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Notably, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a tight
relationship with the immune system. Human resistance to COVID-19 infection comprises
two stages. The first stage is immune defense, while the second stage is extensive
inflammation. This process is further divided into innate and adaptive immunity during the
immune defense phase. These two stages involve various immune cells, including CD4+

T cells, CD8+ T cells, monocytes, dendritic cells, B cells, and natural killer cells. Various
immune cells are involved andmake up the complex and unique immune system response
to COVID-19, providing characteristics that set it apart from other respiratory infectious
diseases. In the present study, we identified cell markers for differentiating COVID-19 from
common inflammatory responses, non-COVID-19 severe respiratory diseases, and
healthy populations based on single-cell profiling of the gene expression of six immune
cell types by using Boruta and mRMR feature selection methods. Some features such as
IFI44L in B cells, S100A8 in monocytes, and NCR2 in natural killer cells are involved in the
innate immune response of COVID-19. Other features such as ZFP36L2 in CD4+ T cells
can regulate the inflammatory process of COVID-19. Subsequently, the IFS method was
used to determine the best feature subsets and classifiers in the six immune cell types for
two classification algorithms. Furthermore, we established the quantitative rules used to
distinguish the disease status. The results of this study can provide theoretical support for
a more in-depth investigation of COVID-19 pathogenesis and intervention strategies.

Keywords: COVID-19, immune cell, machine learning, feature selection, classification algorithm

1 INTRODUCTION

COVID-19 is a severe respiratory tract syndrome caused by SARS-CoV-2 (Yuki et al., 2020; Rai et al.,
2021). The number of total infections and deaths caused by COVID-19 is rising at an alarming rate.
As of December 6 2021, the confirmed cases of COVID-19 worldwide have exceeded 265million, and
the number of deaths has exceeded 5.3 million (Johns Hopkins University, 2020). Patients with
COVID-19 may experience fever, dry cough, dyspnea, fatigue, viral pneumonia, severe acute
respiratory distress syndrome, and even death (Guan et al., 2020; Lovato and De Filippis, 2020).
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Similar to other RNA viruses, SARS-CoV-2 undergoes genetic
evolution while adapting to a new human host, resulting in
mutant variants that may have different characteristics from
their ancestor strains. Whether the vaccine to prevent
COVID-19 can cope with the new SARS-CoV-2 variant
requires continued attention. At present, the pathogenesis of
SARS-CoV-2 remains unclear.

SARS-CoV-2 interacts closely with the host immune system
(Dong et al., 2020). COVID-19 infection involves two stages of
the immune response. The first stage is based on immune defense,
while the second stage is characterized by extensive inflammation
(Shi et al., 2020). SARS-CoV-2 can cross the respiratory tract, oral
mucosa, and conjunctival epithelium; thus, mucosal IgAmay play
a protective role for the mucosal barrier (Rizzo et al., 2020). IgA is
the main effector against the virus. Padoan et al. (2020) found that
in the first week, in patients infected with COVID-19, most
patients present a specific IgA response (Rizzo et al., 2020).
Virus-infected epithelial cells produce interferons, which allow
a powerful innate immune response (Mason, 2020). Dendritic
cells, macrophages, and neutrophils serve as the first responders
of defense to initiate an immune response. A high degree of
macrophage infiltration occurs in the bronchopneumonia area of
patients who died of COVID-19 (Barton et al., 2020). The degree
of pro-inflammatory cytokine storm in patients with severe
infection symptoms is higher than that in mild cases,
suggesting that inflammatory reaction is related to the disease
severity (Liu et al., 2020). SARS-CoV-2 not only attacks lung
tissue but also severely damages other tissues (Yao et al., 2020).
An increased level of neutrophils was found in patients with
severe COVID-19 (Liu et al., 2020). An increase in macrophages
and a significant decrease in natural killer (NK) cells were found
in individuals with severe COVID-19 (Zhang et al., 2020a). In
addition, the expression of NKG2A in patients with COVID-19
remarkably increased, which is related to the depletion of
cytotoxic T and NK cells in the early stage of viral infection.
Therefore, the high expression of NKG2A is associated with the
serious progression of diseases (Zheng et al., 2020). In conclusion,
in COVID-19 cases, macrophages are over-activated and play an
important role in disease progression, whereas NK cell activity is
reduced (Paces et al., 2020).

COVID-19 is related to innate immunity and adaptive immunity.
The number of CD8+ T cells in the patient decreases during SARS-
CoV-2 infection. In severely infected individuals, the number of
memory CD4+ T and T regulatory cells remarkably decreases (Zhang
et al., 2020a). T cells can recover their function after anti-viral therapy
because the expression of NKG2A decreases in patients who
recovered after anti-viral therapy. Compared with patients with
severe symptoms, patients with mild symptoms have higher
numbers of T cells (CD3+ cells), especially CD8+ T cells (CD3+

/CD8+ cells) (Cao, 2020). The expression of PD-1 in peripheral blood
T cells of patients with severe symptoms is remarkably upregulated
compared with that of patients with mild symptoms and normal
individuals (Moon, 2020). Therefore, SARS-CoV-2 has a strong
immunosuppressive ability against adaptive immune responses.

High-throughput sequencing and data analysis provide
convenience for understanding the immune cell characteristics
of COVID-19 (Chen et al., 2021a; Li et al., 2021a; Stephenson

et al., 2021; Zhang et al., 2021). Based on the single-cell profiling
of gene expression and surface proteins of 696,109 peripheral
blood immune cells from 102 patients with COVID-19 having
different disease severity and 41 control individuals, we used a
machine learning statistical analysis to explore the expression
characteristics of various immune cells in patients with COVID-
19 and immune molecules related to the COVID-19 immunity
mechanism. Two feature selection methods: Boruta (Kursa and
Rudnicki, 2010) and minimum redundancy maximum relevance
(mRMR) (Peng et al., 2005), were applied to the single-cell
profiles of six cell types, namely, B cell, CD4+ T cell, CD8+

T cell, NK cell, dendritic cell, andmonocyte, one by one. A feature
list was obtained for each cell type. Then, the incremental feature
selection (IFS) method (Liu and Setiono, 1998) adopted such a list
to extract key features and construct efficient classifiers and
classification rules. These features were deemed to be
associated with COVID-19. The classifiers and rules can be
used to monitor the immune level and disease risk of patients
infected with SARS-CoV-2. The immune molecular markers
corresponding to key features or contained in the classification
rules have been confirmed in other studies. All these results
confirmed the feasibility and accuracy of the research program,
providing theoretical support for the in-depth study of the
pathogenesis and intervention direction of COVID-19.

2 MATERIALS AND METHODS

2.1 Data
Single-cell profiling of gene expression and surface proteins of
696,109 peripheral blood immune cells from 102 COVID-19
patients with different infection levels and 41 control

TABLE 1 | Sample sizes of various disease statuses on different cell types.

Cell type Status Sample size

B cell COVID 60,685
Healthy 7,562
LPS 2,831
Non-COVID 1,145

CD4+ T cell COVID 116,549
Healthy 27,743
LPS 877
Non-COVID 3,543

CD8+ T cell COVID 80,122
Healthy 18,987
LPS 1,353
Non-COVID 4,424

Natural killer cell COVID 88,105
Healthy 14,539
LPS 1,329
Non-COVID 4,205

Dendritic cell COVID 8,878
Healthy 2,809

Monocyte COVID 128,503
Healthy 13,751
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individuals was downloaded from EMBL-EBL under the
accession number E-MTAB-10026 (Stephenson et al., 2021).
These immune cells were further divided into six main cell
types, namely, B cells, CD4+ T cells, CD8+ T cells, NK cells,
dendritic cells, and monocytes. The B, CD4+ T, CD8+ T, and NK
cells were further divided into four categories, namely, COVID,
healthy, lipopolysaccharide (LPS), and non-COVID, depending
on the disease state of the patients, where LPS indicates patients
injected with LPS as a substitute for an acute systemic
inflammatory response, non-COVID indicates individuals with
non-COVID-19 severe respiratory disease. As for the other two
cell types, dendritic cells and monocytes, they were classified into
two categories (COVID and healthy). The number of cells in each
category for each cell type is shown in Table 1. A total of
31,279 genes were included in each cell for subsequent screening.

2.2 Boruta Feature Filtering
As mentioned in Section 2.1, each cell was represented by the
expression levels of many genes. Evidently, not all genes were
related to COVID-19. It is important to extract important genes
among so many genes. In view of this, the powerful feature
selection method, Boruta (Kursa and Rudnicki, 2010), was first
applied to the single-cell profiles on each cell type for excluding
irrelevant gene features.

Boruta is a method for the selection of features related to the
dependent variable in the sense of filtering those redundant and
noisy features for a subsequent modeling analysis with improved
efficiency (Kursa and Rudnicki, 2010). The method compares the
value of the original features to the significance achievable at
random, as indicated by their permuted copies, and gradually
removes unnecessary features to stabilize the test. In the last few
years, Boruta has been widely used in processing biological data
(Chen et al., 2021a; Huang et al., 2021a; Zhou et al., 2022).

Boruta compares the importance of an original attribute with
the importance of shadow attributes formed by shuffled original
attributes iteratively. The importance of the features is quantified
by feeding the features into the random forest (RF) to obtain the Z
scores. Attributes that are much less important than shadow
attributes are phased out in each iteration. Confirmed traits are
those that are much better than shadows. Each repetition
recreates the shadows. When only confirmed attributes are left
or the RF runs have reached the algorithm’s previously specified
limit, the algorithm terminates.

In the present study, we used the Boruta program from https://
github.com/scikit-learn-contrib/boruta.py with default
parameters.

2.3 Minimum Redundancy Maximum
Relevance
After the Boruta feature filtering method, a batch of filtered
features was obtained, but the importance of each feature for
classification is not known. The mRMR algorithm is a feature
selection method that prioritizes the features (Peng et al., 2005;
Zhao et al., 2018; Yu et al., 2020; Zhu et al., 2020; Chen et al.,
2022). It measures the redundancy and relevance between
features and target variables by using mutual information as a

computational criterion and performs feature selection by
maximizing the relevance of features to the target variable
while reducing the redundancy between features.

In the mRMR method, the correlations among features or
those between features and target variables are measured based
on mutual information (MI), which is expressed using the
following equation:

MI(x, y) � ∫∫p(x, y)log p(x, y)
p(x)p(y) dxdy, (1)

where p(x, y) represents the joint probabilistic density of x and
y. p(x) and p(y) represent the marginal probabilistic densities of
x and y, respectively. Each feature is measured according to the
principles of mRMR that are estimated by MI. The maximum
relevance principle relates to the selection of features that are
most important to the target variable. The trained model’s
problem-solving skills are generally improved as the relevance
increases. The maximum correlation can be expressed as follows:

maxD(S, c), D � 1

|S| ∑fi∈S
MI(fi, c), (2)

Based on minimum redundancy, reducing duplication
between features and making each feature representative can
be reduced by minimizing redundancy. The equation for
calculating minimum redundancy is as follows:

minR(S), R � 1

|S|2 ∑fi,fj∈S
MI(fi, fj), (3)

where S is the feature subset, |S| is the number of features, fi is the
i-th feature, and c is the target variable. Finally, the features are
chosen via the maximization of ϕ by the following equation:

maxϕ(D,R), ϕ � D − R, (4)
However, the problem of finding such an optimal feature

subset is NP-hard. The mRMR method adopts a heuristic way to
implement the aforementioned procedures. It repeatedly selects
one feature that has maximum relevance to the target variable and
minimum redundancies to the already selected features. All
features are sorted in a feature list according to the selection
order. Such a list was termed the mRMR feature list.

In the present study, we used the mRMR program obtained
from http://home.penglab.com/proj/mRMR/ and ran the analysis
by using the default settings.

2.4 Incremental Feature Selection
As stated in the previous section, we obtained an mRMR feature
list for each investigated dataset. Clearly, features with high ranks
were more important than those with low ranks. However, we still
cannot determine the optimal subset to be used for classification.
Here, the IFS method was used, which is a common method for
obtaining the best feature subset for a classification algorithm (Liu
and Setiono, 1998; Chen et al., 2019; Zhang et al., 2020b). The IFS
method can be broken down into the following main steps: 1)
constructing a set of feature subsets from the mRMR feature list
with a given step t, that is, the first subset contains the top t
features in the list, the second subset includes the top 2✕t features
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in the list, and so forth. 2) Building classifiers on all feature
subsets based on one classification algorithm. 3) All classifiers are
evaluated by a 10-fold cross-validation (Kohavi, 1995). 4) The
optimum feature subset and classifier are defined as the feature set
and classifier with the best classification performance,
respectively.

2.5 Synthetic Minority Oversampling
Technique
According to Table 1, the category sizes on each cell type were
quite different. The discrepancy between the biggest and smallest
number of samples in CD4+ T cells was roughly 130-fold,
indicating that the sample size is extremely imbalanced. Such
a fact may influence the performance of constructed classifiers.
The problem can be prevented by oversampling the minority
class. The synthetic minority oversampling technique (SMOTE)
is one of the most classic oversampling methods in dealing with
imbalanced problems (Chawla et al., 2002; Ding et al., 2022).

The SMOTE starts by randomly selecting a sample in the
minor class and finding k samples in the same class that are
closest to the selected sample. Then, it randomly selects one
sample and draws a line between the two samples. Finally, a new
sample is randomly selected from such a line and put into the
minor class. The aforementioned procedures are executed several
times until samples in the minor class are as many as those in the
major class.

In this study, the “SMOTE” tool from Weka was used. It was
performed with default parameters. It was necessary to point out
that samples generated by the SMOTE were only used for
assessing the performance of classifiers. The feature analysis
procedure (Boruta and mRMR) did not use these samples.

2.6 Classification Algorithm
For executing the IFS approach, one classification algorithm is
necessary. The present study tried two classification algorithms:
RF (Breiman, 2001) and decision tree (DT) (Breiman, 2001).
They have wide applications for dealing with different medical
problems (Saleema et al., 2012; Casanova et al., 2014; Baranwal
et al., 2019; Chen et al., 2021b; Chen et al., 2022; Ding et al., 2022;
Li et al., 2022; Ran et al., 2022; Wang and Chen, 2022; Wu and
Chen, 2022; Yang and Chen, 2022). Their brief descriptions are
provided as follows.

2.6.1 Random Forest
RF is an ensemble method and its basic unit is a DT. The trees are
generated numerous times by using randomly picked samples
and features to construct a forest. The sample is predicted by
aggregating votes from the trees. In the present study, we used the
RF program from the scikit-learn (Pedregosa et al., 2011) package
in Python. Default parameters were adopted.

2.6.2 Decision Tree
Although RF is quite powerful for classification, its principle is
quite hard to understand. Thus, little knowledge can be obtained
from RF. The DT is quite different from RF as it is a white-box
classification algorithm. Although it is generally weaker than RF,

its classification procedures are completely open, giving
opportunities for us to understand its principle and access
new knowledge underlying the investigated dataset.

A DT is a tree-like structure with nodes and directed edges that
depicts the classification and discrimination of samples. The nodes
can be classified as internal and leaf nodes. The DT is a collection of
if-then rules; when a rule is constructed for each path of the tree from
the root node to the leaf node, each internal node corresponds to the
rule’s condition, and a leaf node reflects the result of the associated
rule.We used theDTprogram reported in the scikit-learn (Pedregosa
et al., 2011) package, where the CART method with Gini coefficients
as the information gain was used to construct the tree.

2.7 Performance Evaluation
According to the 10-fold cross-validation results, we counted four
values for the ith category, namely, true positive (TP), false positive
(FP), false negative (FN), and true negative (TN), where TP was the
number of samples in the ith category that were also classified into the
ith category, FP was the number of samples not in the ith category
that were classified into the ith category, FN was the number of
samples in the ith category that were classified into other categories,
and TN was the number of samples not in the ith category that were
classified into other categories. Based on these values, the precision,
recall, and F1 score can be counted as follows:

precisioni � TP

TP + FP
, (5)

recalli � TP

TP + FN
, (6)

F1 scorei � 2 × precisioni × recalli
precisioni + recalli

. (7)

The aforementioned measurements can only evaluate the
performance classifiers in one category. To give a full
evaluation, we further used macro F1 and weighted F1, where
macro F1 is defined as the mean of F1 score values in all
categories, whereas weighted F1 is the weighted mean of
F1 score values in all categories, which further considers the
category sizes. Considering that the category sizes were quite
different in each cell type, weighted F1 was more accurate than
other measurements to assess the performance of classifiers.

2.8 Functional Enrichment Analysis
After the IFS method, the optimum feature subset can be
obtained. To further demonstrate the reliability of these
features in distinguishing the disease status of patients with
COVID-19, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. Here, we used ClusterProfiler (Wu et al.,
2021) in R to enrich these features for the analysis, visualization,
and filtering of the enriched entries according to FDR <0.05.

3 RESULTS

In the present work, we used effective feature selection methods
and classification algorithms to mine important features of
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distinct cell types for identifying COVID-19 disease status.
Furthermore, the classification rules constructed by the DT
were provided, which can offer a foundation for disease status
prediction. The overall computational framework is shown in
Figure 1. Each step of the calculation procedure involves specific
results, which are detailed as follows.

3.1 Results of Boruta and mRMR Methods
The present study included six cell types with a total of
696,109 cells and 31,279 features. If all features were used, the
process would be extremely computationally intensive and
introduce noise, thus requiring feature selection. For each cell
type, Boruta was first applied to the profiles to filter irrelevant
features. The numbers of selected gene features on six cell types
were 570, 842, 898, 616, 979, and 880, respectively. Detailed
information on these selected features can be found in
Supplementary Table S1.

Then, the selected features on each cell type were further
analyzed by the mRMR method, resulting in an mRMR feature
list. The ranks indicate the importance of the features. These
mRMR feature lists are also provided in Supplementary
Table S1.

3.2 Results of the Incremental Feature
Selection Method With Random Forest and
Decision Tree Algorithms
For each mRMR feature list of one cell type, it was fed into the IFS
method. Many feature subsets were constructed from the list, which
induced many classifiers with a given classification algorithm (DT or
RF), all classifiers were assessed by 10-fold cross-validation. The
measurements mentioned in Section 2.7 were counted, which are
provided in Supplementary Table S2. To clearly display the
performance of classifiers, several IFS curves were plotted, as

shown in Figure 2, which defined weighted F1 as the Y-axis and
the number of features as the X-axis. The detailed IFS results on each
cell type were provided as follows.

For B cells, the highest weighted F1 values for the DT and RF
were 0.882 and 0.936, respectively, which is shown in Figure 2A.
Such performance was obtained by using the top 350 and
210 features in the list. These features comprised the optimum
feature subsets for the DT and RF. Accordingly, the optimum DT
and RF classifiers can be constructed with the optimum features.
The macro F1 values of these two classifiers were 0.722 and 0.909,
respectively, as shown in Table 2. Evidently, the optimum RF
classifier was superior to the optimumDT classifier. Furthermore,
the performance of these two classifiers in the four categories, as
shown in Figure 3A, further confirmed this fact. The optimum
RF classifiers provided much better performance than the
optimum DT classifier on LPS and non-COVID.

Similar results can be obtained for the other five cell types.
From the corresponding IFS curves (Figures 2B–F), we can
obtain the highest weighted F1 values in the DT and RF and
the number of corresponding optimum features. Then, the
optimum DT and RF classifiers were built using their
optimum features. The macro F1 values of these classifiers are
shown in Table 2 and the F1 scores in all categories are shown in
Figures 3B–F. It was easy to see that the optimum RF classifier
was always better than the optimum DT classifier in each cell
type, conforming to our general cognition that RF is generally
more powerful than the DT.

3.3 Classification Rules Created by the
Optimal Decision Tree Classifier
The IFS results showed that the optimal DT classifiers were always
weaker than the optimum RF classifiers. However, the DT classifier
had merits that were not shared by the RF classifier. Rules can be

FIGURE 1 | Flow chart of the whole analytical procedure. The single-cell profiles of COVID-19 include B cells, CD4+ T cells, CD8+ T cells, dendritic cells, monocytes,
and natural killer cells, each of which has various disease statuses, namely, COVID, healthy, lipopolysaccharide (LPS), and non-COVID. The gene features are analyzed
by two feature selection methods, namely, Boruta and mRMR. The result feature list is fed into the incremental feature selection (IFS) method to extract essential genes,
and construct efficient classifiers and classification rules.
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extracted from the tree, which contained hidden information in the
profiles. Such information was helpful for us to uncover the
mechanism of different COVID-19 disease statuses in six cell types.

As mentioned in Section 3.2, the optimum DT classifiers were
constructed in B cells, CD4+ T cells, CD8+ T cells, NK cells, dendritic
cells, and monocytes when the top 350, 90, 105, 85, 35, and 105,
respectively, features in the corresponding feature list were adopted.

We used these features to represent cells and applied the DT on cells
with such representations. A large tree was built, from which several
classification rules were obtained. Each rule described the relationship
between features and each category in a certain cell type. All rules are
provided in Supplementary Table S3. The number of rules in each
cell type is shown in Figure 4. The rules for CD4+ T cell were the
most, whereas the rules for dendritic cells were the least. In each cell

FIGURE 2 | Incremental feature selection (IFS) curves of two classification algorithms in six cell types. The weighted F1 is set to the Y-axis and the number of
features is set to the X-axis. (A) IFS curves in B cells; (B) IFS curves in CD4+ T cells; (C) IFS curves in CD8+ T cells; (D) IFS curves in natural killer cells; (E) IFS curves in
dendritic cells; and (F) IFS curves in monocytes. The highest weighted F1 on each curve is marked, along with the number of used features. The random forest can
always provide better performance than the decision tree.

TABLE 2 | Performance of the optimum classifiers based on different classification algorithms on six cell types.

Cell type Classification algorithm Number of features Macro F1 Weighted F1

B cell Decision tree 350 0.722 0.882
Random forest 210 0.909 0.936

CD4+ T cell Decision tree 90 0.653 0.823
Random forest 100 0.871 0.880

CD8+ T cell Decision tree 105 0.697 0.831
Random forest 130 0.875 0.881

Natural killer cell Decision tree 85 0.732 0.863
Random forest 140 0.905 0.919

Dendritic cell Decision tree 35 0.832 0.873
Random forest 30 0.859 0.892

Monocyte Decision tree 105 0.877 0.954
Random forest 80 0.903 0.963
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type, each category was assigned some rules. Figure 5 shows the
number of rules for various categories (disease status) in each cell
type. The sophistication and efficiency of machine learning methods
for the characterization of individual classes are indicated by these
rules, which combine multiple features and define criteria for their
quantitative expression. Some important rules are discussed in detail
in Section 4.2.

3.4 Functional Enrichment Analyses
Based on the IFS results, the optimum RF classifier was better
than the optimal DT classifier for each of the six cell types. Thus,
the optimum features for RF were more essential than those for
the DT. We picked up these optimum features for each cell type
and used the ClusterProfiler (Wu et al., 2021) package in R to

FIGURE 3 | Performance of the optimal classifiers in all categories (disease status) in each cell type. (A) Performance of the optimal classifiers in B cells; (B)
performance of the optimal classifiers in CD4+ T cells; (C) performance of the optimal classifiers in CD8+ T cells; (D) performance of the optimal classifiers in natural killer
cells; (E) performance of the optimal classifiers in dendritic cells; and (F) performance of the optimal classifiers in monocytes.

FIGURE 4 | Bar chart to show the number of classification rules for six
cell types.

FIGURE 5 | Histogram of the number of classification rules
corresponding to the four categories (disease status) in the six immune cell
types.
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perform GO and KEGG enrichment analyses of their
corresponding genes, further demonstrating the feasibility of
these signature subsets for differentiating COVID-19 disease
status. These enrichment results were filtered according to
FDR<0.05 to obtain significant enrichment results, as shown
in Supplementary Table S4. We also visualized some of the
top-ranked enrichment results, as shown in Figure 6. The content
associated with viral infection was found in both GO and KEGG

enrichment results, indicating that the genes that we studied are
functionally linked to the development of COVID-19.

4 DISCUSSION

We used Boruta, mRMR, IFS, and classification algorithms, such
as DT and RF, to conduct an in-depth analysis of single-cell

FIGURE 6 | Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on optimum genes among the six types of
immune cells.
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multi-omics data of COVID-19 patients. The gene expression
programs of particular immunocytes were highly related to
SARS-CoV-2 infection. Several optimum classifiers were
constructed to indicate COVID-19, hospitalized non-COVID-
19, LPS challenge, or healthy individuals. Here, we focused on six
immune cell types, including B cell, CD4+ T cell, CD8+ T cell, NK
cell, dendritic cell, and monocyte because they have pivotal
functions in immune regulation. Through our computational
analysis, a list of important gene features was identified, which
may play crucial roles in anti-viral responses. The top-ranked
features in the analysis results indicate important mechanisms
during SARS-CoV-2 or other pathogenic infections.
Furthermore, some classification rules were also obtained,
which can predict the expression levels of important molecular
markers in different immune cells. In this section, we focused on
important gene features and classification rules, because they can
identify important immune cells and the corresponding immune
molecules and help in exploring the immune-related pathogenic
mechanism of COVID-19 from an immune perspective. To verify
the accuracy of the analysis and prediction, we summarized the
research results of other researchers and preliminarily
summarized the experimental evidence of the aforementioned
characteristics and rules.

4.1 Analysis of Top Genes Identified via
mRMR
We picked up the optimum features for RF on each cell type, and
a total of 690 important features were obtained. They were
deemed to be highly related to SARS-CoV-2 infection. One or
two genes were selected for detailed analysis for each cell type and
are listed in Table 3. These results provide a reference for the
mechanism of immune cells and molecules in response to SARS-
CoV-2 infection.

4.1.1 Key Genes Related to COVID-19 in B Cells
Interferon (IFN)-induced protein 44-like (IFI44L) gene exhibits a
negative regulatory ability in the innate immune response
induced upon viral infection (Zhao et al., 2016; Dediego et al.,
2019; Li et al., 2021b). IFI44L has anti-bacterial activity, which
can induce the positive regulation and clearance of
Mycobacterium tuberculosis by macrophages (Jiang et al.,
2021). IFI44L is upregulated during anti-viral responses

mediated by type I IFN (Schoggins et al., 2011). In addition,
the reduced expression of IFI44L will disrupt viral replication,
and the upregulated expression of IFI44L will negatively regulate
the anti-viral activity that is activated via interferon therapy. The
targeted intervention of IFI44L can regulate inflammation and
control viral replication, which may provide a potential approach
for controlling the development of COVID-19. Moreover, IFI44L
was only observed in bronchoalveolar lavage from patients with
severe COVID-19 symptoms (Shaath et al., 2020).

The Fos gene family includes FOS, FOSB, FOSL1, and FOSL2.
The Fos family members can polymerize with JUN family
proteins to generate the transcription factor complex AP-1,
which plays a role in cell proliferation and differentiation. The
Fos proto-oncogene (FOS) can be used as a key target for puerarin
for the clinical treatment of SARS-CoV-2 infection (Qin et al.,
2021).

4.1.2 Key Genes Related to COVID-19 in CD4+ T Cells
ZFP36L2 belongs to the zinc finger protein 36 (ZFP36) family.
Experiments in mice demonstrated that the dysfunction of
ZFP36 caused severe inflammatory diseases through the
excessive production of tumor necrosis factor-α (TNF-α) in
macrophages (Lai et al., 2003). ZFP36 can induce a
downregulation of the expression of pro-inflammatory
cytokines, such as IL-17 and IFN-γ, thereby regulating T cell
activation and anti-viral immunity (Lee et al., 2012; Moore et al.,
2018). Experimental studies in animal models have shown that
when the mouse T cell lineage carries ZFP36L2 deficiency, the
thymogenesis process will be stalled, and T-cell acute
lymphoblastic leukemia may develop (Hodson et al., 2010). In
addition, ZFP36L2 is involved in the process of hematopoietic
stem cell differentiation and thymogenesis and may be related to
the development of human autoimmune diseases. The expression
level of ZFP36L2 in patients with multiple sclerosis (MS) was
reduced compared with healthy controls (Parnell et al., 2014).
The researchers also discovered that the expression of ZFP36L2 in
CD4+ T cells and its target mRNA can regulate regulatory T cells
(Tregs). ZFP36L2 participates in the inhibitory function of
inducible Tregs (iTregs) by accelerating the degradation of
Ikzf2 mRNA (Guo et al., 2021). These findings sufficiently
supported the key immune regulatory role of ZFP36L2 in
CD4+ T cells, suggesting that ZFP36L2 may affect the immune
function in response to SARS-CoV-2 infection. These findings

TABLE 3 | Essential identified genes for each cell type.

Cell type Gene symbol Description

B cell IFI44L IFI44L negatively regulates the innate immune response induced by viral infection.
FOS FOS can be used as a key target for puerarin in the treatment of COVID-19.

CD4+ T cell ZFP36L2 ZFP36 can downregulate the expression of pro-inflammatory cytokines such as IL-17 and IFN-γ, thereby regulating T cell
activation and antiviral immunity.

CD8+ T cell MT2A MT2A may be a response to SARS-CoV-2 virus infection through changes in metal homeostasis in T cells.
Natural killer cell NCR2 The selective expression of splice variants of NCR2 is significantly associated with infection.

LY6E LY6E plays an important role in immune regulation and participates in the viral infection process of coronavirus.
Dendritic cell STAT1 STAT1 plays a role in transcriptional activation in the nucleus in homologous or heterodimeric forms.
Monocyte S100A8 S100A8/A9 and neutrophil abnormalities are related to the occurrence of COVID-19, and may serve as a new target for

COVID-19 therapeutic intervention.
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confirm the reliability of our feature selection method in
screening key immune genes related to COVID-19.

4.1.3 Key Genes Related to COVID-19 in CD8+ T Cells
MT2A belongs to the metallothionein family and its encoded
protein can control the detoxification and homeostasis of
intracellular metals and affect processes such as apoptosis and
autophagy. In addition, MT2A polymorphism is associated with
increased cancer risk. Both CD4+ and CD8+ effector/memory
T cells of HBV-infected pregnant women express increased levels
of MT2A, which involve metal ion pathways and various
inflammatory reactions. Among the specific effector/memory
CD8+ T cell subsets, metallothionein (MT)-related genes such
asMT2A are remarkably enriched in HBV-infected samples (Gao
et al., 2021a). MT-related genes such as MT2A may affect the
immune response related to chronic viral infections through
T cells (Rice et al., 2016; Singer et al., 2016). Therefore, the
altered level of MT2A may be a response to SARS-CoV-2 viral
infection through changes in the metal homeostasis in T cells.

4.1.4 Key Genes Related to COVID-19 in Natural Killer
Cells
The NCR2 gene encodes the natural cytotoxicity trigger receptor
2, and it belongs to the natural cytotoxic receptor (NCR) family,
which is a marker for the differentiation of innate lymphoid and
hematopoietic stem cells. The NCR2 gene is mainly expressed in
NK cells. Its encoded product, NKp44, is an activating receptor
that can bind to ligands on the surface of tumor cells to trigger the
cytotoxic response of NK cells. The interaction of NKp44 with
different ligands on target cells can activate or inhibit NK cells.
The selective expression of the splice variants of NCR2 is
remarkably associated with infection (Koch et al., 2013),
suggesting an important role of NCR2 in COVID-19.

Lymphocyte antigen 6 family member E (LY6E) belongs to the
human Ly6 gene family and encodes cell surface proteins. The
LY6E protein not only plays an important role in immune
regulation (Noda et al., 1996; Yu et al., 2017) but also
participates in the viral infection process of coronavirus,
including SARS-CoV, MERS-CoV, and SARS-CoV-2
(Krishnan et al., 2008). LY6E (Yu and Liu, 2019) can
effectively inhibit the entry of human CoV infections,
including SARS-COV-2, through a mechanism different from
IFN-induced transmembrane (IFITM) proteins (Zhao et al.,
2020). In addition, LY6E can mediate the transport of the
adeno-associated virus (AAV) across the human blood–brain
barrier (BBB) (Ille et al., 2020). Animal model studies have shown
that LY6E inhibits CoV from invading cells by affecting
membrane fusion mediated by spike proteins. In addition,
constitutive LY6E can protect B cells against CoV infection
(Pfaender et al., 2020). These findings have promoted the
understanding of LY6E resistance to CoV infection, which
helps in exploring new strategies to combat CoV infection.
Therefore, LY6E may serve as a candidate intervention target
for viral intervention and provide a reference for the development
of COVID-19 prevention and control strategies.

4.1.5 Key Genes Related to COVID-19 in Dendritic
Cells
STAT1 belongs to the STAT family. The STAT protein can play a
role in transcriptional activation in the nucleus in homologous or
heterodimeric forms. The STAT1 protein can be activated by
molecules such as interferon-α, EGF, and IL6 and participate in
the immune response to viral infection. The expression of
STAT1 is related to the increase of human papillomavirus
(HPV) 16 viral load and the survival rate of cervical cancer.
STAT1 may act as a marker gene of cervical severity (Wu et al.,
2020). Dendritic cells are important participants in innate and
adaptive immunity and are closely related to the occurrence and
development of several viral infectious diseases, including SARS
and Middle East respiratory syndrome (MERS).
STAT1 phosphorylation is related to the weakened immune
response of monocyte-derived dendritic cells (moDC) to
SARS-CoV-2 (Yang et al., 2020). These findings are consistent
with our computational results that STAT1 in dendritic cells was
identified to be highly related to COVID-19.

4.1.6 Key Genes Related to COVID-19 in Monocytes
S100A8, also named MRP8, is a Ca2+ binding protein of the
S100 family. S100A8 usually binds to S100A9 in the form of
heterodimers and is expressed in monocytes and neutrophils
as a Ca2+ sensor (Wang et al., 2018). Neutrophils and
monocytes are the first line of defense of immune defense
and are recruited to the site of inflammation during infection.
The S100A8/A9 dimer stimulates leukocyte recruitment and
induces cytokine secretion to regulate the inflammatory
response during inflammation infection. Extracellular
studies have shown that the S100A8/A9 dimer can interact
with the toll-like pattern recognition receptor 4 and advanced
glycation end-product receptor (RAGE), causing immune cell
activation (Narumi et al., 2015; Pruenster et al., 2016). In
addition, S100A8/A9 is a clinical marker of chronic
inflammatory diseases (Foell et al., 2004; Ehrchen et al.,
2009). SARS-CoV-2 infection can impair the immune
system function. Researchers found that in animal models
infected with SARS-CoV-2 and COVID-19 patients, the
expression level of S100A8 was remarkably increased (Guo
et al., 2021). S100A8/A9 and neutrophil abnormalities are
related to the occurrence of COVID-19 and may serve as a
new target for COVID-19 therapeutic intervention.

4.2 Analysis of Classification Rules in
COVID-19 Patients
We applied the DT to all cells in each cell type, which were
represented by the optimum features for the DT. Several rules
were obtained, which are provided in Supplementary Table S3.
Based on these classification rules, we presented a quantitative
analysis for indicating COVID-19 or other immune statuses.
Here, we introduced a detailed discussion through a literature
review to explore the relevance of some rule genes in immune
regulation against infection.
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4.2.1 Classification Rules in B Cells
The increased expression of IFITM1 in B cells displays an
indication of COVID-19 by our classification rules.
IFITM1 belongs to the restriction factor family of interferon-
induced transmembrane proteins (IFITM). This family member
protein can prevent various viruses from entering cells and inhibit
spike protein-mediated cell fusion. The formation of syncytia is
related to the pathological effects of SARS-CoV-2 (Shaath et al.,
2020). Researchers depicted the transcriptome profiles of human
alveolar adenocarcinoma cells (A549) infected with SARS-CoV-
2 and combined them with network computation methods to
construct an interaction network between humans and viruses. A
network topology analysis found that the interferon-stimulating
gene (ISG) IFITM1 may participate in the response to SARS-
CoV-2 infection. IFITM1 and other ISG genes are considered
potential targets for the development of drugs for COVID-19
treatment (Prasad et al., 2020). These results confirmed the
linkage between IFITM1 and anti-viral immunity, suggesting
that modulating the expression of immune-related genes may
be valuable in the treatment of COVID-19.

4.2.2 Classification Rules in CD4+ T Cells
Single-cell RNA sequencing (scRNA-seq) results showed that
alveolar organoids comprise proliferative alveolar epithelial type
II (AT2) cells; however, basal organoid KRT5+ cells contain a
unique ITGA6+ mitotic population, whose proliferation is
isolated to the TNFRSF12Ahi sub-part (Salahudeen et al.,
2020). The comparative analysis of gene expression among
patients with COVID-19 and other SARS-CoV-2 infection
systems showed that non-structural protein-mediated integrins
such as ITGA6 are expressed in the lungs (Islam et al., 2021).
Classification rules based on our study demonstrated that a
relatively high expression of ITGA6 in CD4+ T cells may
indicate COVID-19. Therefore, ITGA6 is involved in the
immune cell infiltration of the lung upon viral infection.

4.2.3 Classification Rules in CD8+ T Cells
Among the classification rules for indicating COVID-19, the
expression level of RPS3A in CD8+ T cells was involved in
several criteria based on single-cell multi-omics data. RPS3a is
an important part of the small ribosomal subunit (40S) (Lutsch
et al., 1990), and it is mainly distributed in the nucleus and
cytoplasm (Kashuba et al., 2005). RPS3a is highly expressed in
most tumors, such as hepatocellular carcinoma and other cancers
(Kim et al., 2001). In addition, RPS3a is involved in the regulation
of cell apoptosis and transcription factors (Song et al., 2002).
Epstein–Barr virus-induced B cell transformation can upregulate
RPS3a expression, and this phenomenon may be related to the
binding of the nuclear antigen EBNA-5 and RPS3a (Kashuba
et al., 2005). The lysine residue of rpS3a is the binding region of
domains II and III of the hepatitis C virus internal ribosome entry
site (Kashuba et al., 2005). No reports directly related to RPS3A
and COVID-19 were found. Our analysis results may imply a
potential functional role of RPS3A in COVID-19.

4.2.4 Classification Rules in Natural Killer Cells
IFI6 is induced by interferon, and the IFI6 protein may be
involved in the regulation of cell apoptosis (Jia et al., 2020).
Researchers compared and analyzed the transcriptional data of
cells with SARS-CoV-2 and other viral infections and found that
IFI6 may be a potential target for intervention in COVID-19 (Qi
et al., 2021). IFI6 can protect uninfected cells by preventing virus-
induced endoplasmic reticulum invagination (Richardson et al.,
2018). Therefore, IFI6 may participate in the anti-viral immune
process during the infection and replication of SARS-CoV-2, but
the specific mechanism still needs to be further studied.

4.2.5 Classification Rules in Dendritic Cells
The protein-coding gene IFI27 (interferon alpha-inducing
protein 27) participates in IFN gamma signal transduction and
cytokine signal transduction in the immune system (Huang et al.,
2021b). Important gene combinations in the white blood cells of
patients with COVID-19, including IFIT3, OASL, USP18, XAF1,
IFI27, and EPSTI1, can be used for its diagnosis (Huang et al.,
2021b). In addition, IFN-I signal-induced gene IFI27 mRNA
levels remarkably increased in patients with COVID-19 (Gao
et al., 2021b). The increased expression of IFI27 in the
replication–transcription complex-specific T cells of
seronegative healthcare workers indicates the early
characteristics of SARS-CoV-2 and contributes to the
clearance of the virus during infection (Swadling et al., 2021).

4.2.6 Classification Rules in Monocytes
Elongation factor 1-alpha 1 (EEF1A) is a translation factor that
participates in protein degradation and apoptosis regulation
(Abbas et al., 2015). EEF1A affects the prognosis of tumors
such as those of the lung and stomach (Kawamura et al.,
2014; Li et al., 2017). EEF1A1 influences the host–bacterial
and viral interactions through the cytoskeleton and its
regulation (Gupta et al., 2021). EEF1A can mediate the anti-
viral activity of plitidepsin against SARS-CoV-2 and inhibit viral
replication in the lungs (White et al., 2021). Our analysis found
that the low expression of EEF1A1 may indicate COVID-19, and
the dysfunction of EEF1A1 causes susceptibility to SARS-CoV-
2 infection.

5 CONCLUSION

This study used single-cell transcription data from COVID-19
patients, combined with machine learning algorithms to analyze
important genes and rules related to SARS-CoV-2 infection in six
important immune cell types, namely, B cells, CD4+ T cells, CD8+

T cells, dendritic cells, monocytes, and NK cells. The accuracy of
our analysis is supported by the literature review. These
important genes and rules can shed light on the pathogenic
mechanism of COVID-19 during the anti-viral immune
response and provide a wide range of references for exploring
new strategies for the prevention and control of COVID-19.
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