
Identification of Critical Values in

Latent Semantic Indexing

April Kontostathis1, William M. Pottenger2, and Brian D. Davison2

1 Ursinus College, Department of Mathematics and Computer Science
P.O. Box 1000 (601 Main St.), Collegeville, PA 19426
akontostathis@ursinus.edu

2 Lehigh University, Department of Computer Science and Engineering
19 Memorial Drive West, Bethlehem, PA 18015
billp,davison@cse.lehigh.edu

In this chapter we analyze the values used by Latent Sematic Indexing (LSI)
for information retrieval. By manipulating the values in the Singular Value
Decomposition (SVD) matrices, we find that a significant fraction of the values
have little effect on overall performance, and can thus be removed (changed to
zero). This allows us to convert the dense term by dimension and document
by dimension matrices into sparse matrices by identifying and removing those
entries. We empirically show that these entries are unimportant by presenting
retrieval and runtime performance results, using seven collections, which show
that removal of up 70% of the values in the term by dimension matrix results
in similar or improved retrieval performance (as compared to LSI). Removal
of 90% of the values degrades retrieval performance slightly for smaller collec-
tions, but improves retrieval performance by 60% on the large collection we
tested. Our approach additionally has the computational benefit of reducing
memory requirements and query response time.

1 Introduction

The amount of textual information available digitally is overwhelming. It is
impossible for a single individual to read and understand all of the literature
that is available for any given topic. Researchers in information retrieval, com-
putational linguistics and textual data mining are working on the development
of methods to process this data and present it in a usable format.

Many algorithms for searching textual collections have been developed,
and in this chapter we focus on one such system: Latent Semantic Indexing
(LSI). LSI was developed in the early 1990s [5] and has been applied to a
wide variety of tasks that involve textual data [5, 8, 19, 22, 9, 10]. LSI is
based upon a linear algebraic technique for factoring matrices called Singular
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Value Decomposition (SVD). In previous work [16, 17, 15] we noted a strong
correlation between the distribution of term similarity values (defined as the
cosine distance between the vectors in the term by dimension matrix) and
the performance of LSI. In the current work, we continue our analysis of
the values in the truncated term by dimension and document by dimension
matrices. We describe a study to determine the most critical elements of these
matrices, which are input to the query matching step in LSI. We hypothesize
that identification and zeroing (removal) of the least important entries in these
matrices will result in a more computationally efficient implementation, with
little or no sacrifice in the retrieval effectiveness compared to a traditional LSI
system.

2 Background and Related Work

Latent Semantic Indexing (LSI) [5] is a well-known technique used in informa-
tion retrieval. LSI has been applied to a wide variety of tasks, such as search
and retrieval [5, 8], classification [22] and filtering [9, 10]. LSI is a vector space
approach for modeling documents, and many have claimed that the technique
brings out the ‘latent’ semantics in a collection of documents [5, 8].

LSI is based on a mathematical technique called Singular Value Decompo-
sition (SVD) [11]. The SVD process decomposes a term by document matrix,
A, into three matrices: a term by dimension matrix, T , a singular value ma-
trix, S, and a document by dimension matrix, D. The number of dimensions
is min (t, d) where t = number of terms and d = number of documents. The
original matrix can be obtained, through matrix multiplication of TSDT . In
the LSI system, the T , S and D matrices are truncated to k dimensions. Di-
mensionality reduction reduces noise in the term-document matrix resulting
in a richer word relationship structure that reveals latent semantics present
in the collection. Queries are represented in the reduced space by TT

k
q, where

TT

k
is the transpose of the term by dimension matrix, after truncation to k

dimensions. Queries are compared to the reduced document vectors, scaled by
the singular values (SkDk), by computing the cosine similarity. This process
provides a mechanism to rank the document set for each query.

The algebraic foundation for Latent Semantic Indexing (LSI) was first
described in [5] and has been further discussed by Berry, et al. in [1, 2]. These
papers describe the SVD process and interpret the resulting matrices in a
geometric context. They show that the SVD, truncated to k dimensions, gives
the optimal rank-k approximation to the original matrix. Wiemer-Hastings
shows that the power of LSI comes primarily from the SVD algorithm [21].

Other researchers have proposed theoretical approaches to understanding
LSI. Zha and Simon describe LSI in terms of a subspace model and propose
a statistical test for choosing the optimal number of dimensions for a given
collection [23]. Story discusses LSI’s relationship to statistical regression and
Bayesian methods [20]. Ding constructs a statistical model for LSI using the
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cosine similarity measure, showing that the term similarity and document
similarity matrices are formed during the maximum likelihood estimation,
and LSI is the optimal solution to this model [6].

Although other researchers have explored the SVD algorithm to provide an
understanding of SVD-based information retrieval systems, to our knowledge,
only Schütze has studied the values produced by LSI [18]. We expand upon
this work in [16, 17, 15], showing that SVD exploits higher order term co-
occurrence in a collection, and showing the correlation between the values
produced in the term-term matrix and the performance of LSI. In the current
work, we extend these results to determine the most critical values in an LSI
system.

Other researchers [4, 12] have recently applied sparsification techniques to
reduce the computation cost of LSI. These papers provide further empirical
evidence for our claim that the retrieval performance of LSI depends on a
subset of the SVD matrix elements. Gao and Zhang have simultaneously,
but independently, proposed mechanisms to take the dense lower-dimensional
matrices that result from SVD truncation, and make them sparse [12]. Chen
et al. implicitly do this as well, by encoding values into a small set of discrete
values [4]. Our approach to sparsification (described in Section 3) is somewhat
different from the ones used by Gao and Zhang; furthermore, we present
data for additional collections (they used three small collections), and also
describe the run time considerations, as well as the retrieval effectiveness, of
sparsification.

3 Sparsification of the LSI Input Matrices

This paper reports the results of a study to determine the most critical ele-
ments of the Tk and SkDk matrices, which are input to LSI. We are interested
in the impact, both in terms of retrieval quality and query run time perfor-
mance, of the removal (zeroing) of a large portion of the entries in these
matrices.

In this section we describe the algorithm we used to remove values from the
Tk and SkDk matrices and describe the impact of this sparsification strategy
on retrieval quality and query run time performance.

3.1 Methodology

Our sparsification algorithm focuses on the values with absolute value near
zero, and we ask the question: ‘How many values can we remove without
severely impacting retrieval performance?’ Intuitively, the elements of the row
vectors in the TkSk matrix and the column vectors in the SkDk matrix can
be used to describe the importance of each term (document) along a given
dimension.



4 April Kontostathis, William M. Pottenger, and Brian D. Davison

Several patterns were identified in our preliminary work. For example, re-
moval of all negative elements severely degrades performance, as does removal
of ‘too many’ of the SkDk elements. However, a large portion of the Tk values
can be removed without a significant change in retrieval performance.

We chose an approach that defines a common truncation value, based on
the values in the TkSk matrix, which would be used for both the Tk and SkDk

matrices. Furthermore, since the negative values are important, we wanted to
retain an equal number of positive and negative values in the Tk matrix. The
algorithm we used is outlined in Figure 1. We chose positive and negative
threshold values that are based on the TkSk matrix and that result in the
removal of a fixed percentage of the Tk matrix. We use these values to truncate
both the Tk and SkDk matrices.

Compute TkSk and SkDk

Determine PosThres: The threshold that would result in removal of x%
of the positive elements of TkSk

Determine NegThres: The threshold that would result in removal of x%
of the negative elements of TkSk

For each element of Tk, change to zero, if the corresponding element
of TkSk Falls between PosThres and NegThres

For each element of SkDk, change to zero, if it falls between
PosThres and NegThres

Fig. 1. Sparsification Algorithm

3.2 Evaluation

Retrieval quality for an information retrieval system can be expressed in a
variety of ways. In the current work, we use precision and recall to express
the quality of an information retrieval system. Precision is defined as the
percentage of retrieved documents which are relevant to the query. Recall is
the percentage of all relevant documents that were retrieved.

These metrics can be applied in two ways. First, we can compute recall
and precision at rank = n, where n is a constant. In this case, we look at
the first n documents returned from the query and compute the precision and
recall using the above definitions. An alternative approach involves computing
precision at a given recall level. In this second case, we continue to retrieve
documents until a given percentage of correct documents has been retrieved
(for example, 25%), and then compute the precision. In the results that follow,
we apply this second approach to evaluate of our sparsification strategy.

Precision and recall require the existence of collections that contain a group
of documents, a set of standard queries and a set of relevance judgments (a list
of which documents are relevant to which query, and which are not relevant).
We used seven such collections during the course of our study. The collections
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we used are summarized in Table 1. These collections were downloaded from
a variety of sources. MED, CISI, CRAN, NPL, and CACM were downloaded
from the SMART web site at Cornell University. LISA was obtained from
the Information Retrieval Group web site at the University of Glasgow. The
OHSUMED collection was downloaded from the Text Retrieval Conference
(TREC) web site at the National Institute of Standards and Technology. Not
all of the documents in the OHSUMED collection have been judged for rele-
vance for each query. In our experiments, we calculated precision and recall by
assuming that all unjudged documents are not relevant. Similar studies that
calculate precision using only the judged documents are left to future work.

Table 1. Collections used to compare Sparsification Strategy to Traditional LSI

Identifier Description Docs Terms Queries

MED Medical abstracts 1033 5831 30
CISI Information science abstracts 1450 5143 76

CACM Communications of the ACM abstracts 3204 4863 52
CRAN Cranfield collection 1400 3932 225
LISA Library and Information Science Ab-

stracts
6004 18429 35

NPL Larger collection of very short docu-
ments

11429 6988 93

OHSUMED Clinically-oriented MEDLINE subset 348566 170347 106

The Parallel General Text Parser (PGTP) [3] was used to preprocess the
text data, including creation and decomposition of the term document ma-
trix. For our experiments, we applied the log entropy weighting option and
normalized the document vectors for all collections except OHSUMED. The
sparsification algorithm was applied to each of our collections, using trunca-
tion percentages of 10% to 90%. Retrieval quality and query runtime perfor-
mance measurements were taken at multiple values of k. The values of k for
the smaller collections ranged from 25 to 200; k values from 50 to 500 were
used for testing the larger collections.

3.3 Impact on Retrieval Quality

The retrieval quality results for three different truncation values for the col-
lections studied are shown in Figures 2-8. Two baselines were used to measure
retrieval quality. Retrieval quality for our sparsified LSI was compared to a
standard LSI system, as well as to a traditional vector space retrieval system.

Comparison to standard LSI baseline

Removal of 50% of the Tk matrix values resulted in retrieval quality that is
indistinguishable from the LSI baseline for the seven collections we tested. In
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most cases, sparsification up to 70% can be achieved, particularly at better
performing values of k, without a significant impact on retrieval quality. For
example, k=500 for NPL and k=200 for CACM have performance near or
greater than the LSI baseline when 70% of the values are removed. The data
for OHSUMED appears in Figure 8. Notice that sparsification at the 90%
level actually improves LSI average precision by 60% at k=500.

Comparison to traditional vector space retrieval baseline

Figures 2-8 show that LSI outperforms traditional vector space retrieval for
CRAN, MED and CISI even at very small values of k. However, traditional
vector space is clearly better for OHSUMED, CACM, LISA and NPL at small
k values. LSI continues to improve as k increases for these collections. As
expected, we found no obvious relationship between the performance of the
sparsified LSI system and traditional vector space retrieval. As other research
studies have shown [14, 13], LSI does not always outperform traditional vector
space retrieval.

MED Retrieval Performance Summary
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Fig. 2. Sparsification Performance Summary for MED
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CRAN Retrieval Performance Summary
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Fig. 3. Sparsification Performance Summary for CRAN

CISI Retrieval Performance Summary
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Fig. 4. Sparsification Performance Summary for CISI
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CACM Retrieval Performance Summary
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Fig. 5. Sparsification Performance Summary for CACM

LISA Retrieval Performance Summary
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Fig. 6. Sparsification Performance Summary for LISA
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NPL Retrieval Performance Summary
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Fig. 7. Sparsification Performance Summary for NPL

OHSUMED Retrieval Performance Summary
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Fig. 8. Sparsification Performance Summary for OHSUMED
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3.4 Impact on Runtime Performance

In order to determine the impact of sparsification on query run time perfor-
mance we implemented a sparse matrix version of the LSI query processing.
The well-known compressed row storage format for sparse matrices was used
to store the new sparse matrices generated by our algorithm [7].

In the compressed row storage format, the nonzero elements of a matrix
are stored as a vector of values. Two additional vectors are used to identify
the coordinates of each value: a row pointer vector identifies the position of
the first nonzero element in each row, and a column indicator vector identifies
the column corresponding to each element in the value vector. This storage
format requires a vector of length num-nonzeroes to store the actual values,
a vector of length num-nonzeroes to identify the column corresponding to
each value, and a vector of length num-rows to identify the starting position
of each row. Table 2 shows that this approach significantly reduces the RAM
requirements of LSI. This reduction is due to our sparsification strategy, which
produces sparse matrix. Implementation of the compressed row storage format
for a non-sparsified LSI system would result in an increase in the memory
requirements.

Table 2. RAM Savings for T and D matrices

Sparsification Sparsified RAM LSI RAM Improvement
Collection k Level (MB) (MB) (%)

MED 75 70 3.7 7.9 53
CISI 125 70 6.3 12.6 50

CRAN 200 70 8.3 16.3 49
CACM 200 70 14.4 24.6 42
NPL 500 70 93.1 140.5 34
LISA 500 70 66.8 115.7 42

OHSUMED 500 70 3217 3959 19

MED 75 90 1.6 7.9 79
CISI 125 90 2.9 12.6 77

CRAN 200 90 3.6 16.3 78
CACM 200 90 6.3 24.6 75
NPL 500 90 29.0 140.5 79
LISA 500 90 28.3 115.7 76

OHSUMED 500 90 2051 3959 48

When comparing the runtime considerations of our approach to LSI, we
acknowledge that our approach requires additional preprocessing, as we im-
plement two additional steps, determining the threshold value and applying
the threshold to the Tk and SkDk matrices. These steps are applied once per
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collection, however, and multiple queries can then be run against the collec-
tion.

The query processing for LSI is comprised of two primary tasks: develop-
ment of the pseudo query, which relies on the Tk matrix, and the comparison
of the pseudo query to the documents, which uses the SkDk matrix. Table
3 indicates that the SkDk sparsification ranges from 18% to 33%, when 70%
of the Tk values are removed. A much larger SkDk sparsification range of
43%-80% is achieved at a 90% reduction in the Tk matrix.

Table 3. Percentage of Document Vector Entries Removed

Term Spars Doc Spars Run Time
Collection k (%) (%) Improvement (%)

MED 75 70 23 -1
CISI 125 70 26 1

CRAN 200 70 29 6
CACM 200 70 28 3
NPL 500 70 33 -3
LISA 500 70 29 10

OHSUMED 500 70 18 3

MED 75 90 47 16
CISI 125 90 53 27

CRAN 200 90 61 37
CACM 200 90 64 40
NPL 500 90 80 66
LISA 500 90 66 54

OHSUMED 500 90 43 30

The number of cpu cycles required to run all queries in each collection was
collected using the clock() function available in C++. Measurements were
taken for both the baseline LSI code and the sparsified code. Each collection
was tested twice, and the results in Table 3 represent the average of the two
runs for selected levels of sparsification.

Sparsification of the matrix elements results in an improvement in query
runtime performance for all collections, with the exception of MED and NPL,
at 70% sparsification. The data implies that, for most collections, query run
time performance improves as the number of entries in the document vectors is
reduced. Figures 2-8 show a slight degradation in retrieval performance (when
compared with LSI) at 90% sparsification for the smaller collections; however,
OHSUMED retrieval quality improves dramatically at 90% sparsification.
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4 Conclusions

Our analysis has identified a large number of term and document vector values
that are unimportant. This is a significant component in the development of a
theoretical understanding of LSI. As researchers continue working to develop
a thorough understanding of the LSI system, they can restrict their focus to
the most important term and document vector entries.

Furthermore, we have shown that query run time improvements in LSI
can be achieved using our sparsification strategy for many collections. Our
approach zeroes a fixed percentage of both positive and negative values of the
term and document vectors produced by the SVD process. Our data shows
that, for small collections, we can successfully reduce the RAM requirements
by 45% (on average), and the query response time an average of 3%, without
sacrificing retrieval quality. If a slight degradation in retrieval quality is ac-
ceptable, the RAM requirements can be reduced by 77%, and query run time
can be reduced by 40% for smaller collections using our approach.

On the larger TREC collection (OHSUMED), we can reduce the runtime
by 30%, reduce the memory required by 48% and improve retrieval quality by
60% by implementing our sparsification algorithm at 90%.
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