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Identification of correlated damage
parameters under noise and bias
using Bayesian inference
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Abstract

This article presents statistical model parameter identification using Bayesian inference when parameters are correlated

and observed data have noise and bias. The method is explained using the Paris model that describes crack growth in a

plate under mode I loading. It is assumed that the observed data are obtained through structural health monitoring
systems, which may have random noise and deterministic bias. It was found that a strong correlation exists (a) between

two parameters of the Paris model, and (b) between initially measured crack size and bias. As the level of noise increases,

the Bayesian inference was not able to identify the correlated parameters. However, the remaining useful life was

predicted accurately because the identification errors in correlated parameters were compensated by each other.

It was also found that the Bayesian identification process converges slowly when the level of noise is high.
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Introduction

Structural health monitoring (SHM) facilitates condi-

tion-based maintenance that provides a cost effective

maintenance strategy by providing an accurate quanti-

fication of degradation and damage at an early stage

without intrusive and time-consuming inspections.1

Most SHM systems utilize on-board sensors/actuators

to detect damage, find the location of damage, and esti-

mate the significance of damage. Since SHM systems

can assess damage frequently, they can also be used to

predict the future behavior of the system, which is crit-

ically important for maintenance scheduling and fleet

management. SHM systems can have a significant

impact on increasing safety by allowing predictions of

the structure’s health status and remaining useful life

(RUL), which is called prognostics.

In general, prognostics methods can be categorized

into data-driven,2 model-based,3 and hybrid4

approaches, based on the usage of information. The

data-driven method uses information from collected

data to predict the future status of the system without

using any particular physical model. It includes least-

square regression, Gaussian process regression, etc. The

model-based method assumes that a physics model

describing the behavior of the system is available.

This method combines the physics model with mea-

sured data to identify model parameters and predict

future behavior. Modeling the physical behavior can

be accomplished at different levels, for example,

micro- and macro-levels. Crack growth model5 or fati-

gue life model6 are often used for macro-level damage,

and first principle models7 are used for micro-level

damage. The hybrid method combines the above-men-

tioned two methods, and includes particle filters8–10 and

Bayesian techniques.11–14 Since the data-driven method

identifies abnormality based on the trend of data, it is

powerful in predicting near-future behaviors, while the

model-based method has advantages in predicting long-

term behaviors of the system. It is noted that in the
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model-based method for fatigue applications, the his-

tory of load is required in addition to the measured

crack data.

In this article, a physics-based model for structural

degradation due to fatigue damage is applied for prog-

nostics, since damage grows slowly and the physics gov-

erning its behavior is relatively well-known. The main

purpose of prognostics is to identify and repair those

damages that threaten the system safety (condition-

based maintenance) and to predict an appropriate

maintenance schedule. Paris-family models are com-

monly used in describing the growth of cracks in air-

craft panels under fatigue loading.15 In general, these

models have model uncertainty as they are not exact in

describing crack growth. However, the objective of this

article is to present how model parameters can be iden-

tified for a given model. Therefore, model uncertainty is

ignored. In this article, the original Paris model5 is used

because it has the least number of parameters. It is

assumed that the Paris model exactly describes the

damage growth behavior if the model parameters are

also exact. The main purpose of the article is to present

the usage of Bayesian inference in identifying model

parameters and predicting the RUL – the remaining

cycles before maintenance. The study focuses on

crack growth in a fuselage panel under repeated pres-

surization loading, which can be considered regular

loading cycles. In this type of application, the uncer-

tainty in applied loading is small compared to other

uncertainties. Therefore, the crack growth behavior

and the RUL can be predicted based on the identified

model parameters before the crack becomes dangerous.

The improved accuracy in these model parameters

allows more accurate prediction of the RUL of the

monitored structural component.

Identifying the model parameters and predicting

damage growth, however, is not a simple task due to

the noise and bias of data from SHM systems and the

correlation between parameters, which is prevalent in

practical problems. The noise comes from variability of

random environments, while the bias comes from sys-

tematic departures of measurement data, such as cali-

bration error. However, research for identifying model

parameters under noise and bias, without mentioning

correlated parameters, is limited.9,16

The main objective of this article is to demonstrate

how Bayesian inference can be used to identify model

parameters and to predict RUL, especially when the

model parameters are correlated. In order to find the

effects of noise and bias on the identified parameters,

numerical studies utilize synthetic data; that is, the mea-

surement data are produced from the assumed model of

noise and bias. The key interest is how the Bayesian

inference identifies the correlated parameters under

noise and bias in data.

The article is organized as follows: in the second

section, a simple damage growth based on Paris

model is presented in addition to the uncertainty

model of noise and bias; in the third section, parameter

identification and RUL prediction using Bayesian infer-

ence and MCMC simulation method17 are presented

with different levels of noise and bias; and conclusions

are presented in the final section.

Damage growth and measurement uncer-

tainty models

Damage growth model

In this article, a simple damage growth model is used to

demonstrate how to characterize damage growth

parameters. Although some experimental data on fati-

gue damage growth are available in the literature,18

they are not measured using SHM systems. Therefore,

the level of noise and bias is much smaller than the

actual data that will be available in SHM systems. In

this article, synthetic damage growth data are used in

order to perform statistical study on the effect of vari-

ous levels of noise and bias. It is assumed that a

through-the-thickness center crack exists in an infinite

plate under the mode I loading condition. In aircraft

structure, this corresponds to a fuselage panel under

repeated pressurization loading (Figure 1), which is

the main cause of fatigue in fuselage panels.

Therefore, one flight corresponds to one cycle. In this

approximation, the effect of finite plate size and the

curvature of the plate are ignored. When the stress

range due to the pressure differential is ��, the rate

of damage growth can be written using the Paris

model5 as

da

dN
¼ C �Kð Þm, �K ¼ ��

ffiffiffiffiffiffi

�a
p

ð1Þ

where a is the half crack size, N is the number of cycles

(one cycle corresponds to one flight),�K is the range of

stress intensity factor, and other parameters are shown

in Table 1 for 7075-T651 aluminum alloy. Although the

number of cycles, N, is an integer, it is treated as a real

number in this model. The above model has two

damage growth parameters, C and m, which are esti-

mated to predict damage propagation and RUL. In

Table 1, these two parameters are assumed to be uni-

formly distributed, whose lower and upper bounds were

obtained from the scatter of experimental data.19 They

can be considered as the damage growth parameters of

generic Al 7075-T651 material. In general, it is well-

known that the two Paris parameters are strongly cor-

related,20 but it is assumed initially that they are
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uncorrelated because there is no prior knowledge on the

level of correlation. Using measured data of crack sizes,

the Bayesian inference will show the correlation struc-

ture between these two parameters. Since the scatter is

so wide, the prediction of RUL using the initial distri-

butions of parameters is meaningless. The specific panel

being monitored using SHM systems may have much

narrower distributions of the parameters, or even deter-

ministic values.

The half crack size ai, after Ni cycles of fatigue load-

ing, can be obtained by integrating Equation (1) and

solving for ai as

ai ¼ NiC 1�m

2

� �

��
ffiffiffi

�
p� �mþa

1�m
2

0

h i 2
2�m ð2Þ

where a0 is the initial half crack size. In SHM, the

initial crack size does not have to be the micro-crack

in the panel before applying any fatigue loading.

This can be the crack size that is detected by

SHM systems the first time. In such a case, Ni

should be interpreted as the number of cycles since

the crack is detected. It is assumed that the panel

fails when ai reaches a critical half crack size, aC.

Here, we assume that this critical crack size is when

the stress intensity factor exceeds the fracture

toughness KIC. This leads to the following expression

for the critical crack size:

aC ¼ KIC

��
ffiffiffi

�
p

� �2

ð3Þ

Even if the crack growth model in Equation (1) is the

simplest form, it requires identifying various parame-

ters. First, the damage growth parameters, C and m,

need to be identified, which can be estimated from spe-

cimen-level fatigue tests.18 However, due to material

variability, these parameters show different values for

different batches of panels. In addition, the initial crack

size, a0, needs to be found. Liu and Mahadevan21 used

an equivalent initial flaw size, but in this case, it corre-

sponds to error in the first data in SHM measurement.

In addition, the fracture toughness, KIC, also shows

randomness due to variability in manufacturing.

Measurement uncertainty model

In SHM-based inspection, the sensors installed on the

panel are used to detect the location and size of

damage. Even if the on-line inspection can be per-

formed continuously, it would not be significantly dif-

ferent from on-ground inspection because the structural

damage will not grow quickly. In addition, the

s

Sensor

Bayesian

inference

Paris
model

Damage
size

Damage
growth

parameter

RUL

s

Figure 1. Through-the-thickness crack in a fuselage panel.

Table 1. Loading and fracture parameters of 7075-T651 Aluminum alloy

Property Nominal stress �s (MPa)

Fracture

toughness

KIC (MPa
ffiffiffiffi

m
p

)

Damage

parameter m

Damage

parameter log(C)

Value/Distribution case 1: 86.5 Deterministic 30 Uniform

(3.3, 4.3)

Uniform (log(5E-11),

log(5E-10))case 2: 78.6

case 3: 70.8
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on-ground, compared to on-line, inspection will have

much smaller levels of noise. The on-ground inspection

may provide a significant weight advantage because

only sensors, not measurement equipment, are

on-board. Our preliminary study showed that there is

no need to inspect at every flight because damage

growth at each flight is extremely small.

A crack in the fuselage panel grows according to the

applied load, pressurizations in this case. Then, the

SHM systems detect the crack. In general, the SHM

system cannot detect a crack when it is too small.

Many SHM systems can detect a crack between the

size of 5–10mm. Therefore, the necessity of identifying

the initial crack size becomes unimportant by setting a0
to be the initially detected crack size. However, a0 may

still include noise and bias from the measurement. In

addition, the fracture toughness, KIC, is also unimpor-

tant because airliners may want to send the airplane for

maintenance before the crack becomes critical.

The main objective of this article is to show that the

measured data can be used to identify crack growth

parameters, and then, to predict the future behavior

of the cracks. Since no airplanes are equipped with

SHM systems yet, we simulate the measured crack

sizes from SHM. In general, the measured damage

includes the effect of bias and noise. The former is

deterministic and represents a calibration error, while

the latter is random and represents noise in the mea-

surement environment. The synthetic measurement

data are useful for parameter study, that is, the different

noise and bias levels show how the identification pro-

cess is affected. In this context, bias is considered as two

different levels, �2mm, and noise is uniformly distrib-

uted between �umm and þumm. Four different levels

of u are considered: 0, 0.1, 1, and 5mm. The varying

levels of noise represent the quality of SHM systems.

The synthetic measurement data are generated by (a)

assuming that the true parameters, mtrue and Ctrue, and

the initial half crack size, a0, are known; (b) calculating

the true crack sizes according to Equation (2) for a

given Ni and ��; and (c) adding a deterministic bias

and random noise to the true crack size data including

the initial crack size. Once the synthetic data are

obtained, the true values of crack sizes as well as the

true values of parameters are not used in the prognos-

tics process. In this article, the following true values of

parameters are used for all numerical examples:

mtrue ¼ 3:8, Ctrue ¼ 1:5� 10�10, and a0 ¼ 10mm.

Table 1 shows three different levels of loading; the

first two (��¼ 86.5 and 78.6MPa) are used for esti-

mating model parameters, while the last (��¼ 70.8) is

used for validation purposes. The reason for using two

sets of data to estimate damage growth parameters is to

utilize more data having damage propagation informa-

tion at an early stage. Theoretically, the true values of

parameters can be identified using a single set of data

because the Paris model is a nonlinear function of

parameters. However, random noise can make the iden-

tification process slow, especially when parameters are

correlated; that is, many different combinations of cor-

related parameters can achieve the same crack size. This

property delays the convergence of Bayesian process

such that meaningful parameters can only be obtained

toward the end of RUL. Based on preliminary study,

two sets of data at different loadings can help the

Bayesian process converge quickly. This situation cor-

responds to two fuselage panel with different thickness.

Figure 2 shows the true crack growth curves for

three different levels of loading (solid curves) and syn-

thetic measurement data ameas
i (triangles) with noise and

bias. It is noted that the positive bias shifts the data

above the true crack growth. On the other hand, the

noises are randomly distributed between measurement

cycles. It is assumed that the measurements are per-

formed at every 100 cycles. Let there be n measurement

data. Then, the measured crack sizes and corresponding

cycles are represented by

ameas ¼ fameas
0 , ameas

1 , ameas
2 , . . . , ameas

n g
N ¼ fN0 ¼ 0, N1 ¼ 100, N2 ¼ 200, . . . ,Nng ð4Þ

It is assumed that after Nn, the crack size becomes

larger than the threshold and the crack is repaired.

Bayesian inference for characterization

of damage properties

Damage growth parameters estimation

Once the synthetic data (damage sizes vs. cycles) are

generated, they can be used to identify unknown

damage growth parameters. As mentioned before, m,

C, and a0 can be considered as unknown damage

growth parameters. In addition, the bias and noise

are also unknown because they are only assumed to

be known in generating crack size data. In the case of

noise, the standard deviation, �, of the noise and deter-

ministic bias, b, are considered as an unknown param-

eters. The identification of � will be important as the

Bayesian process depends on it. Therefore, the objective

is to identify (or, improve) these five parameters using

the measured crack size data. The vector of unknown

parameters is defined by y ¼ fm, C, a0, b, �g.
Parameter identification can be done in various

ways. The least-squares method is a traditional way

of identifying deterministic parameters. For crack

propagation, Coppe et al.22 used the least-square

method to identify unknown damage growth parame-

ters along with bias. However, in the least-squares
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method, it is non-trivial to estimate the uncertainty in

the identified parameters. In this paper, Bayesian infer-

ence is used to identify the unknown parameters as well

as the level of noise and bias. Coppe et al.23 used

Bayesian inference in identifying damage growth

parameters, C or m. They used the grid method to cal-

culate the posterior distribution of one variable and

discussed that updating multi-dimensional variables

can be computationally expensive. The grid method

computes the values of PDF at a grid of points after

identifying the effective range, and calculates the value

of the posterior distribution at each grid point. This

method, however, has several drawbacks such as the

difficulty in finding correct location and scale of the

grid points, spacing of the grid, and so on. In addition,

it becomes computationally expensive when the number

of updating parameters increases. Markov Chain

Monte Carlo (MCMC) simulation is a computationally

efficient alternative to obtain the probability density

function (PDF) by generating a chain of samples.17

In Baye’s theorem,24 the knowledge of a system can

be improved with additional observation of the system.

More specifically, the joint PDF of y will be improved

using the measured crack sizes ameas. The joint posterior

PDF is obtained by multiplying the prior PDF with the

likelihood as

pYðyjameasÞ ¼ 1

K
pAðameasjY ¼ yÞ pYðyÞ ð5Þ

where pYðyÞ is the prior PDF of parameters,

pAðameasjY ¼ yÞ is the likelihood or the PDF values of

crack size at ameas given parameter value of y, and K is a

normalizing constant. It is noted that the likelihood is

constructed using n measured crack size data. For prior

distribution, the uniform distribution is used for the

damage growth parameters, m and C, as described in

Table 1. For other parameters, no prior distribution is

used; that is, noninformative. Therefore, the prior PDF

becomes pYðyÞ ¼ pYðmÞ pYðCÞ. The likelihood is the

probability of obtaining the observed crack sizes ameas

given values of parameters. For the likelihood, it is

assumed to be a normal distribution for the given five

parameters including the standard deviation of the

measured size, �:

pA ameasjY ¼ yð Þ / 1
ffiffiffiffiffiffi

2�
p

y5

 !n

�

exp � 1

2

X

n

i¼1

ameas
i � aiðy1:4Þ

y5

� �2
" #

, y ¼ fm, C, a0, b, �g

ð6Þ

where

aiðy1:4Þ ¼ NiC 1�m

2

� �

��
ffiffiffi

�
p� �mþa

1�m
2

0

h i 2
2�mþb ð7Þ

is the crack size from the Paris model with bias and

ameas
i is the measurement crack size at cycle Ni. In gen-

eral, it is possible that the normal distribution in

Equation (6) may have a negative crack size, which is

physically impossible; therefore, the normal distribu-

tion is truncated at zero.

A primitive way of computing the posterior PDF is

to evaluate Equation (5) at a grid of points after iden-

tifying the effective range. This method, however, has

several drawbacks such as the difficulty in finding cor-

rect location and scale of the grid points, the spacing of
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Figure 2. Crack growth of three different loading conditions and two sets of synthetic data.
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the grid, and so on. Especially when a multi-variable

joint PDF is required, which is the case in this article,

the computational cost is proportional to M5, where M

is the number of grids in one-dimension. On the other

hand, the MCMC simulation can be an effective solu-

tion as it is less sensitive to the number of variables.17

Using the expression of posterior PDF in Equation (5),

5000 samples of parameters are drawn by using the

Metropolis-Hastings (M-H) algorithm, which is a typ-

ical method of MCMC.

The effect of correlation between parameters

Since the original data of crack sizes are generated from

the assumed true values of parameters, the objective of

Bayesian inference is to make the posterior joint PDF

converge to the true values. Therefore, it is expected

that the PDF becomes narrower as n increases; that

is, more data are used. This process seems straightfor-

ward, but the preliminary study shows that the poste-

rior joint PDF may converge to values different from

the true ones. It is found that this phenomenon is

related to the correlation between parameters. For

example, let the initially detected crack size be �ameas
0

when the measurement environment has no noise.

This measured size is the outcome of the initial crack

size and bias:

�ameas
0 ¼ a0 þ b ð8Þ

Therefore, there exist infinite possible combinations

of a0 and b to obtain the measured crack size. It is

generally infeasible to identify the initial crack size

and bias with a single measurement when the mea-

sured data is linearly dependent on multiple param-

eters. It was also well known that the two Paris

model parameters, m and C, are strongly corre-

lated.25 This can be viewed from the crack growth

rate curve, as illustrated in Figure 3. In this graph,

the parameter m is the slope of the curve, while C

corresponds to the y-intercept at �K ¼ 1. If a spe-

cific value of crack growth rate da=dN is observed,

this can be achieved by different combinations of

these two parameters. However, in the case of

Paris model parameters, it is feasible to identify

them because the stress intensity factor gradually

increases as the crack grows. However, the embed-

ded noise can make it difficult to identify the two

model parameters because the crack growth rate

may not be consistent with the noisy data. In addi-

tion, this can slow down the convergence in the pos-

terior distribution, because when the crack is small,

there is no significant crack growth rate. The effect

of noise is relatively diminished as the crack growth

rate increases, which occurs toward the end of life.

In order to overcome the above-mentioned difficulty

in identifying correlated parameters, two different strat-

egies are used in this article. There are many correla-

tions between unknown parameters, but only

the strongest correlated relationships are considered:

the two Paris model parameters and a0 and b. First,

the two Paris model parameters are kept because they

can be identified as the crack grows. Second, the rela-

tionship between a0 and b has different characteristics

from the model parameters (m, C). a0 and b are time

independent, and the sum of the two parameters are

constant. Therefore, the bias is removed from the

Bayesian identification process using Equation (8),

assuming that the bias and initial crack size are per-

fectly correlated. This process seems straightforward,

but the difficulty exists from the fact that the constant

�ameas
0 in Equation (8) is unknown. Below is the proce-

dure of estimating �ameas
0 .

a. Assume that the measured initial crack size is

a0 ¼ ameas
0

b. With given a0, use the Bayesian method to update

the posterior joint PDF of m,C, b,�
c. Calculate the maximum likelihood value b� of b

from the posterior joint PDF

d. Estimate �ameas
0 ¼ a0 þ b�

e. Eliminate b using b ¼ �ameas
0 � a0 and update the

posterior joint PDF of m,C, a0,�

Figure 4 shows the posterior PDFs for the case of

true bias of 2 mm (a) when n¼ 13 (N12¼ 1200 cycles)

and (b) when n¼ 17 (N16¼ 1600 cycles). The posterior

joint PDFs are plotted separately into three groups for

the plotting purpose. In this case, it is assumed that

there is no noise in the data. The true values of param-

eters are marked using a star symbol. Similar results

were also obtained in the case with bias¼�2mm.

Measured crack

growth rate

lo
g
 (

d
a
/d

/V
)

log (DK)

m2

C2

C1

m1

Figure 3. Illustration of showing the same crack growth rate

with different combinations of parameters.
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Firstly, it is clear that the two Paris model parameters

are strongly correlated. The same is true for the initial

crack size and bias; in fact, the PDF of bias is calcu-

lated from Equation (8) with the initial crack size.

Secondly, it can be observed that the PDFs at n¼ 17

is narrower than that of n¼ 13, although the PDFs at

n¼ 13 is quite narrow compared to the prior distribu-

tion. As the uncertainty in model parameters is

reduced, the shape of distribution approaches a

Gaussian distribution, regardless of the nonlinearity

of the system. In addition, the central limit theorem26

can be considered as a part of the reason why the joint

distribution of (m, logC) appears Gaussian. Lastly, the

identified results look different from the true values due

to the scale, but the errors between the true values and

the median of identified results are at a maximum of

around 5%, except for bias. The error in bias looks

large, but that is because the true value of bias is

small. The error in bias is about 0.5mm. The same

magnitude of error exists for the initial crack size due

to the perfect correlation between them. Table 2 lists all

six cases considered in this paper, and all of them show

a similar level of errors. It is noted that the identified

standard deviation of noise, �, does not converge to its

true value of zero. This occurred because the original

data did not include any noise. Zero noise can cause a

problem in the likelihood calculation, as the denomina-

tor becomes zero in Equation (6). However, this would

not happen for practical cases in which noise always

exists.

The next example is to investigate the effect of noise

on the posterior PDFs of parameters. The results of

identified posterior distributions with different levels

of noise were shown in Figure 5 when the true bias

was 2mm. Similar results were obtained when bias

was �2mm. The black, blue, and red colors represent

noise levels of 0.1mm, 1mm, and 5mm, respectively.

The median location is denoted by a symbol (a circle

for 0.1 mmnoise, a square for 1 mmnoise, and a star for

5 mmnoise). Each vertical line represents a 90% confi-

dence interval (CI) of posterior PDF. The solid hori-

zontal line is the true value of the parameter. In the case

n = 13 n = 17
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Figure 4. Posterior distributions of parameters with zero noise and true bias of 2mm.
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of noise level¼ 0.1mm, all parameters were identified

accurately with very narrow CIs. In the case of noise

level¼ 1mm, the initial crack size and bias were iden-

tified accurately as the number of data increased,

whereas the CIs of two Paris parameters were not

reduced. In addition, the median values were somewhat

different from the true parameter values. Increasingly

inaccurate results were observed as the level of noise

increased to 5mm. Therefore, it is concluded that the

level of noise plays an important role in identifying

correlated parameters using Bayesian inference.

However, this does not mean that it is not able to pre-

dict RUL. Even if these parameters were not accurately

identified because of correlation, the predicted RUL

was relatively accurate, which will be discussed in

detail next subsection.

Damage propagation and RUL prediction

Once the parameters are identified, they can be used to

predict the crack growth and estimate RUL. Since the

joint PDF of parameters are available in the form of

5000 sample, the crack growth and RUL will also be

estimated using the same number of sample. First,

using 5000 sets of parameters obtained from the

MCMC method, Equation (2) is utilized to calculate

5000 numbers of crack size ai after Ni cycles. Then,

random measurement errors are added to the predicted

crack sizes. For that purpose, 5000 samples of measure-

ment errors are generated from normal distribution

with zero mean and identified 5000 samples of �.
Then, the quality of prediction can be evaluated in

terms of how close the median is to the true crack

growth and how large the prediction interval (PI) is.

The results of crack growth are shown in Figure 6

when the true bias is 2mm. Different colors represent

the three different loading conditions. The solid curves

are true crack growth, while the dashed curves are med-

ians of predicted crack growth distribution. The results

are obtained as a distribution due to the uncertainty in

parameters, but the medians of predicted crack growth

are only shown in the figures for visibility. In addition,

the critical crack sizes with different loadings use hori-

zontal lines. Since the posterior distributions of
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Figure 5. Posterior distributions with three different levels of noise (bias¼ 2mm).

Table 2. The median of identified parameters and the errors with the true values

n¼ 13 n¼ 15 n¼ 17

m log(C) a0 b m log(C) a0 b m log(C) a0 b

True values 3.8 �22.6 10 �2 3.8 �22.6 10 �2 3.8 �22.6 10 �2

b¼+2mm Median 3.82 �22.8 10.6 1.37 3.81 �22.7 10.4 1.53 3.82 �22.7 10.4 1.52

error (%) 0.49 0.57 5.67 31.7 0.32 0.37 4.00 23.6 0.47 0.44 3.84 24.2

b¼�2mm Median 3.78 �22.5 9.50 �1.44 3.78 �22.5 9.51 �1.41 3.78 �22.5 9.49 �1.35

error (%) 0.40 0.50 4.96 28.0 0.40 0.48 4.94 29.5 0.55 0.55 5.11 32.7
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parameters are symmetric, there was no difference

between the mean, mode, and maximum likelihood

estimates.

Figure 6 shows that the results closely predicted the

true crack growth when noise is less than 1mm. Even if

the level of noise is 5mm, the results of predicted crack

growth become close to the true one as the number of

data increases. This means that if there are many data

(much information about crack growth), the future

crack growth can be predicted accurately, even if

there is much noise. However, when the level of noise

is large, the convergence is slow such that the accurate

prediction happened almost at the end of life.

As can be seen from Figure 6, crack growth and

RUL can be predicted with reasonable accuracy even

though the true values of the parameters are not accu-

rately identified. The reason is that the correlated

parameters m and C work together to predict crack

growth in Equation (2). For example, if m is underes-

timated, then the Bayesian process overestimates C to

compensate for it. In addition, if there is large noise in

the data, the distribution of estimated parameters

becomes wider, which can cover the risk that comes

from the inaccuracy of the identified parameters.

Therefore it is possible to safely predict crack growth

and RUL.

In order to see the effect of the noise level on the

uncertainty of predicted RUL, Figure 7 plots the

median and 90% prediction interval (PI) of the RUL

and compared them with the true RUL. The RUL can

be calculated by solving Equation (2) for N when the

crack size becomes critical:

Nf ¼
a
1�m=2
C � a

1�m=2
i

Cð1� m
2
Þð��

ffiffiffi

�
p Þm ð9Þ

The RUL is also expressed as a distribution due to the

uncertainty of the parameters, which is obtained by

replacing ai and model parameters, m and C in
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Figure 6. Prediction of crack growth with bias¼+2mm.
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Equation (9) with 5000 predicted crack growth and

identified model parameters. In Figure 7, the solid diag-

onal lines are the true RULs at different loading con-

ditions ð�� ¼ 86:5, 78:6, 70:8Þ. The precision and

accuracy are fairly good when the noise is less than

1mm, which is consistent with the crack growth results.

In the case of a large noise, 5mm, the medians are close

to the true RUL, and the wide intervals are gradually

reduced as more data are used. Therefore, it is con-

cluded that the RULs are predicted reasonably in

spite of large nose and bias in data.

Conclusions

In this article, Bayesian inference and the Markov

Chain Monte Carlo (MCMC) method are used for

identifying the Paris model parameters that govern

the crack growth in an aircraft panel using SHM sys-

tems that measure crack sizes with noise and bias.

Focuses have been given to the effect of correlated

parameters and the effect of noise and bias. The corre-

lation between the initial crack size and bias was explic-

itly imposed using analytical expression, while the

correlation between two Paris parameters was identified

through Bayesian inference. It is observed that the cor-

related parameter identification is sensitive to the level

of noise, while predicting the remaining useful life is

relatively insensitive to the level of noise. It is found

that greater numbers of data are required to narrow

the distribution of parameters when the level of noise

is high. When parameters are correlated, it is difficult to

identify the true values of the parameters, but the cor-

related parameters work together to predict accurate

crack growth and RUL.
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