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Abstract—The paper presents the procedure for identification 

of coupled mathematical models for underwater vehicles. The 
procedure is performed with the use of a simple laboratory 
apparatus that consists of a webcam placed above the 
experimental pool. The video recording of the underwater vehicle 
in motion is then analyzed in order to obtain relative speeds 
within the camera frame. The experiment uses a simple 
maneuver which excites the vehicle in all controllable directions 
(in the horizontal plane). The results have shown that even 
though the system under observation is nonholonomic, the sway 
motion occurs due to coupling. This allows for determination of 
dynamic model in uncontrollable directions. The experimental 
data also show which terms in a general dynamic model can be 
omitted when dealing with micro underwater vehicles, in order 
to preserve the simplicity. 
 

Index Terms—Identification, underwater vehicles, mobile 
robot dynamics 

I. INTRODUCTION 
HE interest in underwater vehicles has involved a great 
number of control engineers mostly due to the challenge 

of controlling such a complex system. Six degrees of freedom 
along with coupled and nonlinear behavior makes them 
difficult to control and model. In order to implement any type 
of advanced control algorithms, appropriate mathematical 
model of the system has to be identified. The paper deals with 
the identification of coupled dynamic models for micro-
ROVs.  

The paper is organized as follows. Section I. gives a short 
overview of some interesting methods and procedures used for 
marine vehicle model identification, and gives a general 
mathematical model together with its reduction to horizontal 
plane. Section II. presents a new laboratory apparatus used for 
identification while Section III. presents the method for 
determining the parameters that have the greatest influence on 
the motion that is being identified (i.e. determination of the 
coupled model structure). Section IV. described the 
identification procedure and provides parameters for 
VideoRay Pro II ROV. Section V. concludes the paper. 
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A. Some Prior Work 
Researchers who are involved with navigation and guidance 

of underwater vehicles use different methods to identify their 
system’s dynamics. This should be the first step towards 
designing a complex navigation system. Indeed, control of 
different degrees of freedom can be accomplished by tuning 
the controller parameters heuristically, but in order to 
implement e.g. optimal controllers, the mathematical model is 
necessary. 

Some interesting aspects on identification of underwater 
vehicles by Ridao et al., [2], [5], and on surface vehicles by 
M. Caccia et al., [3], [4], can be found in literature. While 
Caccia uses classical measured data and some estimations to 
obtain the model of Charlie (autonomous surface catamaran), 
Ridao designed a uniquely patterned bottom of a laboratory 
test pool in order to localize Uris (unmanned underwater 
vehicle) and thus calculate the speeds which are necessary for 
model identification. However, both authors identify only 
uncoupled models of their vehicles. Nevertheless, both 
provide crucial proof of negligible system parameters and 
propose improved methods for identifying marine systems’ 
dynamics. 

B. Underwater Vehicles’ Mathematical Model 
Marine vehicles’ mathematical models consist of kinematic 

and dynamic part, [1]. The kinematic model gives the relation 
between speeds in a body-fixed frame and derivatives of 
positions and angles in an Earth-fixed frame, see (1). 
According to terminology in [1], vector of positions and angles 
of an underwater vehicle  [ ]TE x y z ϕ θ ψ=η  is defined 
in the Earth-fixed coordinate system (E) and vector of linear 
and angular velocities [ ]TB u v w p q r=ν  (surge, sway, 
heave, roll, pitch and yaw velocity, respectively) is defined in a 
body-fixed (B) coordinate system. 
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a) b) 
Fig. 2.  a) Experimental setup and b) view from the camera above 

the pool 

a) b) 
Fig. 3.  a) Isolated red marker and b) original picture fused with 

orientation and position of the red marker 

As stated before, the dynamic model of underwater vehicles 
is highly coupled and nonlinear. The main reasons for this are 
not only the rigid-body dynamics but hydrodynamic 
influences also. A general dynamic equation for underwater 
vehicles is given with (2). 

 
( ) ( ) ( ) d+ + + = +Mν C ν ν D ν ν g η τ τ&          (2) 

 
Matrix RB A= +M M M  represents the sum of the rigid-body 

mass and added mass matrix. Matrix ( )D ν  is a damping 
matrix, which is diagonal and usually represented with a linear 
and quadratic term. Matrix ( ) ( ) ( )RB A= +C ν C ν C ν  represents 
the sum of the rigid-body and added mass Coriolis matrix, 
vector g represents gravitational and buoyancy forces, vector τ 
consists of external forces and moments that act upon the 
underwater vehicle and dτ  is the disturbance vector. 

C. Mathematical Model in the Horizontal Plane 
This paper addresses the issue of identification of coupled 

models in the horizontal plane, i.e. heave, roll and pitch 
motions are not observable. Therefore, the general 
mathematical model should be reduced to observable states 
only. Under the assumption that 0w φ θ= = = , the following 
kinematic (3) and dynamic (4) equations of motion can be 
written. 
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 (4) 

 
The dynamic model that is given with (1) is general in a 

way that it assumes the centre of gravity is not coincident with 
centre of mass, added mass matrix is not completely diagonal 
and the damping matrix contains quadratic terms. 

 

II. EXPERIMENTAL SETUP 
In this paper, we present a new laboratory apparatus for 

marine vehicle model identification. Using the data obtained 
from this apparatus, a coupled mathematical model of 
VideoRay Pro® II ROV, VideoRay LLC will be identified.  

A. VideoRay Micro-ROV 
The real time system used for identification of coupled 

dynamics is the VideoRay Pro micro submersible shown in 
Fig. 1. Its dimensions are 355mm x 228mm x 215mm and it 
weighs about 4 kg. Heading sensor is a magnetic compass 
with 2° quantization. Also, it is equipped with a depth 
pressure sensor and two video cameras: the color one in front 
with the tilt and focus option, and the black and white one 
which is stationary. The vehicle is connected to the control 
board with a tether that causes substantial disturbance that 
should be compensated. 

The ROV has three thrusters (port, starboard and vertical), 
hence it presents a nonholonomic system controllable in 
heave, surge and yaw direction. This means that the input 

0Y =τ . The only force acting in sway direction could be the 
one from disturbance, but we exclude this possibility due to 
laboratory conditions. 

B. Laboratory Pool 
The experimental setup that was used to obtain the position  

Fig. 1.  VideoRay micro-ROV, VideoRay LLC 
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Fig. 5  Data obtained from camera (the “S-maneuver”) 

 
Fig. 6.  The “S-maneuver” 

 
Fig. 4.  Data acquisition scheme 

and orientation of the vehicle is a laboratory pool (3.5 m in  
diameter, 1.2 m depth) and a webcam that was placed directly 
above the swimming pool, see Fig. 2a). A red marker was 
placed on top of the ROV so that its position and orientation 
within the camera frame could easily be extracted from the 
recorded video (Fig. 2b)). Since the depth of the pool is small, 
the identification procedure was performed only in two  
dimensions - surge, yaw and sway are the motions taken into 
consideration. This is important since only surge and yaw are 
controllable, and in the paper it will be demonstrated that due 
to coupling of motions, sway can be identified also.  

C. Data Acquisition 
As it was mentioned earlier, a web camera was placed 

above the pool in order to localize the ROV. Prior to that, the 
ROV was marked with a red line so it could be easily detected 
from the video.  

The scheme of data acquisition system is shown in Fig. 4. 
The ‘Synchronization’ block is used to ensure that a frame is 
recorded, and that control signals are sent once every sample 
time (100 ms). Once the synchronization is achieved, the 
procedure can be described as follows: 

• Acquire an RGB image from the camera (Fig. 2b)) and 
separate it to a red, green and blue component; 

• Transfer the image to a binary equivalent (Fig. 3.a)) 
where detection of the red color results in a logical 1 

(white) and everything else results in a logical 0 
(black).  

• Find the centroid of the group of white pixels (this is 
the position of the ROV) 

• Find the orientation of the group of white pixels (this is 
the orientation of the ROV). Now we obtain Fig 3b) 
where the camera image is augmented with ROV’s 
position (green circle) and orientation (blue line). 

• Perform inverse kinematics on the data using (3), to 
obtain linear and angular speeds that are required for 
model identification. 

An example of obtained velocities using camera data is 
shown in Fig. 5. Raw data from camera are naturally noisy, 
therefore they should be filtered. We used a Golay filter as it 
was proposed in [2]. 

D. The “S-maneuver” 
In order to obtain a coupled mathematical model, the 

underwater vehicle was driven in the “S-maneuver” illustrated 
in Fig. 6. This maneuver consists of driving the ROV with a 
constant surge force while changing the yaw moment from 
positive to negative constant value. The exact procedure is 
performed for the same surge force only in the opposite 
direction.  

When this type of motion is applied, surge and yaw motions 
are performed simultaneously, and the data collected from the 
camera clearly show that the vehicle is also performing sway 
motion (see Fig. 5). Since the vehicle is not equipped with 
thrusters for sway motion, and there is no external 
disturbance, the conclusion is that the model is highly 
coupled. 
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Fig. 7.  Correlation coefficients for yaw motion 

 
Fig. 8.  Correlation coeff. for surge motion 

 
Fig. 9.  Correlation coeff. for sway motion 

 

III. DECIDING ON THE MODEL 
The following part will provide methods for determining 

model parameters that are negligible in comparison to 
dominant ones. The simplest way is to find the correlation 
coefficient at zero lag between the observed speed and all 
other factors that appear in the corresponding equation, [8].  

From (1) it can be seen that in general case, yaw motion 
depends on v ur+& , u vr−& , uv  and Nτ ; surge motion depends 

on r& , u& , 2r , rv  and Xτ ; and sway motion depends on r& , u& , 
2r  and ur . Figures 7, 8 and 9 show correlation coefficients 

for motions in the three degrees of freedom and obvious 
candidates for their models at zero lag for 6 different data sets. 
It is clear that yaw motion correlates to Nτ  and uv ; surge 
motion correlates to Xτ  and rv ; while sway motion correlates 
only to the coupled term ur . 

From figures 7, 8 and 9 we can make the following 
conclusions: 

• Parameter vX &  from added mass matrix is negligible – 
the added mass matrix is diagonal. This is common for 
underwater vehicles, [1]. 

• The centre of buoyancy is practically equivalent to the 
centre of gravity ( 0G Gx y= = ) in the horizontal plane. 
This is true for micro-ROVs.  

Using this information and dynamic equation (1), we conclude 
that the following models for surge, yaw and sway motion are 
appropriate.  
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IV. IDENTIFICATION 
The identification method that is used in the paper is the 

least-squares (LR) method, [9]. In concordance to the derived 
models, the regression vectors used to fit input-output data are 
augmented with a constant ( xδ ) in order to exclude all 
possible model uncertainties and external disturbances from 
influencing real model parameters, as in [2]. The general 
matrix form for LR identification is given with (8), where 
Θ is a column vector of parameters that are to be identified. 
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If yaw motion is identified then x r= , 2x u= , 3x v=  and 

NF τ= ; for surge motion x u= , 2x r= , 3x v=  and 

XF τ= ; while for sway motion x v= , 2x u= , 3x r=  and 
0F = . The identified parameters are shown in Table I. 

A. Modified Identification 
The identified parameters 3β  and 3γ  should be inverse and 

reciprocal (see (6) and (7)). As it can be seen from Table I. 
they are inverse, but the reciprocity is not satisfied. Since both 
of the identified parameters are close to 1, we will make the 
following assumptions: 

1. 3 3 1β γ= − = , i.e. added mass terms in surge and sway 
direction are equal  

2. 3 0α = , i.e. yaw motion is not coupled to other two 
motions (this comes as a direct consequence of 
assumption number 1)  

The results of identification with fixed values of 3α , 3β , 3γ  
are shown in Table II.  

B. Validation of the Results 

For validation of results, an error function 2

1

1 ( )
N

k
J e k

N =

= ∑  

is used, where ( )e k is the difference between the simulated 
and real value in step k, and N is the number of samples. As it 
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can be seen from Tables I and II, the quality of identification 
was not worsened by constraining 3α , 3β  and 3γ  to a fixed 
value. For yaw and sway models, the error function J became 
smaller, while for surge model it is insignificantly larger. In 
addition to that, more precise identification of the parameters 
is gained – standard deviations have decreased. These results 
let us conclude that the assumptions made are valid.  

Another test which should prove the correctness of the 
identified model is checking some natural properties of the 
system’s matrices, [1]: the overall mass matrix should be 
symmetric and positive definite (9), the overall Coriolis matrix 
should be inversely symmetric (10) and the damping matrix 
should be positive definite (11). All of these are fulfilled.  

 

( ) 0T
A A+ = + >M M M M                       (9) 

( ) ( ) ( ) ( ) T
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0>D                                     (11) 
 

The final identification results for the VideoRay ROV in 
the horizontal plane are shown with the following matrix 
form: 
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Figures 10, 11 and 12 show results obtained by identification 
– red lines present the real data obtained from camera, while 
blue lines present simulated data (using the identified models). 
Fig. 10 shows the results for the yaw motion. It is easily seen 
that the yaw motion is much faster than motions in other 
directions. 

Fig. 11 shows the results for surge motion. The green 
dotted line presents simulated data when an uncoupled model 
is assumed ( 3 0β = ). From this figure it is obvious that a 
coupled model describes the vehicle’s dynamics much better. 

Fig. 12 shows the results for sway motion It can easily be 
seen that even though the vehicle was not excited in sway 
direction, the model can be identified. 

 

V. CONCLUSION 
In the paper we have shown that coupled motion should not 

be neglected when dealing with underwater vehicles. The data 
obtained from the described apparatus explicitly showed that a 
motion which cannot be controlled (sway) appears when the 
vehicle is forced to surge and yaw motion.  

The paper describes the use of correlation coefficients for 
determining the coupling between motions. This method 
allowed us to conclude the following: the centre of buoyancy 
is in the same place in the horizontal plane as the centre of 

gravity (this is true for small underwater vehicles), and that 
the added mass terms uX &  and vY& can be considered equal 
while dealing with micro-ROVs (this can also be considered 
as a consequence of small ROV dimensions). Finally, 
comparison between coupled and uncoupled models is given. 
This comparison clearly proves that coupled model describes 
input-output data much better then the uncoupled one, and 
therefore the procedure should be used in all cases when a 
more precise underwater vehicle model is required. 

A. Future Work 
One of the assumptions made in this paper was that the 

damping matrix ( )D ν  does not depend on the speed of the 
underwater vehicle. This has proven to be true. The 
experiments in this paper were made under constant surge and 
yaw speeds (in different directions), therefore the identified 
model is linear with regards to damping at this particular 
speed. Future work will concentrate on augmenting the 
coupled model with quadratic damping terms in matrix D.  

 
 

 

TABLE I 
YAW MODEL PARAMETERS 

PARAMETER 1α  2α  3α  J 
MEAN -2.4395 25.968 31.969 
ST. DEV. [%] -3.39 2.88 5.05 

0.045 

 
SURGE MODEL PARAMETERS 

PARAMETER 1β  2β  3β  J 
MEAN -0.5531 0.121 0.8994 
ST. DEV. [%] -12.84 7.13 12.18 

0.485 

 
SWAY MODEL PARAMETERS 

PARAMETER 1γ   3γ  J 
MEAN -1.6282  -0.9092 
ST. DEV. [%] -12.57  -10.41 

0.434 

TABLE II 
YAW MODEL PARAMETERS 

PARAMETER 1α  2α  3α  J 
MEAN -2.6798 26.8758 0 
ST. DEV. [%] -3.68 3.07 0 

0.041 

 
SURGE MODEL PARAMETERS 

PARAMETER 1β  2β  3β  J 
MEAN -0.5376 0.121 1 
ST. DEV. [%] -11.56 6.88 0 

0.489 

 
SWAY MODEL PARAMETERS 

PARAMETER 1γ   3γ  J 
MEAN -1.8158  -1 
ST. DEV. [%] -5.23  0 

0.399 
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Fig. 11. Results for surge motion 

 
Fig. 10.  Results for yaw motion 

 
Fig. 12.  Results for sway motion 


