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Abstract—In modern power systems, the penetration of 

deregulated market structures, together with the integration 

of renewable energy source-based generations and non-

conventional loads can exhibit inherent stochastic and 

intermittent behaviour. Hence, bringing uncertainties to the 

system generation and loading profile, affects the power 

system’s dynamic behaviour. The identification and ranking 

of critical system uncertain parameters is important for the 

efficient operation of modern power systems since they can 

enable better system management with less monitoring. In 

this paper, 6 sensitivity analysis (SA) methods have been 

employed for the priority ranking of uncertain parameters in 

a network with renewable generations from the perspective 

of their influence on power system voltage stability. The 

performances of the 6 SA methods are evaluated and their 

advantages and disadvantages are discussed. The modified 

version of the 68 bus NETS-NYPS has been used as the test 

system. 

Index Terms—Renewable Generation. Sensitivity Analysis. 

Uncertain Parameters. Voltage Stability. 

I. INTRODUCTION  

Modern power systems have been developed into 
highly interconnected and complex dynamic systems, and 
are deeply integrated into society. This makes the secure 
and stable operation of power systems a significant 
problem for society as a whole. Several cascading outages 
took place in the 90’s and unveiled the problem of voltage 
instability within power systems [1-4], and drew the 
attention of researchers to the area of power system voltage 
stability analysis. The key characteristics of modern power 
systems are considered to be a mix of flexible hierarchical 
control structures, a wide range of electricity generating 
technologies, and non-conventional loads. These new 
technologies can make the power systems operate in a more 

environmentally friendly and flexible manner compared to 
conventional controlled networks. However, technologies 
like renewable energy source-based generation and new 
types of loads can exhibit inherent stochastic behaviour in 
generations and loading profiles [5]; hence such behaviour 
is considered a challenge to the steady-state operation of 
power systems. The number of uncertain parameters within 
modern power systems can be huge. It is impractical and 
uneconomical to consider all uncertain parameters and 
evaluate their impact on system voltage stability behaviour. 
Fortunately, not all the uncertain parameters contribute the 
same to system voltage instability, nor do they have the 
same probability of occurrence. The identification and 
ranking of influential system parameters based on their 
impact on system dynamic behaviour can provide an 
efficient yet accurate approach for power system stability 
analysis.  

This paper employs sensitivity analysis (SA) methods 
for the identification and ranking of critical uncertain 
parameters affecting power system voltage stability. 
Through the ranking of uncertain parameters within a 
system, components with high impact on system stable 
operation can be modelled in greater detail and more 
closely monitored, while others can be treated less 
intensely to significantly reduce the computational 
resources required. Previous works have employed ‘local’ 
linear algorithms for the identification and ranking of 
important system parameters such as generators [6], load 
classification [7], PSS design [8] and PMU placement [9]. 
More recently an accurate yet computational intensive 
‘global’ approach has been employed in the ranking of 
frequency support devices [10]. There also exist screening 
methods like Morris Screening method, which can provide 
features like reasonable computational cost and acceptable 
accuracy in one package. The ‘screening’ method has been 
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proved to be effective in systems with a large number of 
uncertain inputs [11-13].  

The voltage stability of a power system depends on the 
relationship between the load bus voltage (V), the reactive 
power (Q) and the system load consumption (P) [14]. It can 
be analyzed through P-V curves. In this paper, P-V curve 
plots bus voltage (V) on the system critical bus against total 
loading (P) of the test network. The test network is stressed 
under continually increased loading demand until the 
critical bus experience voltage collapses; hence the nose-
point can be obtained. Past research indicates that with 
different system operation conditions, the plotted P-V 
curves and their relative nose-points can be different [15]. 
Fig. 1 plots 1000 nose-points obtained through simulations 
with 1000 different system configurations. An important 
index for voltage stability analysis is the system loadability, 
or total load (P) of the system [16]. Loadability measures 
the active power distance between an obtained system 
nose-point and its corresponding initial operating point. A 
larger distance indicates that the system can be more loaded 
before voltage collapse, i.e., the uncertainty of the 
corresponding parameter is more influential on system 
voltage stability if leads to wider variation in voltage 
collapse point.  

This paper employs 6 widely-used SA methods for the 
identification of critical parameters affecting voltage 
stability of a power system with renewable generations. (i) 
The One-at-A-Time (OAT) method in the category of local 
SA method, (ii) the Morris screening method (Morris) in 
the category of screening SA method, (iii) the Pearson 
Correlation Coefficient method (PCCE), the Spearman 
Correlation Coefficient method (SCCE), the Partial 
Correlation Coefficient method (Partial) and the Sobol 
Total Indices method (Sobol) in the category of global SA 
method. These SA methods have been compared against 
each other, and their corresponding advantages and 
disadvantages assessed.  

II. SENSITIVITY ANALYSIS METHODS 

Sensitivity Analysis (SA) methods provide an approach 
for the identification and ranking of critical parameters with 
uncertainties. It can numerically describe how the 
variability of input propagates through a modelled system 
and affects the output result [12].  

A. Local SA Method 

Local SA methods evaluate the local impact of one 
single input parameter on the model output, and are 
performed by calculating the partial derivatives of the 
output with respect to the input. One commonly used local 
SA method is the One-at-A-Time (OAT). This technique 
changes one input parameter at one time with a small step, 
only p+1 simulations are required for a system with p 
uncertainties. Local SA methods require very little 
computational resources; however they suffer from reduced 
accuracy. They can present unreliable results when the 
model is nonlinear [13].  

B. Global SA Methods 

The global SA methods rank the input parameters by 
evaluating their effect on model output through the whole 
set of possible input values. The global methods can be 
performed on non-parametric uncertainties, for example 
correlation coefficients, or through the analysis of the 
output variation like the Sobol indices. The global SA 
methods can present the most accurate ranking compared to 
local and screening methods, and hence are always used as 
benchmarks. But they can be very computational intensive 
and time consuming [11, 13, 17]. The simulation times 
required for global SA methods are generally beyond 103. 

C. Screening SA Method 

The screening SA methods run multi-dimensional, 
semi-global search through the range of possible input 
values and require fewer simulations compared to the 
global method. The screening methods are considered to be 
a ‘moderate’ method since they sacrifice a bit of accuracy 
for efficiency. The Morris screening method is a 
commonly-used one since the implementation is relatively 
straightforward and generally performs better compared to 
similar ones [11, 13, 17, 18].  

There are three important measurements when 
performing Morris screening method: (1) the elementary 
effect, (2) the mean value of elementary effect and (3) the 
standard deviation of the elementary effect.  

The elementary effect measures the output variance 
when an input is changed by a magnitude of Δ.  

𝐸𝐸𝑝
𝑖 (𝑥) =  

[𝑦(𝑥1, 𝑥2, … . . , 𝑥𝑖−1, 𝑥𝑖 + 𝛥, 𝑥𝑖+1, … . . , 𝑥𝑝) − 𝑦(𝑥)]

𝛥
   (1) 

In equation (1), 𝐸𝐸𝑝
𝑖 (𝑥) is the elementary effect for 

inputs, p is the total number of input uncertainties, Δ is the 
step that relates to 1/(r-1), and r is the ‘level’ set for the 
Morris SA method (usually from 4 to 10). 

The mean and standard deviations of the elementary 
effect are the sensitivity indices for Morris screening 
method, and they are defined as  

µ𝑝
∗ =

1

𝑟
∑|𝐸𝐸𝑝

𝑖 |

𝑟

𝑖=1

                                             (2) 

 𝜎𝑝
∗ = √

1

𝑟
∑ (|𝐸𝐸𝑝

𝑖 − µ𝑝
∗ |)

2𝑟
𝑖=1                                    (3)  

The mean value of the elementary effect measures the 
sensitivity strength between input and output; an input 

 
Figure 1 The nose-point locations obtained through different 

operation conditions 
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parameter with a larger µ𝑝

∗  value indicates a higher impact 

on output, and hence the parameter is identified as 

‘critical’. The standard deviation of the elementary effect 
indicates the linearity between input and output. A high  𝜎𝑝

∗ 

means the variable has a non-linear effect on the output and 
it has interaction with other variables. 

The Morris screening method requires p*r+1 
simulations for a system with p input variables. 

III. TEST SYSTEM CONFIGURATION 

The test network used in this study is a modified 
version of a reduced order equivalent model of the NETS-
NYPS (New England Test System-New York Power 
System) as shown in Fig. 2. There are 16 generators and 68 
buses in this system. Two types of renewable energy 
source-base generations, wind generator and PV generator, 
are connected to the network. The test network is rated to 
provide a generation capacity of 17.26 GW (1 p.u). The 
maximum load demand this network can support before 
voltage collapses is 1.18 p.u and the minimum load this 
network can support without generator disconnection is 
0.28 p.u. The detailed data of this network can be found in 
[19, 20]. 

The uncertain parameters within the test networks are 
load demand, wind generation and PV generation. These 
uncertain parameters are probabilistically modelled 
following Normal Distribution, Weibull Distribution and 
Beta Distribution, respectively. The model parameters are 
shown in Table I. There are 49 uncertain parameters in total 
modelled probabilistically, including load connected at 35 
network buses (16 buses with synchronous generators 
connected to them and 17 buses with no load were 
excluded) and power output of 14 (7 wind and 7 PV plants) 
renewable power plants. 

The loading scenarios are configured as shown in Table 
II. It is worth noting that when the system load is reduced, 
the proportion of renewable generation in the system 
increases. 

The load model chosen for this study is the commonly 
used exponential load model [21]. And can be expressed 
as: 

                                        𝑃 =  𝑃𝑛(
𝑈

𝑈𝑛

)0                                                     (4) 

                                                 𝑄 =  𝑄𝑛(
𝑈

𝑈𝑛

)2                                                     (5) 

 In the equation, P and Q are the real and reactive 
power drawn by the load at voltage U, 𝑃𝑛 and 𝑄𝑛 are the 
real and reactive power drawn under rated voltage (𝑈𝑛).   

The identification and ranking of critical parameters 
affecting power system voltage stability is conducted 
through 3 major steps. The probabilistic modelling and 

sensitivity analysis of input variables are performed in 
MATLAB. The Optimal Power Flow (OPF) simulation is 
calculated in MATPOWER. P-V curve analysis is 
performed in DIgSILENT PowerFactory. 

Table I  
Probabilistic Distributions and Model Parameters of Uncertain Input 

Variables of the Test Network 

Table II  

Loading Scenarios Chosen for the Test Network 

Loading Scenarios System Loading 
Proportion of 
Renewables 

High Load 85% (1.00 p.u) 12.5% 

Low Load 50% (0.57 p.u) 25% 

IV. RESULTS OF THE ANALYSIS 

The six SA methods discussed in Section I have been 
applied to the test network for the identification of 
influential parameters.  

A. The Ranking of  System Parameters (High Load) 

In Fig. 3, the effect of 35 bus loadings, 7 wind farms 
and 7 PV farms on system loadability (when the system is 
stressed under High Load scenario) have been recorded and 
illustrated. The larger net variation in system loading as a 
consequence of variation in respective system parameter, 
the more important parameter is. The abbreviations in front 
of histograms represent the results obtained from the OAT 

Load Demand 

(Normal distribution) 

Wind Generation 

(Weibull distribution) 

PV Generation 

(Beta distribution) 

3σ = 10% of µ α = 2.2, β = 11.1 a = 13.7, b = 1.3 

 
Figure 2 The modified NETS-NYPS test system 

 

 
Figure 3 Ranking of uncertain parameters through 6 sensitivity analysis 

methods in High Load Scenario. 
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method, Morris screening method, Pearson Correlation 
Coefficient method, Spearman Correlation Coefficient 
method, Partial Correlation Coefficient method and Sobol 
Total Indices method, respectively.   

Table III 
Top 5 Identified System Critical Parameters in High Load Scenario. 

 OAT Morris PCCE SCCE Partial Sobol 

Parameter Name (Parameter No. in Histograms) 

R
a
n

k
in

g
 

L33(12) L33(12) L33(12) L33(12) L33(12) L33(12) 

L49(23) W33(41) W33(41) W33(41) W33(41) W33(41) 

L17(1) W60(36) S33(47) S33(47) L55(28) W53(40) 

L55(28) W26(39) W53(40) W53(40) L60(31) W60(36) 

L60(31) W53(40) S53(47) S53(47) W53(40) W17(42) 

L= Bus Loading, W= Wind Farm, S= PV Farm, Numbering correspond to 
system buses in Fig. 2 

Table III selects the top 5 identified system critical 
parameters from 6 different Sensitivity Analysis 
approaches. These rankings are obtained with respect to the 
system loadability variation mentioned in Section I. It can 
be observed that all 6 Sensitivity Analysis methods are 
capable of identifying the same most influential uncertain 
parameter, the load variation on bus 33 (No. 12 uncertainty 
in Fig. 3). However the local search limitation of the OAT 
method underestimates the importance of load, PV and 
wind generation connected at bus 36-60 on system voltage 
stability behaviour. The ranking obtained through the 
Morris screening method, though simple to implement and 
computationally non-expensive, is capable of identifying 4 
out of 5 of the same critical parameters as the Sobol Total 
Indices method. Under this scenario, the renewable 
generation account for 12.5% of the generation in the 
system. 

Fig.4 illustrates the variation in critical bus loadability 
variation when system uncertain parameters with different 
level of importance are introduced. The most critical 
parameter L33 (blue) and the less-important parameter L40 
(orange) have been chosen for this illustration (both having 
the same level of uncertainty as defined in Table I). DeltaP 
is the measure of system loadability variation as a 
consequence of parameter uncertainty. Fig.4 indicates that 
the voltage collapse point is of more sensitive to 
uncertainty in L33 than to uncertainty in L40. 

B. The Ranking of System Parameters (Low Load)  

Fig. 5 illustrates the effects of 49 system input 
uncertainties on voltage stability calculated through 6 

sensitivity analysis methods under low load scenario. The 
abbreviations in the histograms have the same meaning as 
those in Fig. 3. 

Table IV  
Top 5 Identified System Critical Parameters in Low Load Scenario. 

 OAT Morris PCCE SCCE Partial Sobol 

Parameter Name (Parameter No. in Histograms) 

R
a
n

k
in

g
 

L33(12) L33(12) W17(42) W17(42) L33(12) W17(42) 

W17(42) W17(42) S17(49) S17(49) W17(42) L33(12) 

S17(49) W33(41) L33(12) L33(12) W53(40) W53(40) 

W53(40) S17(49) W53(40) W53(40) W33(41) W33(41) 

W33(41) S57(44) S53(47) S53(47) S17(49) W60(36) 

L= Bus Loading, W= Wind Farm, S= PV Farm, Numbering correspond to 
system buses in Fig. 2 

In this part of the simulation the test network is 
operating under low load scenario with system loading 
demand at 50% of peak load. Since the system loading 
demand is reduced compared to high load scenario, the 

generation provided by conventional generators is reduced 
proportionally. The renewable generation now accounts for 
the 25% of the generation in the system. In this case 4 out 
of the 5 sensitivity analysis methods are capable of 
demonstrating the importance of increased renewable 
generation penetration on parameter ranking since the wind 
generation connected to bus 17 is now identified either as 
the most important or second most important parameter. 

From Table IV it can be observed that 3 out of the 4 
global sensitivity analysis methods rank the wind 
generation connected to bus 17 as the most influential input 
parameter. This time the OAT method is able to identify 
almost the same parameters selected by global methods, 
though it still fails to demonstrate the impact of increased 
proportion of renewable generation due to the limitation of 
a local search. The result of Morris Screening method again 
shows good agreement with global methods in identifying 
the important system parameters.  

 
Figure 5 Effect of Critical Parameter vs Less-critical Parameter on 

voltage collapse point (100 Monte Carlo simulations) under different 

operation conditions a. High Load (100% loading 12.2% penetration of 

RES) and b. Low Load (57% loading 21.5% penetration of RES) 

 

 
Figure 4 Ranking of uncertain parameters through 6 sensitivity analysis 

methods in Low Load Scenario 
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C. Comparison of Sensitivity Analysis Methods 

The considered SA methods are compared from the 
perspective of simulation times required, accuracy of the 
ranking results and their complexity of implementation. 
The test system has 66 uncertain input variables. All the 
simulations are performed on a PC with Intel® Core™ i7 
processor at 3.4 GHz and 16 GB of RAM. 

The simulation times required for different sensitivity 
analysis methods depends on the number of model 
evaluations the simulation performs. For a system with p 
uncertain input variables, the simulation times required by 
6 sensitivity analysis methods are shown in Table V.  

In Table V, p represents the number of system uncertain 
input, r represents the ‘level’ of the Morris Screening 
method (usually from r=4 to 10), N represents the Number 
of Monte Carlo Simulation. Table V clearly indicates the 
huge time and required computational cost differences 
between local, screening and global sensitivity analysis 
methods. It is also noted that the simulation times required 
under low load scenario are longer than those under high 
load scenario. This is due to the fact that when a system is 
stressed under low load it is less vulnerable to voltage 
collapse compared to high load scenario.  

Table V  

The Number of Simulations and Computational Time Required for 
Different SA Methods  

SA 
Methods 

Cost No. of 
Simulations 

Time      
(High Load) 

Time    
(Low Load) 

OAT p+1 67 28.86 s 35.81 s 

Morris p*r+1 331 (r=5) 147.49 s 163.01 s 

PCCE N 1000 337.49 s 464.23 s 

SCCE N 1000 337.49 s 464.23 s 

Partial N 1000 337.49 s 464.23 s 

Sobol (p+1)*N 67000 25881.51 s 32714.13 s 

The Sobol Total Indices method is considered as the 
benchmark for the evaluation of the accuracy since it has 
been established in the past that it can be very reliable in 
case of assessment of non-linear and non-monotonic 
models [11, 22]. Table VI presents the accuracy evaluation 
for 6 sensitivity analyses. The method with a higher 
correlation coefficient value indicates it can provide a more 
accurate ranking compared to the Sobol method. 

Table VI  

The Correlation Coefficient Measurement between the Ranking Results 
from Different SA Methods against Sobol 

SA Method 
Correlation Coefficient 

against Sobol       
(High Load) 

Correlation Coefficient 
against Sobol        
(Low Load) 

OAT 8.27% 13.88% 

Morris 15.54% 24.05% 

PCCE 34.52% 50.02% 

SCCE 37.61% 44.49% 

Partial 50.40% 84.59% 

Sobol 100% 100% 

 The presented 6 sensitivity analysis methods can also 
be compared from the perspective of their effective model 
complexity level. This has been discussed by previous 
researchers in [18, 22]. Morris screening methods and 
Sobol Total Indices method are both suitable for 

implementation on Non-monotonic, discontinuous models, 
which are classified as high-complexity models [18]. The 
Partial Correlation Coefficient method and Spearman 
Correlation coefficient method are rank regression-based. 
They are effective when applied on monotonic models 
without interactions and considered to be medium 
complexity methods. One-at-A-Time method and Pearson 
Correlation Coefficient method are linear regression-based. 
Their effectiveness is limited to Linear 1

st
 degree models 

which are of low complexity.    

Fig. 6 employs a radar plot to illustrate the comparison 
between the 6 sensitivity analysis methods from 
considering the previously discussed criteria.  

D. Discussion 

The rankings of critical system uncertain parameters 

from Table III and Table IV indicate that the uncertainty in 

load connected to bus 33 always has a large influence on 

system voltage stability performance. The contributing 

factor to this is possibly the fact that the wind and PV 

plant also connected at bus 33 do not provide any reactive 

power support when the load at the bus varies. The 

rankings also highlight uncertainties connected to system 

bus 53, 60 and 17. Bus 53 and 60 are located near the tie-

lines between New England Test System and New York 

Power System. Bus 17 is connected to the largest load in 

the test network. These system topologies contribute to the 

high scores presented in the ranking results for these 

uncertainties.  

The impact of system loading level can be clearly 

observed by comparing Fig. 3 and Fig. 5. The decrease in 

system loading demand is accompanied by an increase in 

the proportion of renewable generation. The ranking 

methods then give higher scores to the uncertain 

parameters related to renewable generations.   

Table V and Table VI compare the 6 sensitivity 

analysis methods based on their corresponding resource 

consumption and accuracy. Sobol Total Indices method 

performs best in complex non-parametric models. 

However it requires too many computational resources and 

can be unpractical to implement in the system with too 

many inputs. The OAT method is the quickest approach 

among the 6 sensitivity analysis methods employed. 

However it is the least accurate due to its limited local 

 
Figure 6 The comparison between 6 SA methods 
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search. The Morris screening method stands out from the 

employed sensitivity analysis methods since it combines 

efficiency and accuracy. The Morris Screening method can 

identify 4 out of 5 of the same influential input 

uncertainties as Correlation Coefficient methods do but it 

only takes 1/3 of the time. It is also capable of identifying 

nearly all the influential parameters selected by the Sobol 

Total Indices method while using only 0.5% of the 

computational time required for application of Sobol 

method. 

V. CONCLUSIONS    

The identification and ranking of critical parameters 

affecting power system voltage stability have been 

performed in this study through 6 widely-used sensitivity 

analysis methods. Most of the critical input parameters can 

be identified by each of the methods. 

The 6 employed sensitivity analysis methods can be 

classified into 3 types. The simplest among all is the One-

at-A-Time method (local SA method). This method is 

capable of qualitatively identifying the most influential 

input parameter with a minimal number of simulations. 

However it fails to correctly rank the input parameters. 

The Morris screening method (screening SA method) 

shows a good balance between accuracy and efficiency. 

The Correlation Coefficient methods (global SA methods) 

provide more accurate results compared to the previous 2 

methods. The Sobol Total Indices method (global SA 

method) outputs the most accurate ranking of the critical 

input parameters and consumes the most computational 

resources. 

The comparison between the 6 sensitivity analysis 

methods based on their application on the test network is 

performed in Section IV. The poor performance of the 

local sensitivity analysis method is unfavorable due to the 

misleading ranking results. The high demand of 

computational effort from the global sensitivity analysis 

methods makes them inefficient for many large-scale 

applications. The Morris screening method employed in 

this study delivers similar ranking compared to global 

methods but takes much less time. These properties make 

the Morris screening method ideal for priority ranking of 

input uncertainties in large-scale, complex models. 

The priority ranking of the influential input parameters 

based on their impact on power system voltage stability 

can allocate appropriate monitoring and modelling at 

selected parameters, and hence increase system security 

from the perspective of voltage stability. The presented 

sensitivity analysis methods in this paper can be applied in 

areas like power system planning and operation for 

efficient system analyses.   
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