identify produce contact patterns consis-

tent with DMs and not with HSRs. This example highlights the

power of Hi-C data and the importance of a versatile simulation

method, in not only evaluating the performance and tuning the

parameters of developed methods, but also in generating signature

contact patterns from complex rearrangements. Such complex rear-

rangements remain difficult to identify with any high-throughput

method including Hi-C.

We believe that the framework we put forward here for identify-

ing genomic rearrangements solely from Hi-C data, as well as a

pipeline for simulating such rearrangements in Hi-C contact maps,

which can be used as a benchmark for predictions methods devel-

oped here and later on, is valuable to the fields of cancer research

and 3D/4D nucleome. We believe one future direction is to develop

probabilistic methods that will utilize higher resolution Hi-C data-

sets to identify CNVs that only occur in a subset of cells from a

potentially heterogeneous tumor sample. Another important direc-

tion is the integration and reconciliation of rearrangement calls

from multiple high-throughput experiments, such as conventional

WGS, linked-read WGS, single-molecule imaging (Bionano Irys) and

Hi-C (Dixon et al., 2017; Zheng et al., 2016), in order to come up

with comprehensive and accurate maps of genomic rearrangements

in cancer.
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